Multi-Objective Evolutionary Algorithm for PET Image Reconstruction: Concept
In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and quantifying disease. Unlike conventional image reconstruction that optimizes a single objective, this work proposes a multi-objective optimiza...
Saved in:
| Published in: | IEEE transactions on medical imaging Vol. 40; no. 8; pp. 2142 - 2151 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and quantifying disease. Unlike conventional image reconstruction that optimizes a single objective, this work proposes a multi-objective optimization algorithm for PET image reconstruction to identify a set of images that are optimal for more than one task. This work is reliant on a genetic algorithm to evolve a set of solutions that satisfies two distinct objectives. In this paper, we defined the objectives as the commonly used Poisson log-likelihood function, typically reflective of quantitative accuracy, and a variant of the generalized scan-statistic model, to reflect detection performance. The genetic algorithm uses new mutation and crossover operations at each iteration. After each iteration, the child population is selected with non-dominated sorting to identify the set of solutions along the dominant front or fronts. After multiple iterations, these fronts approach a single non-dominated optimal front, defined as the set of PET images for which none the objective function values can be improved without reducing the opposing objective function. This method was applied to simulated 2D PET data of the heart and liver with hot features. We compared this approach to conventional, single-objective approaches for trading off performance: maximum likelihood estimation with increasing explicit regularization and maximum a posteriori estimation with varying penalty strength. Results demonstrate that the proposed method generates solutions with comparable to improved objective function values compared to the conventional approaches for trading off performance amongst different tasks. In addition, this approach identifies a diverse set of solutions in the multi-objective function space which can be challenging to estimate with single-objective formulations. |
|---|---|
| AbstractList | In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and quantifying disease. Unlike conventional image reconstruction that optimizes a single objective, this work proposes a multi-objective optimization algorithm for PET image reconstruction to identify a set of images that are optimal for more than one task. This work is reliant on a genetic algorithm to evolve a set of solutions that satisfies two distinct objectives. In this paper, we defined the objectives as the commonly used Poisson log-likelihood function, typically reflective of quantitative accuracy, and a variant of the generalized scan-statistic model, to reflect detection performance. The genetic algorithm uses new mutation and crossover operations at each iteration. After each iteration, the child population is selected with non-dominated sorting to identify the set of solutions along the dominant front or fronts. After multiple iterations, these fronts approach a single non-dominated optimal front, defined as the set of PET images for which none the objective function values can be improved without reducing the opposing objective function. This method was applied to simulated 2D PET data of the heart and liver with hot features. We compared this approach to conventional, single-objective approaches for trading off performance: maximum likelihood estimation with increasing explicit regularization and maximum a posteriori estimation with varying penalty strength. Results demonstrate that the proposed method generates solutions with comparable to improved objective function values compared to the conventional approaches for trading off performance amongst different tasks. In addition, this approach identifies a diverse set of solutions in the multi-objective function space which can be challenging to estimate with single-objective formulations. In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and quantifying disease. Unlike conventional image reconstruction that optimizes a single objective, this work proposes a multi-objective optimization algorithm for PET image reconstruction to identify a set of images that are optimal for more than one task. This work is reliant on a genetic algorithm to evolve a set of solutions that satisfies two distinct objectives. In this paper, we defined the objectives as the commonly used Poisson log-likelihood function, typically reflective of quantitative accuracy, and a variant of the generalized scan-statistic model, to reflect detection performance. The genetic algorithm uses new mutation and crossover operations at each iteration. After each iteration, the child population is selected with non-dominated sorting to identify the set of solutions along the dominant front or fronts. After multiple iterations, these fronts approach a single non-dominated optimal front, defined as the set of PET images for which none the objective function values can be improved without reducing the opposing objective function. This method was applied to simulated 2D PET data of the heart and liver with hot features. We compared this approach to conventional, single-objective approaches for trading off performance: maximum likelihood estimation with increasing explicit regularization and maximum a posteriori estimation with varying penalty strength. Results demonstrate that the proposed method generates solutions with comparable to improved objective function values compared to the conventional approaches for trading off performance amongst different tasks. In addition, this approach identifies a diverse set of solutions in the multi-objective function space which can be challenging to estimate with single-objective formulations.In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and quantifying disease. Unlike conventional image reconstruction that optimizes a single objective, this work proposes a multi-objective optimization algorithm for PET image reconstruction to identify a set of images that are optimal for more than one task. This work is reliant on a genetic algorithm to evolve a set of solutions that satisfies two distinct objectives. In this paper, we defined the objectives as the commonly used Poisson log-likelihood function, typically reflective of quantitative accuracy, and a variant of the generalized scan-statistic model, to reflect detection performance. The genetic algorithm uses new mutation and crossover operations at each iteration. After each iteration, the child population is selected with non-dominated sorting to identify the set of solutions along the dominant front or fronts. After multiple iterations, these fronts approach a single non-dominated optimal front, defined as the set of PET images for which none the objective function values can be improved without reducing the opposing objective function. This method was applied to simulated 2D PET data of the heart and liver with hot features. We compared this approach to conventional, single-objective approaches for trading off performance: maximum likelihood estimation with increasing explicit regularization and maximum a posteriori estimation with varying penalty strength. Results demonstrate that the proposed method generates solutions with comparable to improved objective function values compared to the conventional approaches for trading off performance amongst different tasks. In addition, this approach identifies a diverse set of solutions in the multi-objective function space which can be challenging to estimate with single-objective formulations. |
| Author | Abouhawwash, Mohamed Alessio, Adam M. |
| Author_xml | – sequence: 1 givenname: Mohamed orcidid: 0000-0003-2846-4707 surname: Abouhawwash fullname: Abouhawwash, Mohamed email: abouhaww@msu.edu organization: Department of Computational Mathematics, Science, and Engineering and the Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA – sequence: 2 givenname: Adam M. orcidid: 0000-0003-3371-8580 surname: Alessio fullname: Alessio, Adam M. email: aalessio@msu.edu organization: Department of Computational Mathematics, Science, and Engineering, the Department of Biomedical Engineering, and the Department of Radiology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33852383$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9r2zAcxcXoWNNu98FgGHrZxal-2vIOgxKyLZDSMTLYTUjK16mCLWWyHOh_P4WkZeuhF-mgz3s8vXeBznzwgNB7gqeE4OZ6dbuYUkzJlOGaUc5eoQkRQpZU8N9naIJpLUuMK3qOLoZhizHhAjdv0DljUlAm2QQtb8cuufLObMEmt4divg_dmFzwOj4UN90mRJfu-6INsfgxXxWLXm-g-Ak2-CHF0R7Iz8UseAu79Ba9bnU3wLvTfYl-fZ2vZt_L5d23xexmWVrOeSrbNSYNw9AKTqmpeYtrK3VNja1p23CpuZZVU0ljDFBSG4sbaZo1q5gQYChhl-jL0Xc3mh7WFnyKulO76PqcWgXt1P8v3t2rTdgryUkuQGSDTyeDGP6MMCTVu8FC12kPYRwUFSTXKSVnGb16hm7DGH3-XqZExWU-6kx9_DfRU5THojNQHQEbwzBEaJV1SR_aywFdpwhWh0VVXlQdFlWnRbMQPxM-er8g-XCUOAB4whuOOcWM_QW_06r2 |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2024_111520 crossref_primary_10_1016_j_infoh_2023_10_001 crossref_primary_10_1109_TRPMS_2021_3126951 crossref_primary_10_3390_rs14092034 crossref_primary_10_3390_mca29060104 crossref_primary_10_1109_TMI_2024_3351907 crossref_primary_10_1016_j_eswa_2023_122677 crossref_primary_10_32604_cmc_2022_028326 crossref_primary_10_1088_2057_1976_ad286c crossref_primary_10_1007_s11042_024_19506_z crossref_primary_10_1109_TRPMS_2022_3205283 crossref_primary_10_1007_s10462_021_10086_0 |
| Cites_doi | 10.1016/j.sigpro.2019.107292 10.1088/0031-9155/51/23/020 10.1109/TMI.2007.911549 10.1109/TMI.2018.2888491 10.1145/1389095.1389419 10.1118/1.4824055 10.1007/978-3-319-15892-1_2 10.1080/00207160008804944 10.1109/TMI.2008.2006520 10.1109/4235.996017 10.1007/11893295_103 10.1109/4235.843497 10.1109/MCI.2010.936309 10.1016/j.dam.2005.02.021 10.1007/s00259-013-2465-0 10.1016/j.cor.2016.04.026 10.1109/TMI.2012.2211378 10.1109/TMI.1982.4307558 10.1162/106365600568202 10.1118/1.3480985 10.1109/83.491321 10.1016/j.asoc.2016.02.031 10.1109/CEC.1999.781913 10.1109/4235.797969 10.1109/TEVC.2007.892759 10.1109/TEVC.2013.2281535 10.1109/TEVC.2018.2871362 10.1007/s40336-014-0071-1 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
| DOI | 10.1109/TMI.2021.3073243 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Statistics |
| EISSN | 1558-254X |
| EndPage | 2151 |
| ExternalDocumentID | PMC8415095 33852383 10_1109_TMI_2021_3073243 9404203 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Heart, Lung, and Blood Institute, National Institutes of Health grantid: R56HL109327 funderid: 10.13039/100000050 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION NPM Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
| ID | FETCH-LOGICAL-c444t-fd01930ef5422b74f07c8a72bc72f948a4a86968bbbe217bc098b9d36355eb213 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679532100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Tue Sep 30 16:52:16 EDT 2025 Mon Sep 29 04:49:01 EDT 2025 Sun Jun 29 16:10:28 EDT 2025 Wed Feb 19 02:27:55 EST 2025 Sat Nov 29 05:14:08 EST 2025 Tue Nov 18 22:32:51 EST 2025 Wed Aug 27 02:40:01 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/USG.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c444t-fd01930ef5422b74f07c8a72bc72f948a4a86968bbbe217bc098b9d36355eb213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2846-4707 0000-0003-3371-8580 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8415095 |
| PMID | 33852383 |
| PQID | 2556485567 |
| PQPubID | 85460 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8415095 crossref_primary_10_1109_TMI_2021_3073243 proquest_journals_2556485567 ieee_primary_9404203 pubmed_primary_33852383 proquest_miscellaneous_2513248843 crossref_citationtrail_10_1109_TMI_2021_3073243 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ahn (ref4) 2008; 27 ref15 li (ref18) 2000; 74 rudolph (ref23) 1999 ref14 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref24 ref25 ref22 ref21 fessler (ref31) 2018 ref28 ref27 ref29 ref8 ref9 ref3 ref6 deb (ref26) 1994; 9 ref5 deb (ref7) 2001; 16 martins (ref20) 2014 fernandes (ref19) 2013 |
| References_xml | – ident: ref21 doi: 10.1016/j.sigpro.2019.107292 – ident: ref28 doi: 10.1088/0031-9155/51/23/020 – volume: 27 start-page: 413 year: 2008 ident: ref4 article-title: Analysis of resolution and noise properties of nonquadratically regularized image reconstruction methods for PET publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2007.911549 – ident: ref6 doi: 10.1109/TMI.2018.2888491 – ident: ref14 doi: 10.1145/1389095.1389419 – ident: ref29 doi: 10.1118/1.4824055 – ident: ref33 doi: 10.1007/978-3-319-15892-1_2 – start-page: 6255 year: 2013 ident: ref19 article-title: Multi-objective optimization by simulated annealing applied to image reconstruction by electrical impedance tomography publication-title: Proc 22nd Int Congr Mech Eng (COBEM) – volume: 74 start-page: 301 year: 2000 ident: ref18 article-title: Medical image reconstruction using a multi-objective genetic local search algorithm publication-title: Int J Comput Math doi: 10.1080/00207160008804944 – ident: ref1 doi: 10.1109/TMI.2008.2006520 – volume: 9 start-page: 1 year: 1994 ident: ref26 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref8 doi: 10.1109/4235.996017 – year: 1999 ident: ref23 article-title: Evolutionary search under partially ordered sets – volume: 16 year: 2001 ident: ref7 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref13 doi: 10.1007/11893295_103 – ident: ref12 doi: 10.1109/4235.843497 – ident: ref17 doi: 10.1109/MCI.2010.936309 – year: 2018 ident: ref31 article-title: Michigan image reconstruction toolbox – ident: ref16 doi: 10.1016/j.dam.2005.02.021 – ident: ref3 doi: 10.1007/s00259-013-2465-0 – ident: ref34 doi: 10.1016/j.cor.2016.04.026 – ident: ref5 doi: 10.1109/TMI.2012.2211378 – ident: ref27 doi: 10.1109/TMI.1982.4307558 – ident: ref24 doi: 10.1162/106365600568202 – ident: ref30 doi: 10.1118/1.3480985 – ident: ref32 doi: 10.1109/83.491321 – ident: ref15 doi: 10.1016/j.asoc.2016.02.031 – ident: ref22 doi: 10.1109/CEC.1999.781913 – ident: ref25 doi: 10.1109/4235.797969 – ident: ref9 doi: 10.1109/TEVC.2007.892759 – ident: ref10 doi: 10.1109/TEVC.2013.2281535 – ident: ref11 doi: 10.1109/TEVC.2018.2871362 – start-page: 185 year: 2014 ident: ref20 article-title: Image reconstruction by electrical impedance tomography using multi-objective simulated annealing publication-title: Proc IEEE 11th Int Symp Biomed Imag (ISBI) – ident: ref2 doi: 10.1007/s40336-014-0071-1 |
| SSID | ssj0014509 |
| Score | 2.4998589 |
| Snippet | In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2142 |
| SubjectTerms | Algorithms emission tomography Evolutionary algorithms Function space Genetic algorithms genetic optimization Image processing Image reconstruction Iterative methods Maximum likelihood estimation Medical imaging Multi-objective optimization Multiple objective analysis Objective function Optimization pareto optimal PET image reconstruction Positron emission Positron emission tomography Regularization Sociology Statistical analysis Statistics Tomography |
| Title | Multi-Objective Evolutionary Algorithm for PET Image Reconstruction: Concept |
| URI | https://ieeexplore.ieee.org/document/9404203 https://www.ncbi.nlm.nih.gov/pubmed/33852383 https://www.proquest.com/docview/2556485567 https://www.proquest.com/docview/2513248843 https://pubmed.ncbi.nlm.nih.gov/PMC8415095 |
| Volume | 40 |
| WOSCitedRecordID | wos000679532100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9wwDLYYQggeBhwb6wYok3iZtHJtkmvSvSF0CCRgPNyme6uSNB0g6KEbIO3fz256hZvQJN4qJa3S2k781fZngL3S4RlbKh474RCg2MTHpkrT2NrM-tSnJmtoF3-eqvNzPR7nFwvwtauF8d43yWd-ny6bWH45cQ_0q6yfS1QxovZ8o1QWarW6iIEchHQOToyxScZnIckk74_OThAI8nSf9JlLap2DwAwRmBZzp1HTXuUlT_PfhMlnJ9DR2uvWvg5vW0-THQTV2IAFX_dg9Rn_YA-Wz9rIeg9WyOsMpM2bcNqU5cbf7XXYDtnwsdVQM_3DDm5-TaZX95e3DB1edjEcsZNb3JUYIdknPtpv7DBURL6DH0fD0eFx3LZdiFFu8j6uSnT7ROKrgeTcKlklymmjuHWKV7nURhpNlDrWWo-Axrok1zYvBbkuiNNT8R4W60ntPwATTpReapGWWU7UfkbwqsQtQ9uB0cZkEfRnn79wLSc5tca4KRpskuQFyq4g2RWt7CL40t1xF_g4_jN3k-TQzWtFEMH2TMJFa7C_C2JiI56cTEXwuRtGU6P4ian95IHmIHTH1dOTt4JCdM-eKVQEak5VuglE4z0_Ul9dNnTeGn0odHQ_vrzaT7BC7xRyDrdhEaXod2DJPaJOTHfREsZ6t7GEvw68AxY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4hNjF42KDACGPgSXuZtNDEdhNnbwgVUdF2PHQTb5HtOMAE6dQB0v49d3Ga0QlN2pslO5aTO9v35e6-A_hYWLxji5SHVlgEKCZyoS7jODQmMS52sU5q2sXvw3Q8VhcX2fkSfG5zYZxzdfCZO6Rm7csvpvaefpV1M4kqRtSeL3oSGz5bq_UZyJ4P6ODEGRslfO6UjLLuZDRAKMjjQ9JoLql4DkIzxGBKLNxHdYGV52zNv0Mmn9xBJ2_-b_Xr8LqxNdmRV44NWHJVB9aeMBB2YGXU-NY7sEp2p6dt3oRhnZgbfjU__IHI-g-NjurZb3Z0czmdXd9d3TI0edl5f8IGt3guMcKyfxhpv7BjnxO5Bd9O-pPj07ApvBCi5ORdWBZo-InIlT3JuUllGaVW6ZQbm_Iyk0pLrYhUxxjjENIYG2XKZIUg4wWReiy2YbmaVm4HmLCicFKJuEgyIvfTgpcFHhrK9LTSOgmgO__8uW1Yyak4xk1eo5Moy1F2Ockub2QXwKf2iZ-ekeMfYzdJDu24RgQB7M0lnDdb9ldOXGzElJOkAXxou3GzkQdFV256T2MQvOPqaea3XiHauecKFUC6oCrtACLyXuyprq9qQm-FVhSaurvPr_YAXp1ORsN8OBifvYNVej8fgbgHyyhR9x5e2gfUj9l-vR8eAY2iBXU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Evolutionary+Algorithm+for+PET+Image+Reconstruction%3A+Concept&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Abouhawwash%2C+Mohamed&rft.au=Alessio%2C+Adam+M.&rft.date=2021-08-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=40&rft.issue=8&rft.spage=2142&rft.epage=2151&rft_id=info:doi/10.1109%2FTMI.2021.3073243&rft_id=info%3Apmid%2F33852383&rft.externalDocID=PMC8415095 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |