Topological strings, strips and quivers

A bstract We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact four-cycles, also referred to as strip geometries. We show that various quantities that characterize open topological string theory on...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The journal of high energy physics Ročník 2019; číslo 1; s. 1 - 45
Hlavní autori: Panfil, Miłosz, Sułkowski, Piotr
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2019
Springer Nature B.V
Springer Berlin
SpringerOpen
Predmet:
ISSN:1029-8479, 1029-8479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A bstract We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact four-cycles, also referred to as strip geometries. We show that various quantities that characterize open topological string theory on these manifolds, such as partition functions, Gromov-Witten invariants, or open BPS invariants, can be expressed in terms of characteristics of the moduli space of representations of the corresponding quiver. This has various deep consequences; in particular, expressing open BPS invariants in terms of motivic Donaldson-Thomas invariants, immediately proves integrality of the former ones. Taking advantage of the relation to quivers we also derive explicit expressions for classical open BPS invariants for an arbitrary strip geometry, which lead to a large set of number theoretic integrality statements. Furthermore, for a specific framing, open topological string partition functions for strip geometries take form of generalized q -hypergeometric functions, which leads to a novel representation of these functions in terms of quantum dilogarithms and integral invariants. We also study quantum curves and A-polynomials associated to quivers, various limits thereof, and their specializations relevant for strip geometries. The relation between toric manifolds and quivers can be regarded as a generalization of the knots-quivers correspondence to more general Calabi-Yau geometries.
AbstractList We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact four-cycles, also referred to as strip geometries. We show that various quantities that characterize open topological string theory on these manifolds, such as partition functions, Gromov-Witten invariants, or open BPS invariants, can be expressed in terms of characteristics of the moduli space of representations of the corresponding quiver. This has various deep consequences; in particular, expressing open BPS invariants in terms of motivic Donaldson-Thomas invariants, immediately proves integrality of the former ones. Taking advantage of the relation to quivers we also derive explicit expressions for classical open BPS invariants for an arbitrary strip geometry, which lead to a large set of number theoretic integrality statements. Furthermore, for a specific framing, open topological string partition functions for strip geometries take form of generalized q-hypergeometric functions, which leads to a novel representation of these functions in terms of quantum dilogarithms and integral invariants. We also study quantum curves and A-polynomials associated to quivers, various limits thereof, and their specializations relevant for strip geometries. The relation between toric manifolds and quivers can be regarded as a generalization of the knots-quivers correspondence to more general Calabi-Yau geometries.
We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact four-cycles, also referred to as strip geometries. We show that various quantities that characterize open topological string theory on these manifolds, such as partition functions, Gromov-Witten invariants, or open BPS invariants, can be expressed in terms of characteristics of the moduli space of representations of the corresponding quiver. This has various deep consequences; in particular, expressing open BPS invariants in terms of motivic Donaldson-Thomas invariants, immediately proves integrality of the former ones. Taking advantage of the relation to quivers we also derive explicit expressions for classical open BPS invariants for an arbitrary strip geometry, which lead to a large set of number theoretic integrality statements. Furthermore, for a specific framing, open topological string partition functions for strip geometries take form of generalized q -hypergeometric functions, which leads to a novel representation of these functions in terms of quantum dilogarithms and integral invariants. We also study quantum curves and A-polynomials associated to quivers, various limits thereof, and their specializations relevant for strip geometries. The relation between toric manifolds and quivers can be regarded as a generalization of the knots-quivers correspondence to more general Calabi-Yau geometries.
Abstract We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact four-cycles, also referred to as strip geometries. We show that various quantities that characterize open topological string theory on these manifolds, such as partition functions, Gromov-Witten invariants, or open BPS invariants, can be expressed in terms of characteristics of the moduli space of representations of the corresponding quiver. This has various deep consequences; in particular, expressing open BPS invariants in terms of motivic Donaldson-Thomas invariants, immediately proves integrality of the former ones. Taking advantage of the relation to quivers we also derive explicit expressions for classical open BPS invariants for an arbitrary strip geometry, which lead to a large set of number theoretic integrality statements. Furthermore, for a specific framing, open topological string partition functions for strip geometries take form of generalized q-hypergeometric functions, which leads to a novel representation of these functions in terms of quantum dilogarithms and integral invariants. We also study quantum curves and A-polynomials associated to quivers, various limits thereof, and their specializations relevant for strip geometries. The relation between toric manifolds and quivers can be regarded as a generalization of the knots-quivers correspondence to more general Calabi-Yau geometries.
A bstract We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact four-cycles, also referred to as strip geometries. We show that various quantities that characterize open topological string theory on these manifolds, such as partition functions, Gromov-Witten invariants, or open BPS invariants, can be expressed in terms of characteristics of the moduli space of representations of the corresponding quiver. This has various deep consequences; in particular, expressing open BPS invariants in terms of motivic Donaldson-Thomas invariants, immediately proves integrality of the former ones. Taking advantage of the relation to quivers we also derive explicit expressions for classical open BPS invariants for an arbitrary strip geometry, which lead to a large set of number theoretic integrality statements. Furthermore, for a specific framing, open topological string partition functions for strip geometries take form of generalized q -hypergeometric functions, which leads to a novel representation of these functions in terms of quantum dilogarithms and integral invariants. We also study quantum curves and A-polynomials associated to quivers, various limits thereof, and their specializations relevant for strip geometries. The relation between toric manifolds and quivers can be regarded as a generalization of the knots-quivers correspondence to more general Calabi-Yau geometries.
ArticleNumber 124
Author Panfil, Miłosz
Sułkowski, Piotr
Author_xml – sequence: 1
  givenname: Miłosz
  orcidid: 0000-0003-1525-4700
  surname: Panfil
  fullname: Panfil, Miłosz
  email: milosz.panfil@fuw.edu.pl
  organization: Faculty of Physics, University of Warsaw
– sequence: 2
  givenname: Piotr
  surname: Sułkowski
  fullname: Sułkowski, Piotr
  organization: Faculty of Physics, University of Warsaw, Walter Burke Institute for Theoretical Physics, California Institute of Technology
BackLink https://www.osti.gov/servlets/purl/1611634$$D View this record in Osti.gov
BookMark eNp9kc1LxDAQxYMo-Hn2uuhBBdfNpEnaHGXxkwU9rOeQpsmapTY1yQr-97ZbURH0EGYI7_cy87KLNhvfGIQOAV8Axvnk_vbqEcMpwSDOgNANtAOYiHFBc7H5o99GuzEuMQYGAu-gk7lvfe0XTqt6FFNwzSKer5s2jlRTjV5X7s2EuI-2rKqjOfise-jp-mo-vR3PHm7uppezsaaUpnHFNSXcQsGsJZYVlGPBM1wxYUtsrdUlLwtjNM4NyYSlAkzOoSiYFsKwDLI9dDf4Vl4tZRvciwrv0isn1xc-LKQKyenaSKVBFVWRgdKM8s6alJYLJSpOGdeCdl5Hg5ePycmoXTL6WfumMTpJ4AA860XHg6gN_nVlYpJLvwpNt6MkwPPucMI71WRQ6eBjDMZ-jQZY9vHLIX7Zxy-7-DuC_SK691VyvklBufofDg9cbPvPMOF7nr-QDwhrl6o
CitedBy_id crossref_primary_10_1007_JHEP09_2020_075
crossref_primary_10_1007_JHEP07_2022_107
crossref_primary_10_1007_JHEP12_2020_095
crossref_primary_10_1007_JHEP03_2021_236
crossref_primary_10_1007_s00220_024_05077_5
crossref_primary_10_1007_JHEP05_2022_043
crossref_primary_10_1007_s00220_023_04753_2
crossref_primary_10_1007_JHEP02_2020_018
crossref_primary_10_1007_JHEP07_2020_151
crossref_primary_10_1007_JHEP12_2024_089
crossref_primary_10_1007_JHEP08_2023_136
crossref_primary_10_1007_JHEP10_2019_076
crossref_primary_10_1007_s00023_025_01604_9
crossref_primary_10_1112_jlms_12433
Cites_doi 10.1112/S0010437X12000152
10.1007/JHEP03(2016)004
10.1215/00127094-2017-0030
10.1007/s00220-013-1789-8
10.1007/s00220-016-2682-z
10.4310/ATMP.2006.v10.n3.a2
10.1080/10236190701264925
10.1007/JHEP07(2017)032
10.1007/JHEP08(2017)063
10.4310/ATMP.2014.v18.n4.a3
10.1016/S0550-3213(00)00118-8
10.1007/s00220-005-1448-9
10.1007/s002200100374
10.1112/S0010437X1000521X
10.4310/CNTP.2011.v5.n2.a1
10.1007/JHEP05(2013)166
10.1007/JHEP08(2017)139
10.1016/S0550-3213(00)00761-6
10.1007/JHEP02(2012)070
10.1007/JHEP06(2012)178
10.1007/0-8176-4467-9_16
10.1090/pspum/090/01532
10.1007/s00220-004-1162-z
10.1088/1126-6708/2006/01/040
10.1007/978-3-540-30308-4_2
10.1017/CBO9780511526251
10.4171/dm/359
10.1142/S0218216502001561
10.1088/1126-6708/2000/11/007
10.1007/JHEP11(2016)120
10.1007/s002200050461
10.1007/BF01217730
ContentType Journal Article
Copyright The Author(s) 2019
Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2019
– notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
CorporateAuthor California Institute of Technology (CalTech), Pasadena, CA (United States)
CorporateAuthor_xml – name: California Institute of Technology (CalTech), Pasadena, CA (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP01(2019)124
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 45
ExternalDocumentID oai_doaj_org_article_ac1a8d831ac546fcb2bf69a9d6456c94
1611634
10_1007_JHEP01_2019_124
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEINN
AEJGL
AERVB
AETNG
AEZWR
AFFHD
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
PQGLB
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
AAYZJ
AHBXF
OIOZB
OTOTI
ID FETCH-LOGICAL-c444t-d6c426f185ff2f584609630d59fb0fffcb6b8eec07e239f491e761885c99e5313
IEDL.DBID C24
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455787000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-8479
IngestDate Fri Oct 03 12:50:57 EDT 2025
Mon Jul 10 02:30:36 EDT 2023
Sat Oct 18 22:49:44 EDT 2025
Tue Nov 18 20:58:27 EST 2025
Sat Nov 29 06:03:18 EST 2025
Fri Feb 21 02:33:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Topological Strings
Topological Field Theories
M-Theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-d6c426f185ff2f584609630d59fb0fffcb6b8eec07e239f491e761885c99e5313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC), High Energy Physics (HEP)
National Science Foundation (NSF)
SC0011632; 2015/16/S/ST2/00448; PHY-1748958; 335739
Foundation for Polish Science
National Science Centre
ORCID 0000-0003-1525-4700
0000000315254700
OpenAccessLink https://link.springer.com/10.1007/JHEP01(2019)124
PQID 2167216626
PQPubID 2034718
PageCount 45
ParticipantIDs doaj_primary_oai_doaj_org_article_ac1a8d831ac546fcb2bf69a9d6456c94
osti_scitechconnect_1611634
proquest_journals_2167216626
crossref_primary_10_1007_JHEP01_2019_124
crossref_citationtrail_10_1007_JHEP01_2019_124
springer_journals_10_1007_JHEP01_2019_124
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Berlin
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Berlin
– name: SpringerOpen
References Garoufalidis, Lauda, Lê (CR46) 2018; 167
Kucharski, Reineke, Stosic, Sulkowski (CR11) 2017; D 96
Efimov (CR28) 2012; 148
Bonelli, Tanzini, Zhao (CR24) 2012; 06
CR37
Kontsevich, Soibelman (CR21) 2011; 5
CR36
CR35
CR30
Alim, Cecotti, Cordova, Espahbodi, Rastogi, Vafa (CR31) 2013; 323
Koepf, Rajković, Marinković (CR45) 2007; 13
Iqbal, Kashani-Poor (CR22) 2006; 10
Okounkov, Reshetikhin, Vafa (CR38) 2006; 244
Eager, Selmani, Walcher (CR33) 2017; 08
Witten (CR4) 1995; 133
CR3
CR8
CR7
Halmagyi, Sinkovics, Sulkowski (CR51) 2006; 01
CR47
Schwarz, Vologodsky, Walcher (CR50) 2015; 90
Aganagic, Klemm, Vafa (CR19) 2002; A 57
CR44
CR43
CR42
Ramadevi, Sarkar (CR9) 2001; B 600
Panfil, Stosic, Sulkowski (CR16) 2018; D 98
CR18
Gabella, Longhi, Park, Yamazaki (CR34) 2017; 07
CR17
CR15
Aganagic, Dijkgraaf, Klemm, Mariño, Vafa (CR2) 2006; 261
CR14
Garoufalidis, Kucharski, Sulkowski (CR29) 2016; 346
CR13
CR12
Reineke (CR40) 2011; 147
Labastida, Mariño (CR6) 2001; 217
Manschot, Pioline, Sen (CR32) 2013; 05
Mironov, Morozov, Morozov, Ramadevi, Singh, Sleptsov (CR10) 2017; 08
Gukov, Sulkowski (CR39) 2012; 02
Ooguri, Vafa (CR5) 2000; B 577
Aganagic, Ekholm, Ng, Vafa (CR48) 2014; 18
Aganagic, Klemm, Mariño, Vafa (CR1) 2005; 254
CR27
Reineke (CR41) 2012; 17
CR26
CR25
CR23
CR20
Gukov, Nawata, Saberi, Stosic, Sulkowski (CR49) 2016; 03
9765_CR18
M Aganagic (9765_CR19) 2002; A 57
H Ooguri (9765_CR5) 2000; B 577
W Koepf (9765_CR45) 2007; 13
9765_CR13
9765_CR12
9765_CR15
9765_CR14
9765_CR17
A Mironov (9765_CR10) 2017; 08
9765_CR7
9765_CR8
S Garoufalidis (9765_CR46) 2018; 167
9765_CR3
S Garoufalidis (9765_CR29) 2016; 346
M Kontsevich (9765_CR21) 2011; 5
J Manschot (9765_CR32) 2013; 05
A Iqbal (9765_CR22) 2006; 10
AI Efimov (9765_CR28) 2012; 148
M Panfil (9765_CR16) 2018; D 98
G Bonelli (9765_CR24) 2012; 06
S Gukov (9765_CR49) 2016; 03
9765_CR44
M Aganagic (9765_CR48) 2014; 18
9765_CR43
JMF Labastida (9765_CR6) 2001; 217
9765_CR47
A Schwarz (9765_CR50) 2015; 90
M Aganagic (9765_CR1) 2005; 254
P Kucharski (9765_CR11) 2017; D 96
9765_CR42
M Reineke (9765_CR41) 2012; 17
9765_CR35
9765_CR37
9765_CR36
M Aganagic (9765_CR2) 2006; 261
M Alim (9765_CR31) 2013; 323
P Ramadevi (9765_CR9) 2001; B 600
9765_CR30
R Eager (9765_CR33) 2017; 08
S Gukov (9765_CR39) 2012; 02
M Reineke (9765_CR40) 2011; 147
9765_CR23
9765_CR26
9765_CR25
9765_CR27
N Halmagyi (9765_CR51) 2006; 01
E Witten (9765_CR4) 1995; 133
M Gabella (9765_CR34) 2017; 07
9765_CR20
A Okounkov (9765_CR38) 2006; 244
References_xml – volume: 133
  start-page: 637
  year: 1995
  ident: CR4
  article-title: Chern-Simons gauge theory as a string theory
  publication-title: Prog. Math.
– volume: 148
  start-page: 1133
  year: 2012
  ident: CR28
  article-title: Cohomological Hall algebra of a symmetric quiver
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X12000152
– volume: D 98
  year: 2018
  ident: CR16
  article-title: Donaldson-Thomas invariants, torus knots and lattice paths
  publication-title: Phys. Rev.
– ident: CR12
– volume: 03
  start-page: 004
  year: 2016
  ident: CR49
  article-title: Sequencing BPS Spectra
  publication-title: JHEP
  doi: 10.1007/JHEP03(2016)004
– ident: CR35
– volume: 167
  start-page: 397
  year: 2018
  ident: CR46
  article-title: The colored HOMFLYPT function is q-holonomic
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2017-0030
– ident: CR8
– ident: CR25
– ident: CR42
– volume: 323
  start-page: 1185
  year: 2013
  ident: CR31
  article-title: BPS Quivers and Spectra of Complete N = 2 Quantum Field Theories
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-013-1789-8
– volume: 346
  start-page: 75
  year: 2016
  ident: CR29
  article-title: Knots, BPS states and algebraic curves
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-016-2682-z
– volume: 17
  start-page: 1
  year: 2012
  ident: CR41
  article-title: Degenerate Cohomological Hall algebra and quantized Donaldson-Thomas invariants for m-loop quivers
  publication-title: Doc. Math.
– ident: CR15
– volume: 10
  start-page: 317
  year: 2006
  ident: CR22
  article-title: The Vertex on a strip
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2006.v10.n3.a2
– volume: 13
  start-page: 621
  year: 2007
  ident: CR45
  article-title: Properties of q-holonomic functions
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236190701264925
– volume: 07
  start-page: 032
  year: 2017
  ident: CR34
  article-title: BPS Graphs: From Spectral Networks to BPS Quivers
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)032
– volume: 08
  start-page: 063
  year: 2017
  ident: CR33
  article-title: Exponential Networks and Representations of Quivers
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)063
– ident: CR36
– volume: D 96
  start-page: 121902
  year: 2017
  ident: CR11
  article-title: BPS states, knots and quivers
  publication-title: Phys. Rev.
– ident: CR26
– volume: 18
  start-page: 827
  year: 2014
  ident: CR48
  article-title: Topological Strings, D-Model and Knot Contact Homology
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2014.v18.n4.a3
– volume: B 577
  start-page: 419
  year: 2000
  ident: CR5
  article-title: Knot invariants and topological strings
  publication-title: Nucl. Phys.
  doi: 10.1016/S0550-3213(00)00118-8
– ident: CR18
– ident: CR43
– ident: CR47
– ident: CR14
– ident: CR37
– ident: CR30
– volume: 261
  start-page: 451
  year: 2006
  ident: CR2
  article-title: Topological strings and integrable hierarchies
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-005-1448-9
– volume: 217
  start-page: 423
  year: 2001
  ident: CR6
  article-title: Polynomial invariants for torus knots and topological strings
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200100374
– volume: 147
  start-page: 943
  year: 2011
  ident: CR40
  article-title: Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X1000521X
– volume: A 57
  start-page: 1
  year: 2002
  ident: CR19
  article-title: Disk instantons, mirror symmetry and the duality web
  publication-title: Z. Naturforsch.
– volume: 5
  start-page: 231
  year: 2011
  ident: CR21
  article-title: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2011.v5.n2.a1
– ident: CR27
– volume: 05
  start-page: 166
  year: 2013
  ident: CR32
  article-title: On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants
  publication-title: JHEP
  doi: 10.1007/JHEP05(2013)166
– ident: CR23
– volume: 08
  start-page: 139
  year: 2017
  ident: CR10
  article-title: Checks of integrality properties in topological strings
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)139
– volume: B 600
  start-page: 487
  year: 2001
  ident: CR9
  article-title: On link invariants and topological string amplitudes
  publication-title: Nucl. Phys.
  doi: 10.1016/S0550-3213(00)00761-6
– volume: 02
  start-page: 070
  year: 2012
  ident: CR39
  article-title: A-polynomial, B-model and Quantization
  publication-title: JHEP
  doi: 10.1007/JHEP02(2012)070
– ident: CR44
– volume: 06
  start-page: 178
  year: 2012
  ident: CR24
  article-title: Vertices, Vortices and Interacting Surface Operators
  publication-title: JHEP
  doi: 10.1007/JHEP06(2012)178
– ident: CR3
– volume: 244
  start-page: 597
  year: 2006
  ident: CR38
  article-title: Quantum Calabi-Yau and classical crystals
  publication-title: Prog. Math.
  doi: 10.1007/0-8176-4467-9_16
– ident: CR17
– ident: CR13
– volume: 90
  start-page: 113
  year: 2015
  ident: CR50
  article-title: Framing the Di-Logarithm (over Z)
  publication-title: Proc. Symp. Pure Math.
  doi: 10.1090/pspum/090/01532
– ident: CR7
– volume: 254
  start-page: 425
  year: 2005
  ident: CR1
  article-title: The Topological vertex
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-004-1162-z
– volume: 01
  start-page: 040
  year: 2006
  ident: CR51
  article-title: Knot invariants and Calabi-Yau crystals
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/01/040
– ident: CR20
– volume: 5
  start-page: 231
  year: 2011
  ident: 9765_CR21
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2011.v5.n2.a1
– volume: B 577
  start-page: 419
  year: 2000
  ident: 9765_CR5
  publication-title: Nucl. Phys.
  doi: 10.1016/S0550-3213(00)00118-8
– volume: D 98
  year: 2018
  ident: 9765_CR16
  publication-title: Phys. Rev.
– ident: 9765_CR30
– ident: 9765_CR15
– volume: 06
  start-page: 178
  year: 2012
  ident: 9765_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP06(2012)178
– volume: B 600
  start-page: 487
  year: 2001
  ident: 9765_CR9
  publication-title: Nucl. Phys.
  doi: 10.1016/S0550-3213(00)00761-6
– volume: 323
  start-page: 1185
  year: 2013
  ident: 9765_CR31
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-013-1789-8
– volume: 244
  start-page: 597
  year: 2006
  ident: 9765_CR38
  publication-title: Prog. Math.
  doi: 10.1007/0-8176-4467-9_16
– ident: 9765_CR18
– ident: 9765_CR25
– volume: 07
  start-page: 032
  year: 2017
  ident: 9765_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)032
– volume: 167
  start-page: 397
  year: 2018
  ident: 9765_CR46
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2017-0030
– ident: 9765_CR37
– ident: 9765_CR12
– volume: A 57
  start-page: 1
  year: 2002
  ident: 9765_CR19
  publication-title: Z. Naturforsch.
– ident: 9765_CR44
  doi: 10.1007/978-3-540-30308-4_2
– ident: 9765_CR47
– volume: 01
  start-page: 040
  year: 2006
  ident: 9765_CR51
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/01/040
– volume: 254
  start-page: 425
  year: 2005
  ident: 9765_CR1
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-004-1162-z
– ident: 9765_CR43
– ident: 9765_CR26
– volume: 08
  start-page: 139
  year: 2017
  ident: 9765_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)139
– ident: 9765_CR23
  doi: 10.1017/CBO9780511526251
– volume: 17
  start-page: 1
  year: 2012
  ident: 9765_CR41
  publication-title: Doc. Math.
  doi: 10.4171/dm/359
– volume: 261
  start-page: 451
  year: 2006
  ident: 9765_CR2
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-005-1448-9
– ident: 9765_CR8
  doi: 10.1142/S0218216502001561
– ident: 9765_CR36
– volume: 10
  start-page: 317
  year: 2006
  ident: 9765_CR22
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2006.v10.n3.a2
– volume: 133
  start-page: 637
  year: 1995
  ident: 9765_CR4
  publication-title: Prog. Math.
– volume: 148
  start-page: 1133
  year: 2012
  ident: 9765_CR28
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X12000152
– volume: 147
  start-page: 943
  year: 2011
  ident: 9765_CR40
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X1000521X
– volume: 02
  start-page: 070
  year: 2012
  ident: 9765_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP02(2012)070
– volume: 13
  start-page: 621
  year: 2007
  ident: 9765_CR45
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236190701264925
– volume: 18
  start-page: 827
  year: 2014
  ident: 9765_CR48
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2014.v18.n4.a3
– ident: 9765_CR42
– ident: 9765_CR35
– ident: 9765_CR7
  doi: 10.1088/1126-6708/2000/11/007
– ident: 9765_CR14
– ident: 9765_CR13
  doi: 10.1007/JHEP11(2016)120
– volume: 90
  start-page: 113
  year: 2015
  ident: 9765_CR50
  publication-title: Proc. Symp. Pure Math.
  doi: 10.1090/pspum/090/01532
– ident: 9765_CR27
– volume: 346
  start-page: 75
  year: 2016
  ident: 9765_CR29
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-016-2682-z
– ident: 9765_CR20
  doi: 10.1007/s002200050461
– ident: 9765_CR3
  doi: 10.1007/BF01217730
– volume: 03
  start-page: 004
  year: 2016
  ident: 9765_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP03(2016)004
– ident: 9765_CR17
– volume: 05
  start-page: 166
  year: 2013
  ident: 9765_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP05(2013)166
– volume: 217
  start-page: 423
  year: 2001
  ident: 9765_CR6
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200100374
– volume: D 96
  start-page: 121902
  year: 2017
  ident: 9765_CR11
  publication-title: Phys. Rev.
– volume: 08
  start-page: 063
  year: 2017
  ident: 9765_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)063
SSID ssj0015190
Score 2.4761844
Snippet A bstract We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without...
We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact...
Abstract We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without...
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classical and Quantum Gravitation
Elementary Particles
High energy physics
Hypergeometric functions
Invariants
Knots
M-Theory
Manifolds (mathematics)
Mathematical analysis
Partitions
Partitions (mathematics)
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Polynomials
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Representations
String Theory
Strings
Strip
Topological Field Theories
Topological Strings
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yFHwRP7FuSh8EN7AuST_zqLIxfBh7mLC3kOZDBOnmuvn3e0nb6QTxxZemJGk5ftfj7prjdwhdK3DisY51gFMlgkiYMGCS6IDmhBotDIy5azaRjsfZbMYm31p92Zqwih64Aq4vJBGZykIiZBwlRuY0NwkTTCXg-iVzTKA4ZU0yVZ8fQFyCGyIfnPafRoMJJl1wdqxHaLTlgxxVPwxzMKmtMPPHyahzOMNDdFBHiv59JeER2tHFMdpzFZuyPEE306q9gQXZt803ipfy1t0sSl8Uyn9fu5KLU_Q8HEwfR0Hd9SCQURStApVI8JoG_Kgx1Nj4ALKMEKuYmRwbAwgkeaa1xKmmITMRIzpNSJbFkjENFhWeoVYxL_Q58iGXUAKUxDQD21SQ7GK4UpiLhTZCeuiuwYHLmhLcdqZ44w2ZcQUct8BxAM5D3c0Di4oN4_etDxbYzTZLY-0mQLm8Vi7_S7kealu1cIgGLKWttLU_csUhSoUwElY7jbZ4bXklpySxfESQp3mo12jwa_kXaS_-Q9o22rfvq37QdFBrtVzrS7QrP1av5fLKfaCfUdroDg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB-8VcEXP-4U1y_6IJzC1U36nSdRUVRQ9kHBewppPkSQ7rpd_fudadMVD_TpXpqSpKHpTDK_JNPfAOwbNOKpTW3IcqPCRLk4FJrbMCp55KxymJZNsIn89rZ4eBBD_3t07d0quzmxmahbtmfy28ZJeGBGmnbMBxHPiHUG0fjx-CWkGFJ01uoDavyAeSLeYj2YH17dDP_OThUQrbCO3oflg-vL8yHjB2gCxSGPkk-WqSHwx2SEA-0T-PznvLQxQxcr_7cDq7Ds4Whw0urPGszZ6icsNm6huv4Fv-_aGAokyYAifFSP9Z_mZlwHqjLBy2vj17EO9xfnd2eXoQ-tEOokSaahyTSaZofG2rnIEQjBpUzMTCpcyZxzuszKwlrNchvFwiWC2zzjRZFqISwO23gDetWospsQ4ILFKNQEYQVOAAZX1AyvEealyjql-3DUfVapPe84hb94lh1jcisHSXKQKIc-HMweGLeUG19XPSU5zaoRV3aTMZo8Sj_0pNJcFaaIudJpkmHXotJlQgmTIXjUAhvZJilLhBzEm6vJwUhPJUJhxKpYutOJU_rhXcsP6fXhsFOIj-Iv3nbr-6a2YYlqtvs7O9CbTl7tLizot-lTPdnzuvwOSAMCLA
  priority: 102
  providerName: ProQuest
Title Topological strings, strips and quivers
URI https://link.springer.com/article/10.1007/JHEP01(2019)124
https://www.proquest.com/docview/2167216626
https://www.osti.gov/servlets/purl/1611634
https://doaj.org/article/ac1a8d831ac546fcb2bf69a9d6456c94
Volume 2019
WOSCitedRecordID wos000455787000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mF_jitzg3Rx8EJ1jpd5dHNzZUcBSZoL6ENB8iSKdr9e_3kraTKT7oSxLyUZJcrndJLr8DOBYoxEMZStuJBbMDpnybcFfaXup6SjKFcWqcTcTjce_-niQNcOu3MMbavb6SNH_q-rHb9eUwcdwuCixyikJpCVY0lpi24hroBw7VxQEqJE6N4POz0YLwMRj9GE2Rlxb0y29XokbSjDb_0cct2KjUSuuiXAfb0JDZDqwZ806e78LJpPSFoCliaU8d2VN-ZhKvucUyYb29G_uMPbgbDSeDS7tykWDzIAgKW0QcRaxCoauUp7QygVsS3xEhUamjlOJplPak5E4sPZ-ogLgyjnDaQk6IRPbz92E5m2byACzceAiGFCWSICMLnFoHQw_zQiYV4004r-eO8go_XLuxeKE18nE5eqpHT3H0TejOG7yW0Bm_V-1rYsyracxrkzGdPdGKhSjjLuuJnu8yHgYRDs1LVUQYEREqgZzgR1qalBRVB41_y7WhEC8oqrSoc2Jpu6Ywrdg0p54bafAi3NQ14bSm6FfxL709_EPdFqzrZHlo04blYvYuj2CVfxTP-awDK_3hOLntmDXcMecBGCbhI5YkVzfJwyf9Ye4K
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BKCqXlgJV0wTwoQiQMNjrR7yHChUISgpEOQQpnJb1PlAl5DycFPGn-hs760cikODGgYvX2l2v1p5vZ759eAbgh0QjHqhA2U5Dctvn2rOpcJVNYpdoxTWmcRZsotHpRP0-7S7Av_JfGHOsstSJmaKWA2HWyI-IGxo_M8i_j4cj20SNMrurZQiNHBYX6vEBp2zpz_YZyneHkPNm77RlF1EFbOH7_sSWoUCrpNFOaU20sb_I4j1HBlTHjtZaxGEcKSWchiIe1T51FU71oygQlCpErIftLsKSj2B3KrDUbV91b2b7FsiHnNKBkNM4-t1qdh13D40s3XeJ_8T2ZSECMBngUH5Cb5_tyGaG7vzze_tEq_CpoNTWr3wMfIEFlazBcna0VaTrsNvL40AYNFomSklylx5kN8PU4om0RtPsbMoGXL9JL79CJRkk6htYOOmSHNFMFUUlJiNUanglmBdwpbmowmEpOCYK3-kmhMc9K70-55JmRtIMJV2FvdkDw9xtyMtVTwwSZtWMv-8sYzC-Y4X6YFy4PJKR53IR-CG-Gol1SDmVIRJgQbGRmsERQ9pkfP8Kc0hKTBjSeeTbWFovAcMKFZWyOVqqsF9Cbl78Qm-_v97UNnxs9a4u2WW7c1GDFfNUvl5Vh8pkPFWb8EH8nfxJx1vFyLHg9q2R-B-r4VNL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BeIgLLaWINCn1AVSQ6sZeP_eAqgKJEkBRhEDitl3vAyEhJ8ShVf8av45ZPxIFCW4cuNiWH6u159uZb3bHMwC7Eo14oAJlO5Hkts-1Z1PhKpskLtGKa9wnebGJqN-Pr6_pYAEeq39hTFhlpRNzRS2HwsyRt4gbmjwzyL9bugyLGJx0fo3ubVNByqy0VuU0Coicqf__0H3LDnsnKOs9Qjrty-OuXVYYsIXv-xNbhgItlEabpTXRxhYjo_ccGVCdOFprkYRJrJRwIkU8qn3qKnT74zgQlCpEr4ftLsJS5KHTU4Olo3Z_cDFdw0Bu5FTJhJyoddptDxx3Hw0uPXCJP2cH83IBuBvisJ6jus9WZ3Oj1_nwnj_XR1gvqbb1uxgbG7Cg0k-wkoe8imwTvl8W9SEMSi1TvSS9yX7kB6PM4qm07h_ymJXPcPUmvdyCWjpM1TZY6IxJjiiniqJykzEqO9wSPBdwpbmow89KiEyUOdVNaY87VmWDLqTOjNQZSr0O-9MHRkU6kZdvPTKomN5m8oDnJ4bjG1aqFcaFy2MZey4XgR_iq5FEh5RTGSIxFhQbaRhMMaRTJiewMMFTYsKQ5iMPx6vNCjysVF0ZmyGnDgcV_GaXX-jtl9eb-garCD923uufNWDNPFRMYzWhNhk_qK-wLP5ObrPxTjmILPjz1kB8AtyHW-U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+strings%2C+strips+and+quivers&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Panfil%2C+Mi%C5%82osz&rft.au=Su%C5%82kowski%2C+Piotr&rft.date=2019-01-01&rft.pub=Springer+Berlin&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2019&rft.issue=1&rft_id=info:doi/10.1007%2FJHEP01%282019%29124&rft.externalDocID=1611634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon