Multi-Objective Evolutionary Algorithm for PET Image Reconstruction: Concept

In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and quantifying disease. Unlike conventional image reconstruction that optimizes a single objective, this work proposes a multi-objective optimiza...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging Vol. 40; no. 8; pp. 2142 - 2151
Main Authors: Abouhawwash, Mohamed, Alessio, Adam M.
Format: Journal Article
Language:English
Published: United States IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0278-0062, 1558-254X, 1558-254X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and quantifying disease. Unlike conventional image reconstruction that optimizes a single objective, this work proposes a multi-objective optimization algorithm for PET image reconstruction to identify a set of images that are optimal for more than one task. This work is reliant on a genetic algorithm to evolve a set of solutions that satisfies two distinct objectives. In this paper, we defined the objectives as the commonly used Poisson log-likelihood function, typically reflective of quantitative accuracy, and a variant of the generalized scan-statistic model, to reflect detection performance. The genetic algorithm uses new mutation and crossover operations at each iteration. After each iteration, the child population is selected with non-dominated sorting to identify the set of solutions along the dominant front or fronts. After multiple iterations, these fronts approach a single non-dominated optimal front, defined as the set of PET images for which none the objective function values can be improved without reducing the opposing objective function. This method was applied to simulated 2D PET data of the heart and liver with hot features. We compared this approach to conventional, single-objective approaches for trading off performance: maximum likelihood estimation with increasing explicit regularization and maximum a posteriori estimation with varying penalty strength. Results demonstrate that the proposed method generates solutions with comparable to improved objective function values compared to the conventional approaches for trading off performance amongst different tasks. In addition, this approach identifies a diverse set of solutions in the multi-objective function space which can be challenging to estimate with single-objective formulations.
AbstractList In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and quantifying disease. Unlike conventional image reconstruction that optimizes a single objective, this work proposes a multi-objective optimization algorithm for PET image reconstruction to identify a set of images that are optimal for more than one task. This work is reliant on a genetic algorithm to evolve a set of solutions that satisfies two distinct objectives. In this paper, we defined the objectives as the commonly used Poisson log-likelihood function, typically reflective of quantitative accuracy, and a variant of the generalized scan-statistic model, to reflect detection performance. The genetic algorithm uses new mutation and crossover operations at each iteration. After each iteration, the child population is selected with non-dominated sorting to identify the set of solutions along the dominant front or fronts. After multiple iterations, these fronts approach a single non-dominated optimal front, defined as the set of PET images for which none the objective function values can be improved without reducing the opposing objective function. This method was applied to simulated 2D PET data of the heart and liver with hot features. We compared this approach to conventional, single-objective approaches for trading off performance: maximum likelihood estimation with increasing explicit regularization and maximum a posteriori estimation with varying penalty strength. Results demonstrate that the proposed method generates solutions with comparable to improved objective function values compared to the conventional approaches for trading off performance amongst different tasks. In addition, this approach identifies a diverse set of solutions in the multi-objective function space which can be challenging to estimate with single-objective formulations.
In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and quantifying disease. Unlike conventional image reconstruction that optimizes a single objective, this work proposes a multi-objective optimization algorithm for PET image reconstruction to identify a set of images that are optimal for more than one task. This work is reliant on a genetic algorithm to evolve a set of solutions that satisfies two distinct objectives. In this paper, we defined the objectives as the commonly used Poisson log-likelihood function, typically reflective of quantitative accuracy, and a variant of the generalized scan-statistic model, to reflect detection performance. The genetic algorithm uses new mutation and crossover operations at each iteration. After each iteration, the child population is selected with non-dominated sorting to identify the set of solutions along the dominant front or fronts. After multiple iterations, these fronts approach a single non-dominated optimal front, defined as the set of PET images for which none the objective function values can be improved without reducing the opposing objective function. This method was applied to simulated 2D PET data of the heart and liver with hot features. We compared this approach to conventional, single-objective approaches for trading off performance: maximum likelihood estimation with increasing explicit regularization and maximum a posteriori estimation with varying penalty strength. Results demonstrate that the proposed method generates solutions with comparable to improved objective function values compared to the conventional approaches for trading off performance amongst different tasks. In addition, this approach identifies a diverse set of solutions in the multi-objective function space which can be challenging to estimate with single-objective formulations.In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and quantifying disease. Unlike conventional image reconstruction that optimizes a single objective, this work proposes a multi-objective optimization algorithm for PET image reconstruction to identify a set of images that are optimal for more than one task. This work is reliant on a genetic algorithm to evolve a set of solutions that satisfies two distinct objectives. In this paper, we defined the objectives as the commonly used Poisson log-likelihood function, typically reflective of quantitative accuracy, and a variant of the generalized scan-statistic model, to reflect detection performance. The genetic algorithm uses new mutation and crossover operations at each iteration. After each iteration, the child population is selected with non-dominated sorting to identify the set of solutions along the dominant front or fronts. After multiple iterations, these fronts approach a single non-dominated optimal front, defined as the set of PET images for which none the objective function values can be improved without reducing the opposing objective function. This method was applied to simulated 2D PET data of the heart and liver with hot features. We compared this approach to conventional, single-objective approaches for trading off performance: maximum likelihood estimation with increasing explicit regularization and maximum a posteriori estimation with varying penalty strength. Results demonstrate that the proposed method generates solutions with comparable to improved objective function values compared to the conventional approaches for trading off performance amongst different tasks. In addition, this approach identifies a diverse set of solutions in the multi-objective function space which can be challenging to estimate with single-objective formulations.
Author Abouhawwash, Mohamed
Alessio, Adam M.
Author_xml – sequence: 1
  givenname: Mohamed
  orcidid: 0000-0003-2846-4707
  surname: Abouhawwash
  fullname: Abouhawwash, Mohamed
  email: abouhaww@msu.edu
  organization: Department of Computational Mathematics, Science, and Engineering and the Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
– sequence: 2
  givenname: Adam M.
  orcidid: 0000-0003-3371-8580
  surname: Alessio
  fullname: Alessio, Adam M.
  email: aalessio@msu.edu
  organization: Department of Computational Mathematics, Science, and Engineering, the Department of Biomedical Engineering, and the Department of Radiology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33852383$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9r2zAcxcXoWNNu98FgGHrZxal-2vIOgxKyLZDSMTLYTUjK16mCLWWyHOh_P4WkZeuhF-mgz3s8vXeBznzwgNB7gqeE4OZ6dbuYUkzJlOGaUc5eoQkRQpZU8N9naIJpLUuMK3qOLoZhizHhAjdv0DljUlAm2QQtb8cuufLObMEmt4divg_dmFzwOj4UN90mRJfu-6INsfgxXxWLXm-g-Ak2-CHF0R7Iz8UseAu79Ba9bnU3wLvTfYl-fZ2vZt_L5d23xexmWVrOeSrbNSYNw9AKTqmpeYtrK3VNja1p23CpuZZVU0ljDFBSG4sbaZo1q5gQYChhl-jL0Xc3mh7WFnyKulO76PqcWgXt1P8v3t2rTdgryUkuQGSDTyeDGP6MMCTVu8FC12kPYRwUFSTXKSVnGb16hm7DGH3-XqZExWU-6kx9_DfRU5THojNQHQEbwzBEaJV1SR_aywFdpwhWh0VVXlQdFlWnRbMQPxM-er8g-XCUOAB4whuOOcWM_QW_06r2
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_asoc_2024_111520
crossref_primary_10_1016_j_infoh_2023_10_001
crossref_primary_10_1109_TRPMS_2021_3126951
crossref_primary_10_3390_rs14092034
crossref_primary_10_3390_mca29060104
crossref_primary_10_1109_TMI_2024_3351907
crossref_primary_10_1016_j_eswa_2023_122677
crossref_primary_10_32604_cmc_2022_028326
crossref_primary_10_1088_2057_1976_ad286c
crossref_primary_10_1007_s11042_024_19506_z
crossref_primary_10_1109_TRPMS_2022_3205283
crossref_primary_10_1007_s10462_021_10086_0
Cites_doi 10.1016/j.sigpro.2019.107292
10.1088/0031-9155/51/23/020
10.1109/TMI.2007.911549
10.1109/TMI.2018.2888491
10.1145/1389095.1389419
10.1118/1.4824055
10.1007/978-3-319-15892-1_2
10.1080/00207160008804944
10.1109/TMI.2008.2006520
10.1109/4235.996017
10.1007/11893295_103
10.1109/4235.843497
10.1109/MCI.2010.936309
10.1016/j.dam.2005.02.021
10.1007/s00259-013-2465-0
10.1016/j.cor.2016.04.026
10.1109/TMI.2012.2211378
10.1109/TMI.1982.4307558
10.1162/106365600568202
10.1118/1.3480985
10.1109/83.491321
10.1016/j.asoc.2016.02.031
10.1109/CEC.1999.781913
10.1109/4235.797969
10.1109/TEVC.2007.892759
10.1109/TEVC.2013.2281535
10.1109/TEVC.2018.2871362
10.1007/s40336-014-0071-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2021.3073243
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Statistics
EISSN 1558-254X
EndPage 2151
ExternalDocumentID PMC8415095
33852383
10_1109_TMI_2021_3073243
9404203
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Heart, Lung, and Blood Institute, National Institutes of Health
  grantid: R56HL109327
  funderid: 10.13039/100000050
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
NPM
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c444t-fd01930ef5422b74f07c8a72bc72f948a4a86968bbbe217bc098b9d36355eb213
IEDL.DBID RIE
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679532100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Tue Sep 30 16:52:16 EDT 2025
Mon Sep 29 04:49:01 EDT 2025
Sun Jun 29 16:10:28 EDT 2025
Wed Feb 19 02:27:55 EST 2025
Sat Nov 29 05:14:08 EST 2025
Tue Nov 18 22:32:51 EST 2025
Wed Aug 27 02:40:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/USG.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-fd01930ef5422b74f07c8a72bc72f948a4a86968bbbe217bc098b9d36355eb213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2846-4707
0000-0003-3371-8580
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8415095
PMID 33852383
PQID 2556485567
PQPubID 85460
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8415095
crossref_primary_10_1109_TMI_2021_3073243
proquest_journals_2556485567
ieee_primary_9404203
pubmed_primary_33852383
proquest_miscellaneous_2513248843
crossref_citationtrail_10_1109_TMI_2021_3073243
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ahn (ref4) 2008; 27
ref15
li (ref18) 2000; 74
rudolph (ref23) 1999
ref14
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref24
ref25
ref22
ref21
fessler (ref31) 2018
ref28
ref27
ref29
ref8
ref9
ref3
ref6
deb (ref26) 1994; 9
ref5
deb (ref7) 2001; 16
martins (ref20) 2014
fernandes (ref19) 2013
References_xml – ident: ref21
  doi: 10.1016/j.sigpro.2019.107292
– ident: ref28
  doi: 10.1088/0031-9155/51/23/020
– volume: 27
  start-page: 413
  year: 2008
  ident: ref4
  article-title: Analysis of resolution and noise properties of nonquadratically regularized image reconstruction methods for PET
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2007.911549
– ident: ref6
  doi: 10.1109/TMI.2018.2888491
– ident: ref14
  doi: 10.1145/1389095.1389419
– ident: ref29
  doi: 10.1118/1.4824055
– ident: ref33
  doi: 10.1007/978-3-319-15892-1_2
– start-page: 6255
  year: 2013
  ident: ref19
  article-title: Multi-objective optimization by simulated annealing applied to image reconstruction by electrical impedance tomography
  publication-title: Proc 22nd Int Congr Mech Eng (COBEM)
– volume: 74
  start-page: 301
  year: 2000
  ident: ref18
  article-title: Medical image reconstruction using a multi-objective genetic local search algorithm
  publication-title: Int J Comput Math
  doi: 10.1080/00207160008804944
– ident: ref1
  doi: 10.1109/TMI.2008.2006520
– volume: 9
  start-page: 1
  year: 1994
  ident: ref26
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref8
  doi: 10.1109/4235.996017
– year: 1999
  ident: ref23
  article-title: Evolutionary search under partially ordered sets
– volume: 16
  year: 2001
  ident: ref7
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref13
  doi: 10.1007/11893295_103
– ident: ref12
  doi: 10.1109/4235.843497
– ident: ref17
  doi: 10.1109/MCI.2010.936309
– year: 2018
  ident: ref31
  article-title: Michigan image reconstruction toolbox
– ident: ref16
  doi: 10.1016/j.dam.2005.02.021
– ident: ref3
  doi: 10.1007/s00259-013-2465-0
– ident: ref34
  doi: 10.1016/j.cor.2016.04.026
– ident: ref5
  doi: 10.1109/TMI.2012.2211378
– ident: ref27
  doi: 10.1109/TMI.1982.4307558
– ident: ref24
  doi: 10.1162/106365600568202
– ident: ref30
  doi: 10.1118/1.3480985
– ident: ref32
  doi: 10.1109/83.491321
– ident: ref15
  doi: 10.1016/j.asoc.2016.02.031
– ident: ref22
  doi: 10.1109/CEC.1999.781913
– ident: ref25
  doi: 10.1109/4235.797969
– ident: ref9
  doi: 10.1109/TEVC.2007.892759
– ident: ref10
  doi: 10.1109/TEVC.2013.2281535
– ident: ref11
  doi: 10.1109/TEVC.2018.2871362
– start-page: 185
  year: 2014
  ident: ref20
  article-title: Image reconstruction by electrical impedance tomography using multi-objective simulated annealing
  publication-title: Proc IEEE 11th Int Symp Biomed Imag (ISBI)
– ident: ref2
  doi: 10.1007/s40336-014-0071-1
SSID ssj0014509
Score 2.4998589
Snippet In many diagnostic imaging settings, including positron emission tomography (PET), images are typically used for multiple tasks such as detecting disease and...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2142
SubjectTerms Algorithms
emission tomography
Evolutionary algorithms
Function space
Genetic algorithms
genetic optimization
Image processing
Image reconstruction
Iterative methods
Maximum likelihood estimation
Medical imaging
Multi-objective optimization
Multiple objective analysis
Objective function
Optimization
pareto optimal
PET image reconstruction
Positron emission
Positron emission tomography
Regularization
Sociology
Statistical analysis
Statistics
Tomography
Title Multi-Objective Evolutionary Algorithm for PET Image Reconstruction: Concept
URI https://ieeexplore.ieee.org/document/9404203
https://www.ncbi.nlm.nih.gov/pubmed/33852383
https://www.proquest.com/docview/2556485567
https://www.proquest.com/docview/2513248843
https://pubmed.ncbi.nlm.nih.gov/PMC8415095
Volume 40
WOSCitedRecordID wos000679532100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9wwDLYYQggeBhwb6wYok3iZtHJtkmvSvSF0CCRgPNyme6uSNB0g6KEbIO3fz256hZvQJN4qJa3S2k781fZngL3S4RlbKh474RCg2MTHpkrT2NrM-tSnJmtoF3-eqvNzPR7nFwvwtauF8d43yWd-ny6bWH45cQ_0q6yfS1QxovZ8o1QWarW6iIEchHQOToyxScZnIckk74_OThAI8nSf9JlLap2DwAwRmBZzp1HTXuUlT_PfhMlnJ9DR2uvWvg5vW0-THQTV2IAFX_dg9Rn_YA-Wz9rIeg9WyOsMpM2bcNqU5cbf7XXYDtnwsdVQM_3DDm5-TaZX95e3DB1edjEcsZNb3JUYIdknPtpv7DBURL6DH0fD0eFx3LZdiFFu8j6uSnT7ROKrgeTcKlklymmjuHWKV7nURhpNlDrWWo-Axrok1zYvBbkuiNNT8R4W60ntPwATTpReapGWWU7UfkbwqsQtQ9uB0cZkEfRnn79wLSc5tca4KRpskuQFyq4g2RWt7CL40t1xF_g4_jN3k-TQzWtFEMH2TMJFa7C_C2JiI56cTEXwuRtGU6P4ian95IHmIHTH1dOTt4JCdM-eKVQEak5VuglE4z0_Ul9dNnTeGn0odHQ_vrzaT7BC7xRyDrdhEaXod2DJPaJOTHfREsZ6t7GEvw68AxY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4hNjF42KDACGPgSXuZtNDEdhNnbwgVUdF2PHQTb5HtOMAE6dQB0v49d3Ga0QlN2pslO5aTO9v35e6-A_hYWLxji5SHVlgEKCZyoS7jODQmMS52sU5q2sXvw3Q8VhcX2fkSfG5zYZxzdfCZO6Rm7csvpvaefpV1M4kqRtSeL3oSGz5bq_UZyJ4P6ODEGRslfO6UjLLuZDRAKMjjQ9JoLql4DkIzxGBKLNxHdYGV52zNv0Mmn9xBJ2_-b_Xr8LqxNdmRV44NWHJVB9aeMBB2YGXU-NY7sEp2p6dt3oRhnZgbfjU__IHI-g-NjurZb3Z0czmdXd9d3TI0edl5f8IGt3guMcKyfxhpv7BjnxO5Bd9O-pPj07ApvBCi5ORdWBZo-InIlT3JuUllGaVW6ZQbm_Iyk0pLrYhUxxjjENIYG2XKZIUg4wWReiy2YbmaVm4HmLCicFKJuEgyIvfTgpcFHhrK9LTSOgmgO__8uW1Yyak4xk1eo5Moy1F2Ockub2QXwKf2iZ-ekeMfYzdJDu24RgQB7M0lnDdb9ldOXGzElJOkAXxou3GzkQdFV256T2MQvOPqaea3XiHauecKFUC6oCrtACLyXuyprq9qQm-FVhSaurvPr_YAXp1ORsN8OBifvYNVej8fgbgHyyhR9x5e2gfUj9l-vR8eAY2iBXU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Evolutionary+Algorithm+for+PET+Image+Reconstruction%3A+Concept&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Abouhawwash%2C+Mohamed&rft.au=Alessio%2C+Adam+M.&rft.date=2021-08-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=40&rft.issue=8&rft.spage=2142&rft.epage=2151&rft_id=info:doi/10.1109%2FTMI.2021.3073243&rft_id=info%3Apmid%2F33852383&rft.externalDocID=PMC8415095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon