Hybrid Genetic and Variational Expectation-Maximization Algorithm for Gaussian-Mixture-Model-Based Brain MR Image Segmentation

The expectation-maximization (EM) algorithm has been widely applied to the estimation of Gaussian mixture model (GMM) in brain MR image segmentation. However, the EM algorithm is deterministic and intrinsically prone to overfitting the training data and being trapped in local optima. In this paper,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information technology in biomedicine Ročník 15; číslo 3; s. 373 - 380
Hlavní autoři: Tian, GuangJian, Xia, Yong, Zhang, Yanning, Feng, Dagan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.05.2011
Témata:
ISSN:1089-7771, 1558-0032, 1558-0032
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The expectation-maximization (EM) algorithm has been widely applied to the estimation of Gaussian mixture model (GMM) in brain MR image segmentation. However, the EM algorithm is deterministic and intrinsically prone to overfitting the training data and being trapped in local optima. In this paper, we propose a hybrid genetic and variational EM (GA-VEM) algorithm for brain MR image segmentation. In this approach, the VEM algorithm is performed to estimate the GMM, and the GA is employed to initialize the hyperparameters of the conjugate prior distributions of GMM parameters involved in the VEM algorithm. Since GA has the potential to achieve global optimization and VEM can steadily avoid overfitting, the hybrid GA-VEM algorithm is capable of overcoming the drawbacks of traditional EM-based methods. We compared our approach to the EM-based, VEM-based, and GA-EM based segmentation algorithms, and the segmentation routines used in the statistical parametric mapping package and FMRIB Software Library in 20 low-resolution and 17 high-resolution brain MR studies. Our results show that the proposed approach can improve substantially the performance of brain MR image segmentation.
AbstractList The expectation-maximization (EM) algorithm has been widely applied to the estimation of gaussian mixture model (GMM) in brain MR image segmentation. However, the EM algorithm is deterministic and intrinsically prone to overfitting the training data and being trapped in local optima. In this paper, we propose a hybrid genetic and variational EM (GA-VEM) algorithm for brain MR image segmentation. In this approach, the VEM algorithm is performed to estimate the GMM, and the GA is employed to initialize the hyperparameters of the conjugate prior distributions of GMM parameters involved in the VEM algorithm. Since GA has the potential to achieve global optimization and VEM can steadily avoid overfitting, the hybrid GA-VEM algorithm is capable of overcoming the drawbacks of traditional EM-based methods. We compared our approach to the EM-based, VEM-based, and GA-EM based segmentation algorithms, and the segmentation routines used in the statistical parametric mapping package and FMRIB Software Library in 20 low-resolution and 17 high-resolution brain MR studies. Our results show that the proposed approach can improve substantially the performance of brain MR image segmentation.The expectation-maximization (EM) algorithm has been widely applied to the estimation of gaussian mixture model (GMM) in brain MR image segmentation. However, the EM algorithm is deterministic and intrinsically prone to overfitting the training data and being trapped in local optima. In this paper, we propose a hybrid genetic and variational EM (GA-VEM) algorithm for brain MR image segmentation. In this approach, the VEM algorithm is performed to estimate the GMM, and the GA is employed to initialize the hyperparameters of the conjugate prior distributions of GMM parameters involved in the VEM algorithm. Since GA has the potential to achieve global optimization and VEM can steadily avoid overfitting, the hybrid GA-VEM algorithm is capable of overcoming the drawbacks of traditional EM-based methods. We compared our approach to the EM-based, VEM-based, and GA-EM based segmentation algorithms, and the segmentation routines used in the statistical parametric mapping package and FMRIB Software Library in 20 low-resolution and 17 high-resolution brain MR studies. Our results show that the proposed approach can improve substantially the performance of brain MR image segmentation.
The expectation-maximization (EM) algorithm has been widely applied to the estimation of gaussian mixture model (GMM) in brain MR image segmentation. However, the EM algorithm is deterministic and intrinsically prone to overfitting the training data and being trapped in local optima. In this paper, we propose a hybrid genetic and variational EM (GA-VEM) algorithm for brain MR image segmentation. In this approach, the VEM algorithm is performed to estimate the GMM, and the GA is employed to initialize the hyperparameters of the conjugate prior distributions of GMM parameters involved in the VEM algorithm. Since GA has the potential to achieve global optimization and VEM can steadily avoid overfitting, the hybrid GA-VEM algorithm is capable of overcoming the drawbacks of traditional EM-based methods. We compared our approach to the EM-based, VEM-based, and GA-EM based segmentation algorithms, and the segmentation routines used in the statistical parametric mapping package and FMRIB Software Library in 20 low-resolution and 17 high-resolution brain MR studies. Our results show that the proposed approach can improve substantially the performance of brain MR image segmentation.
Author Yong Xia
Yanning Zhang
GuangJian Tian
Dagan Feng
Author_xml – sequence: 1
  givenname: GuangJian
  surname: Tian
  fullname: Tian, GuangJian
  email: tianguangjian@gmail.com
  organization: China Realtime Database Co. Ltd, State Grid Electric Power Research Institute, Nanjing, China. tianguangjian@gmail.com
– sequence: 2
  givenname: Yong
  surname: Xia
  fullname: Xia, Yong
– sequence: 3
  givenname: Yanning
  surname: Zhang
  fullname: Zhang, Yanning
– sequence: 4
  givenname: Dagan
  surname: Feng
  fullname: Feng, Dagan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21233052$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuP0zAUhS00iHnAD0BIyDtWKb5-xM5yOho6laZCgsI2cuybYpRHsROpw4LfTjops2ABq_vQd-6VzrkkZ13fISGvgS0AWPF-u94uF5wBLDiwHIR6Ri5AKZMxJvjZ1DNTZFprOCeXKX1nDKQC8YKcc-BCMMUvyK-7hyoGT1fY4RActZ2nX20Mdgh9Zxt6e9ijGx6nbGMPoQ0_Hwd63ez6GIZvLa37SFd2TCnYiQmHYYyYbXqPTba0CT1dRhs6uvlE163dIf2Muxa7-eZL8ry2TcJXp3pFvny43d7cZfcfV-ub6_vMSamGTHBfWeNy40AVWHuLToNXzueF8iC8dtNGMq1EIXXNjK9qV2tZ8bquZMGduCLv5rv72P8YMQ1lG5LDprEd9mMqjZZgTMH5_8lcaqO0ZBP59kSOVYu-3MfQ2vhQ_jF3AmAGXOxTilg_IcDKY4DlMcDyGGB5CnDS6L80LsxWDZOLzT-Vb2ZlQMSnTyo3hotC_AZimanm
CODEN ITIBFX
CitedBy_id crossref_primary_10_1109_TASC_2014_2347316
crossref_primary_10_1016_j_engappai_2022_105079
crossref_primary_10_1016_j_neucom_2016_08_147
crossref_primary_10_1016_j_neucom_2012_12_081
crossref_primary_10_1007_s10489_014_0633_y
crossref_primary_10_1016_j_eswa_2021_114591
crossref_primary_10_1109_TII_2018_2799928
crossref_primary_10_1007_s11042_021_10738_x
crossref_primary_10_1109_TITB_2012_2227273
crossref_primary_10_1016_j_sigpro_2021_108141
crossref_primary_10_1186_s42492_020_00064_8
crossref_primary_10_1016_j_mri_2015_03_008
crossref_primary_10_1002_env_2871
crossref_primary_10_1007_s10772_019_09618_5
crossref_primary_10_1007_s11042_018_5792_0
crossref_primary_10_1109_JSEN_2023_3283863
crossref_primary_10_1002_tee_22272
crossref_primary_10_1007_s13735_018_0162_2
crossref_primary_10_1016_j_cviu_2016_04_004
crossref_primary_10_1016_j_cmpb_2013_06_006
crossref_primary_10_3390_diagnostics12102535
crossref_primary_10_1007_s13369_016_2278_0
crossref_primary_10_1007_s11831_018_9257_4
crossref_primary_10_1109_TSMC_2022_3212975
crossref_primary_10_1007_s10762_015_0146_8
crossref_primary_10_1016_j_bspc_2013_07_010
crossref_primary_10_1097_WNP_0b013e3182570f94
crossref_primary_10_1016_j_compbiomed_2012_11_001
crossref_primary_10_1002_cmr_a_21390
crossref_primary_10_1016_j_bbr_2016_09_022
crossref_primary_10_1002_ima_22267
crossref_primary_10_1155_2014_813197
crossref_primary_10_3390_e15083295
crossref_primary_10_1016_j_oceaneng_2024_117870
crossref_primary_10_1038_s41699_018_0084_0
crossref_primary_10_1002_jmri_24517
crossref_primary_10_1016_j_mri_2014_05_003
crossref_primary_10_1007_s11042_022_12335_y
crossref_primary_10_1016_j_bbe_2019_04_004
crossref_primary_10_1016_j_inffus_2023_101987
crossref_primary_10_1134_S1054661819010115
crossref_primary_10_1007_s11042_018_6005_6
crossref_primary_10_1109_JIOT_2024_3412134
crossref_primary_10_1016_j_asoc_2015_05_039
crossref_primary_10_1109_TMI_2011_2165342
crossref_primary_10_1186_1687_6180_2014_59
Cites_doi 10.1016/0887-8994(91)90064-R
10.1109/TNN.2006.891114
10.1109/TSMCB.2006.872273
10.1118/1.1944912
10.1148/radiology.218.2.r01fe44586
10.1109/ISBI.2004.1398500
10.1109/TCBB.2007.70244
10.1109/TMI.2009.2014372
10.1109/42.906424
10.1109/TPAMI.2007.70775
10.1109/TBME.2007.895104
10.1109/42.20356
10.1002/int.10091
10.1109/TIP.2005.860624
10.1109/34.824822
10.1007/978-3-540-28650-9_3
10.1109/MSP.2008.929620
10.1109/42.932740
10.1016/S0167-9473(02)00177-9
10.1016/j.neuroimage.2004.07.051
10.1080/00949658908811178
10.1016/j.csda.2007.07.011
10.1006/nimg.2001.0800
10.1109/NSSMIC.2004.1466365
10.1016/S0031-3203(97)00045-9
10.1109/TMI.2007.895453
10.1109/TMI.2006.880668
10.1093/sysbio/45.3.380
10.1016/S0893-6080(97)00133-0
10.1109/42.650883
10.1007/978-3-540-85988-8_6
10.1109/TNN.2007.891635
10.1109/TPAMI.2005.162
10.1016/S1361-8415(01)00039-1
10.1109/TMI.2002.806587
10.1109/42.811270
10.1109/TMI.2006.880682
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
DOI 10.1109/TITB.2011.2106135
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-0032
EndPage 380
ExternalDocumentID 21233052
10_1109_TITB_2011_2106135
5688239
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
7X8
7QO
7TK
8FD
FR3
P64
ID FETCH-LOGICAL-c445t-32dba8c68c159efdaec71d5cd695d13d7caec40753947f08dbfcf74b2ffb492c3
IEDL.DBID RIE
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000290170300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-7771
1558-0032
IngestDate Tue Oct 07 09:24:52 EDT 2025
Fri Sep 05 05:01:44 EDT 2025
Wed Feb 19 01:48:35 EST 2025
Tue Nov 18 21:35:28 EST 2025
Sat Nov 29 05:35:19 EST 2025
Tue Aug 26 17:17:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-32dba8c68c159efdaec71d5cd695d13d7caec40753947f08dbfcf74b2ffb492c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21233052
PQID 864785740
PQPubID 23479
PageCount 8
ParticipantIDs pubmed_primary_21233052
ieee_primary_5688239
crossref_primary_10_1109_TITB_2011_2106135
proquest_miscellaneous_864785740
crossref_citationtrail_10_1109_TITB_2011_2106135
proquest_miscellaneous_874188922
PublicationCentury 2000
PublicationDate 2011-May
2011-05-00
20110501
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-May
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on information technology in biomedicine
PublicationTitleAbbrev TITB
PublicationTitleAlternate IEEE Trans Inf Technol Biomed
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref34
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref1
ref39
ref17
ref38
ref16
(ref35) 0
ref18
dimitris (ref19) 2003; 41
tipping (ref25) 2004
ref24
ref23
talairach (ref41) 1988
ref26
ref20
ref42
tohka (ref43) 0
ref22
ref44
goldberg (ref32) 1989
bishop (ref21) 2007
ref28
ref27
kaus (ref12) 2001; 218
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
(ref40) 0
References_xml – ident: ref42
  doi: 10.1016/0887-8994(91)90064-R
– year: 0
  ident: ref40
– ident: ref31
  doi: 10.1109/TNN.2006.891114
– ident: ref30
  doi: 10.1109/TSMCB.2006.872273
– ident: ref6
  doi: 10.1118/1.1944912
– volume: 218
  start-page: 586
  year: 2001
  ident: ref12
  article-title: Automated segmentation of MR images of brain tumors
  publication-title: Radiology
  doi: 10.1148/radiology.218.2.r01fe44586
– ident: ref8
  doi: 10.1109/ISBI.2004.1398500
– ident: ref27
  doi: 10.1109/TCBB.2007.70244
– ident: ref3
  doi: 10.1109/TMI.2009.2014372
– ident: ref13
  doi: 10.1109/42.906424
– ident: ref28
  doi: 10.1109/TPAMI.2007.70775
– ident: ref2
  doi: 10.1109/TBME.2007.895104
– ident: ref15
  doi: 10.1109/42.20356
– ident: ref37
  doi: 10.1002/int.10091
– start-page: 461
  year: 2007
  ident: ref21
  publication-title: Pattern Recognition and Machine Learning
– ident: ref23
  doi: 10.1109/TIP.2005.860624
– ident: ref1
  doi: 10.1109/34.824822
– start-page: 41
  year: 2004
  ident: ref25
  publication-title: Advanced Lectures on Machine Learning
  doi: 10.1007/978-3-540-28650-9_3
– year: 1988
  ident: ref41
  publication-title: Co-Planar Stereotaxic Atlas of the Human Brain
– ident: ref20
  doi: 10.1109/MSP.2008.929620
– ident: ref10
  doi: 10.1109/42.932740
– year: 0
  ident: ref43
– ident: ref26
  doi: 10.1016/S0167-9473(02)00177-9
– year: 1989
  ident: ref32
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– ident: ref36
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: ref39
  doi: 10.1080/00949658908811178
– ident: ref38
  doi: 10.1016/j.csda.2007.07.011
– ident: ref11
  doi: 10.1006/nimg.2001.0800
– ident: ref7
  doi: 10.1109/NSSMIC.2004.1466365
– ident: ref16
  doi: 10.1016/S0031-3203(97)00045-9
– ident: ref34
  doi: 10.1109/TMI.2007.895453
– ident: ref5
  doi: 10.1109/TMI.2006.880668
– ident: ref44
  doi: 10.1093/sysbio/45.3.380
– ident: ref29
  doi: 10.1016/S0893-6080(97)00133-0
– ident: ref14
  doi: 10.1109/42.650883
– ident: ref22
  doi: 10.1007/978-3-540-85988-8_6
– ident: ref4
  doi: 10.1109/TNN.2007.891635
– year: 0
  ident: ref35
– volume: 41
  start-page: 577
  year: 2003
  ident: ref19
  article-title: Choosing initial values for the EM algorithm for finite mixtures
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(02)00177-9
– ident: ref33
  doi: 10.1109/TPAMI.2005.162
– ident: ref9
  doi: 10.1016/S1361-8415(01)00039-1
– ident: ref17
  doi: 10.1109/TMI.2002.806587
– ident: ref18
  doi: 10.1109/42.811270
– ident: ref24
  doi: 10.1109/TMI.2006.880682
SSID ssj0014513
Score 2.283194
Snippet The expectation-maximization (EM) algorithm has been widely applied to the estimation of Gaussian mixture model (GMM) in brain MR image segmentation. However,...
The expectation-maximization (EM) algorithm has been widely applied to the estimation of gaussian mixture model (GMM) in brain MR image segmentation. However,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 373
SubjectTerms Algorithms
Bayes Theorem
Brain - anatomy & histology
Brain modeling
Estimation
Female
Gallium
Gaussian mixture model (GMM)
genetic algorithm (GA)
Genetic algorithms
Humans
Image Processing, Computer-Assisted - methods
Image resolution
Image segmentation
Information technology
Magnetic Resonance Imaging - methods
Male
MRI
Normal Distribution
variational Bayes inference
Title Hybrid Genetic and Variational Expectation-Maximization Algorithm for Gaussian-Mixture-Model-Based Brain MR Image Segmentation
URI https://ieeexplore.ieee.org/document/5688239
https://www.ncbi.nlm.nih.gov/pubmed/21233052
https://www.proquest.com/docview/864785740
https://www.proquest.com/docview/874188922
Volume 15
WOSCitedRecordID wos000290170300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0032
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0014513
  issn: 1089-7771
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FUJw4NECXR6VD5wQponj57GLKO1hKwQL2luU-NGutJtF-6jKhd-OJ_FGIEElblFkJ5G-iT3jme8bgNfS-eCdF1TKmlFucB0UTlPFghaqEsq7rtmEurjQk4n5tANvey6M974tPvPv8LLN5buF3eBR2bGQ0R8szC7sKiU7rlafMeAiT8X0JnqMKk8ZzDwzx-Pz8bAT62QYABWiVQBmMZIX7I_tqO2v8m9Xs91yTh_-38c-ggfJtSQnnS08hh3f7MP93wQH9-HuKKXSD-Dn2Q8kaxHUnY4TSNU48i0GzulwkKAGsu3y9HRU3UznibBJTmaXi-V0fTUn0d8lH6vNCnmYdDS9wWQExeZqMzqMm6MjQ-w_QUafyfk8Llvki7-cJ6pT8wS-nn4Yvz-jqRkDtZyLNS2YqyttpbbRAfLBVd6q3AnrpBEuL5yy8U6MDkVhuAqZdnWwQfGahVBzw2zxFPaaReMPgUiMeaSJnkvteDBay8oyz4LzJljn-QCyLSalTUrl2DBjVrYRS2ZKRLRERMuE6ADe9FO-dzIdtw0-QLj6gQmpAZAt8GX8xzBxUjV-sVmVGgm5QvHsliGoAqQNYwN41tlM__itqT3_-2tfwL3unBqLKF_C3nq58a_gjr1eT1fLo2jqE33Umvov-5n6bw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgngceLQUlqcPnBBus44d28cuouyKZoVgQb1FiR_tSrtZtA9ULvx2PIk3AgkqcYsiO4n0TewZz3zfALzKrPPOOkGzrGKUa1wHhVVUMq-ELIV0tm02IcdjdXamP-7Am44L45xris_cIV42uXy7MBs8KjsSWfAHU30NrgvOWdKytbqcARf9WE6vg88o-zGH2U_00WQ0GbRynQxDoFQ0GsAsxPKC_bEhNR1W_u1sNpvOyb3_-9z7cDc6l-S4tYYHsOPqPbjzm-TgHtzMYzJ9H34OfyBdi6DydJhAytqSryF0jseDBFWQTZupp3l5OZ1HyiY5np0vltP1xZwEj5e8LzcrZGLSfHqJ6QiK7dVmdBC2R0sG2IGC5J_IaB4WLvLZnc8j2al-CF9O3k3eDmlsx0AN52JNU2arUplMmeACOW9LZ2TfCmMzLWw_tdKEOyE-FKnm0ifKVt54ySvmfcU1M-kB7NaL2j0GkmHUk-ngu1SWe61UVhrmmLdOe2Md70GyxaQwUascW2bMiiZmSXSBiBaIaBER7cHrbsq3VqjjqsH7CFc3MCLVA7IFvgh_GaZOytotNqtCISVXSJ5cMQR1gJRmrAePWpvpHr81tSd_f-1LuDWc5KfF6Wj84Sncbk-tsaTyGeyulxv3HG6Y7-vpavmiMfhfO2n8zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Genetic+and+Variational+Expectation-Maximization+Algorithm+for+Gaussian-Mixture-Model-Based+Brain+MR+Image+Segmentation&rft.jtitle=IEEE+transactions+on+information+technology+in+biomedicine&rft.au=GuangJian+Tian&rft.au=Yong+Xia&rft.au=Yanning+Zhang&rft.au=Dagan+Feng&rft.date=2011-05-01&rft.issn=1089-7771&rft.eissn=1558-0032&rft.volume=15&rft.issue=3&rft.spage=373&rft.epage=380&rft_id=info:doi/10.1109%2FTITB.2011.2106135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITB_2011_2106135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7771&client=summon