Three-Point Difference Schemes of High Order of Accuracy for the Sturm–Liouville Problem
For the Sturm–Liouville problem, we construct three-point difference schemes of high order of accuracy on a nonuniform grid. The proposed difference schemes for each node of the grid x j , j = 1,2,…, N − 1, require solving of two Cauchy problems for the second-order linear ordinary differential equa...
Uloženo v:
| Vydáno v: | Journal of mathematical sciences (New York, N.Y.) Ročník 273; číslo 6; s. 948 - 959 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
04.07.2023
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1072-3374, 1573-8795 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For the Sturm–Liouville problem, we construct three-point difference schemes of high order of accuracy on a nonuniform grid. The proposed difference schemes for each node of the grid
x
j
,
j
= 1,2,…,
N
− 1, require solving of two Cauchy problems for the second-order linear ordinary differential equations on the segments [
x
j
−1
,
x
j
] (forward) and [
x
j
,
x
j
+1
] (backward) carried out for a single step by using an arbitrary one-step method: either the Taylor series expansion or the Runge–Kutta method of the order of accuracy
= 2[(
n
+1)/2] (
n
is a positive integer and [ · ] is the integral part of a number). We estimated the accuracy of three-point difference schemes and developed an algorithm for finding their solution. We also present the results of numerical experiments carried out to confirm our theoretical conclusions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1072-3374 1573-8795 |
| DOI: | 10.1007/s10958-023-06556-1 |