Topological strings, strips and quivers
A bstract We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact four-cycles, also referred to as strip geometries. We show that various quantities that characterize open topological string theory on...
Uložené v:
| Vydané v: | The journal of high energy physics Ročník 2019; číslo 1; s. 1 - 45 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2019
Springer Nature B.V Springer Berlin SpringerOpen |
| Predmet: | |
| ISSN: | 1029-8479, 1029-8479 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A
bstract
We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact four-cycles, also referred to as strip geometries. We show that various quantities that characterize open topological string theory on these manifolds, such as partition functions, Gromov-Witten invariants, or open BPS invariants, can be expressed in terms of characteristics of the moduli space of representations of the corresponding quiver. This has various deep consequences; in particular, expressing open BPS invariants in terms of motivic Donaldson-Thomas invariants, immediately proves integrality of the former ones. Taking advantage of the relation to quivers we also derive explicit expressions for classical open BPS invariants for an arbitrary strip geometry, which lead to a large set of number theoretic integrality statements. Furthermore, for a specific framing, open topological string partition functions for strip geometries take form of generalized
q
-hypergeometric functions, which leads to a novel representation of these functions in terms of quantum dilogarithms and integral invariants. We also study quantum curves and A-polynomials associated to quivers, various limits thereof, and their specializations relevant for strip geometries. The relation between toric manifolds and quivers can be regarded as a generalization of the knots-quivers correspondence to more general Calabi-Yau geometries. |
|---|---|
| AbstractList | We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact four-cycles, also referred to as strip geometries. We show that various quantities that characterize open topological string theory on these manifolds, such as partition functions, Gromov-Witten invariants, or open BPS invariants, can be expressed in terms of characteristics of the moduli space of representations of the corresponding quiver. This has various deep consequences; in particular, expressing open BPS invariants in terms of motivic Donaldson-Thomas invariants, immediately proves integrality of the former ones. Taking advantage of the relation to quivers we also derive explicit expressions for classical open BPS invariants for an arbitrary strip geometry, which lead to a large set of number theoretic integrality statements. Furthermore, for a specific framing, open topological string partition functions for strip geometries take form of generalized q-hypergeometric functions, which leads to a novel representation of these functions in terms of quantum dilogarithms and integral invariants. We also study quantum curves and A-polynomials associated to quivers, various limits thereof, and their specializations relevant for strip geometries. The relation between toric manifolds and quivers can be regarded as a generalization of the knots-quivers correspondence to more general Calabi-Yau geometries. We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact four-cycles, also referred to as strip geometries. We show that various quantities that characterize open topological string theory on these manifolds, such as partition functions, Gromov-Witten invariants, or open BPS invariants, can be expressed in terms of characteristics of the moduli space of representations of the corresponding quiver. This has various deep consequences; in particular, expressing open BPS invariants in terms of motivic Donaldson-Thomas invariants, immediately proves integrality of the former ones. Taking advantage of the relation to quivers we also derive explicit expressions for classical open BPS invariants for an arbitrary strip geometry, which lead to a large set of number theoretic integrality statements. Furthermore, for a specific framing, open topological string partition functions for strip geometries take form of generalized q -hypergeometric functions, which leads to a novel representation of these functions in terms of quantum dilogarithms and integral invariants. We also study quantum curves and A-polynomials associated to quivers, various limits thereof, and their specializations relevant for strip geometries. The relation between toric manifolds and quivers can be regarded as a generalization of the knots-quivers correspondence to more general Calabi-Yau geometries. Abstract We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact four-cycles, also referred to as strip geometries. We show that various quantities that characterize open topological string theory on these manifolds, such as partition functions, Gromov-Witten invariants, or open BPS invariants, can be expressed in terms of characteristics of the moduli space of representations of the corresponding quiver. This has various deep consequences; in particular, expressing open BPS invariants in terms of motivic Donaldson-Thomas invariants, immediately proves integrality of the former ones. Taking advantage of the relation to quivers we also derive explicit expressions for classical open BPS invariants for an arbitrary strip geometry, which lead to a large set of number theoretic integrality statements. Furthermore, for a specific framing, open topological string partition functions for strip geometries take form of generalized q-hypergeometric functions, which leads to a novel representation of these functions in terms of quantum dilogarithms and integral invariants. We also study quantum curves and A-polynomials associated to quivers, various limits thereof, and their specializations relevant for strip geometries. The relation between toric manifolds and quivers can be regarded as a generalization of the knots-quivers correspondence to more general Calabi-Yau geometries. A bstract We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact four-cycles, also referred to as strip geometries. We show that various quantities that characterize open topological string theory on these manifolds, such as partition functions, Gromov-Witten invariants, or open BPS invariants, can be expressed in terms of characteristics of the moduli space of representations of the corresponding quiver. This has various deep consequences; in particular, expressing open BPS invariants in terms of motivic Donaldson-Thomas invariants, immediately proves integrality of the former ones. Taking advantage of the relation to quivers we also derive explicit expressions for classical open BPS invariants for an arbitrary strip geometry, which lead to a large set of number theoretic integrality statements. Furthermore, for a specific framing, open topological string partition functions for strip geometries take form of generalized q -hypergeometric functions, which leads to a novel representation of these functions in terms of quantum dilogarithms and integral invariants. We also study quantum curves and A-polynomials associated to quivers, various limits thereof, and their specializations relevant for strip geometries. The relation between toric manifolds and quivers can be regarded as a generalization of the knots-quivers correspondence to more general Calabi-Yau geometries. |
| ArticleNumber | 124 |
| Author | Panfil, Miłosz Sułkowski, Piotr |
| Author_xml | – sequence: 1 givenname: Miłosz orcidid: 0000-0003-1525-4700 surname: Panfil fullname: Panfil, Miłosz email: milosz.panfil@fuw.edu.pl organization: Faculty of Physics, University of Warsaw – sequence: 2 givenname: Piotr surname: Sułkowski fullname: Sułkowski, Piotr organization: Faculty of Physics, University of Warsaw, Walter Burke Institute for Theoretical Physics, California Institute of Technology |
| BackLink | https://www.osti.gov/servlets/purl/1611634$$D View this record in Osti.gov |
| BookMark | eNp9kc1LxDAQxYMo-Hn2uuhBBdfNpEnaHGXxkwU9rOeQpsmapTY1yQr-97ZbURH0EGYI7_cy87KLNhvfGIQOAV8Axvnk_vbqEcMpwSDOgNANtAOYiHFBc7H5o99GuzEuMQYGAu-gk7lvfe0XTqt6FFNwzSKer5s2jlRTjV5X7s2EuI-2rKqjOfise-jp-mo-vR3PHm7uppezsaaUpnHFNSXcQsGsJZYVlGPBM1wxYUtsrdUlLwtjNM4NyYSlAkzOoSiYFsKwDLI9dDf4Vl4tZRvciwrv0isn1xc-LKQKyenaSKVBFVWRgdKM8s6alJYLJSpOGdeCdl5Hg5ePycmoXTL6WfumMTpJ4AA860XHg6gN_nVlYpJLvwpNt6MkwPPucMI71WRQ6eBjDMZ-jQZY9vHLIX7Zxy-7-DuC_SK691VyvklBufofDg9cbPvPMOF7nr-QDwhrl6o |
| CitedBy_id | crossref_primary_10_1007_JHEP09_2020_075 crossref_primary_10_1007_JHEP07_2022_107 crossref_primary_10_1007_JHEP12_2020_095 crossref_primary_10_1007_JHEP03_2021_236 crossref_primary_10_1007_s00220_024_05077_5 crossref_primary_10_1007_JHEP05_2022_043 crossref_primary_10_1007_s00220_023_04753_2 crossref_primary_10_1007_JHEP02_2020_018 crossref_primary_10_1007_JHEP07_2020_151 crossref_primary_10_1007_JHEP12_2024_089 crossref_primary_10_1007_JHEP08_2023_136 crossref_primary_10_1007_JHEP10_2019_076 crossref_primary_10_1007_s00023_025_01604_9 crossref_primary_10_1112_jlms_12433 |
| Cites_doi | 10.1112/S0010437X12000152 10.1007/JHEP03(2016)004 10.1215/00127094-2017-0030 10.1007/s00220-013-1789-8 10.1007/s00220-016-2682-z 10.4310/ATMP.2006.v10.n3.a2 10.1080/10236190701264925 10.1007/JHEP07(2017)032 10.1007/JHEP08(2017)063 10.4310/ATMP.2014.v18.n4.a3 10.1016/S0550-3213(00)00118-8 10.1007/s00220-005-1448-9 10.1007/s002200100374 10.1112/S0010437X1000521X 10.4310/CNTP.2011.v5.n2.a1 10.1007/JHEP05(2013)166 10.1007/JHEP08(2017)139 10.1016/S0550-3213(00)00761-6 10.1007/JHEP02(2012)070 10.1007/JHEP06(2012)178 10.1007/0-8176-4467-9_16 10.1090/pspum/090/01532 10.1007/s00220-004-1162-z 10.1088/1126-6708/2006/01/040 10.1007/978-3-540-30308-4_2 10.1017/CBO9780511526251 10.4171/dm/359 10.1142/S0218216502001561 10.1088/1126-6708/2000/11/007 10.1007/JHEP11(2016)120 10.1007/s002200050461 10.1007/BF01217730 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
| CorporateAuthor | California Institute of Technology (CalTech), Pasadena, CA (United States) |
| CorporateAuthor_xml | – name: California Institute of Technology (CalTech), Pasadena, CA (United States) |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI DOA |
| DOI | 10.1007/JHEP01(2019)124 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1029-8479 |
| EndPage | 45 |
| ExternalDocumentID | oai_doaj_org_article_ac1a8d831ac546fcb2bf69a9d6456c94 1611634 10_1007_JHEP01_2019_124 |
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX ABFSG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEINN AEJGL AERVB AETNG AEZWR AFFHD AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE PQGLB Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS AAYZJ AHBXF OIOZB OTOTI |
| ID | FETCH-LOGICAL-c444t-d6c426f185ff2f584609630d59fb0fffcb6b8eec07e239f491e761885c99e5313 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455787000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1029-8479 |
| IngestDate | Fri Oct 03 12:50:57 EDT 2025 Mon Jul 10 02:30:36 EDT 2023 Sat Oct 18 22:49:44 EDT 2025 Tue Nov 18 20:58:27 EST 2025 Sat Nov 29 06:03:18 EST 2025 Fri Feb 21 02:33:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Topological Strings Topological Field Theories M-Theory |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c444t-d6c426f185ff2f584609630d59fb0fffcb6b8eec07e239f491e761885c99e5313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC), High Energy Physics (HEP) National Science Foundation (NSF) SC0011632; 2015/16/S/ST2/00448; PHY-1748958; 335739 Foundation for Polish Science National Science Centre |
| ORCID | 0000-0003-1525-4700 0000000315254700 |
| OpenAccessLink | https://link.springer.com/10.1007/JHEP01(2019)124 |
| PQID | 2167216626 |
| PQPubID | 2034718 |
| PageCount | 45 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ac1a8d831ac546fcb2bf69a9d6456c94 osti_scitechconnect_1611634 proquest_journals_2167216626 crossref_primary_10_1007_JHEP01_2019_124 crossref_citationtrail_10_1007_JHEP01_2019_124 springer_journals_10_1007_JHEP01_2019_124 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
| PublicationTitle | The journal of high energy physics |
| PublicationTitleAbbrev | J. High Energ. Phys |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Berlin SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Berlin – name: SpringerOpen |
| References | Garoufalidis, Lauda, Lê (CR46) 2018; 167 Kucharski, Reineke, Stosic, Sulkowski (CR11) 2017; D 96 Efimov (CR28) 2012; 148 Bonelli, Tanzini, Zhao (CR24) 2012; 06 CR37 Kontsevich, Soibelman (CR21) 2011; 5 CR36 CR35 CR30 Alim, Cecotti, Cordova, Espahbodi, Rastogi, Vafa (CR31) 2013; 323 Koepf, Rajković, Marinković (CR45) 2007; 13 Iqbal, Kashani-Poor (CR22) 2006; 10 Okounkov, Reshetikhin, Vafa (CR38) 2006; 244 Eager, Selmani, Walcher (CR33) 2017; 08 Witten (CR4) 1995; 133 CR3 CR8 CR7 Halmagyi, Sinkovics, Sulkowski (CR51) 2006; 01 CR47 Schwarz, Vologodsky, Walcher (CR50) 2015; 90 Aganagic, Klemm, Vafa (CR19) 2002; A 57 CR44 CR43 CR42 Ramadevi, Sarkar (CR9) 2001; B 600 Panfil, Stosic, Sulkowski (CR16) 2018; D 98 CR18 Gabella, Longhi, Park, Yamazaki (CR34) 2017; 07 CR17 CR15 Aganagic, Dijkgraaf, Klemm, Mariño, Vafa (CR2) 2006; 261 CR14 Garoufalidis, Kucharski, Sulkowski (CR29) 2016; 346 CR13 CR12 Reineke (CR40) 2011; 147 Labastida, Mariño (CR6) 2001; 217 Manschot, Pioline, Sen (CR32) 2013; 05 Mironov, Morozov, Morozov, Ramadevi, Singh, Sleptsov (CR10) 2017; 08 Gukov, Sulkowski (CR39) 2012; 02 Ooguri, Vafa (CR5) 2000; B 577 Aganagic, Ekholm, Ng, Vafa (CR48) 2014; 18 Aganagic, Klemm, Mariño, Vafa (CR1) 2005; 254 CR27 Reineke (CR41) 2012; 17 CR26 CR25 CR23 CR20 Gukov, Nawata, Saberi, Stosic, Sulkowski (CR49) 2016; 03 9765_CR18 M Aganagic (9765_CR19) 2002; A 57 H Ooguri (9765_CR5) 2000; B 577 W Koepf (9765_CR45) 2007; 13 9765_CR13 9765_CR12 9765_CR15 9765_CR14 9765_CR17 A Mironov (9765_CR10) 2017; 08 9765_CR7 9765_CR8 S Garoufalidis (9765_CR46) 2018; 167 9765_CR3 S Garoufalidis (9765_CR29) 2016; 346 M Kontsevich (9765_CR21) 2011; 5 J Manschot (9765_CR32) 2013; 05 A Iqbal (9765_CR22) 2006; 10 AI Efimov (9765_CR28) 2012; 148 M Panfil (9765_CR16) 2018; D 98 G Bonelli (9765_CR24) 2012; 06 S Gukov (9765_CR49) 2016; 03 9765_CR44 M Aganagic (9765_CR48) 2014; 18 9765_CR43 JMF Labastida (9765_CR6) 2001; 217 9765_CR47 A Schwarz (9765_CR50) 2015; 90 M Aganagic (9765_CR1) 2005; 254 P Kucharski (9765_CR11) 2017; D 96 9765_CR42 M Reineke (9765_CR41) 2012; 17 9765_CR35 9765_CR37 9765_CR36 M Aganagic (9765_CR2) 2006; 261 M Alim (9765_CR31) 2013; 323 P Ramadevi (9765_CR9) 2001; B 600 9765_CR30 R Eager (9765_CR33) 2017; 08 S Gukov (9765_CR39) 2012; 02 M Reineke (9765_CR40) 2011; 147 9765_CR23 9765_CR26 9765_CR25 9765_CR27 N Halmagyi (9765_CR51) 2006; 01 E Witten (9765_CR4) 1995; 133 M Gabella (9765_CR34) 2017; 07 9765_CR20 A Okounkov (9765_CR38) 2006; 244 |
| References_xml | – volume: 133 start-page: 637 year: 1995 ident: CR4 article-title: Chern-Simons gauge theory as a string theory publication-title: Prog. Math. – volume: 148 start-page: 1133 year: 2012 ident: CR28 article-title: Cohomological Hall algebra of a symmetric quiver publication-title: Compos. Math. doi: 10.1112/S0010437X12000152 – volume: D 98 year: 2018 ident: CR16 article-title: Donaldson-Thomas invariants, torus knots and lattice paths publication-title: Phys. Rev. – ident: CR12 – volume: 03 start-page: 004 year: 2016 ident: CR49 article-title: Sequencing BPS Spectra publication-title: JHEP doi: 10.1007/JHEP03(2016)004 – ident: CR35 – volume: 167 start-page: 397 year: 2018 ident: CR46 article-title: The colored HOMFLYPT function is q-holonomic publication-title: Duke Math. J. doi: 10.1215/00127094-2017-0030 – ident: CR8 – ident: CR25 – ident: CR42 – volume: 323 start-page: 1185 year: 2013 ident: CR31 article-title: BPS Quivers and Spectra of Complete N = 2 Quantum Field Theories publication-title: Commun. Math. Phys. doi: 10.1007/s00220-013-1789-8 – volume: 346 start-page: 75 year: 2016 ident: CR29 article-title: Knots, BPS states and algebraic curves publication-title: Commun. Math. Phys. doi: 10.1007/s00220-016-2682-z – volume: 17 start-page: 1 year: 2012 ident: CR41 article-title: Degenerate Cohomological Hall algebra and quantized Donaldson-Thomas invariants for m-loop quivers publication-title: Doc. Math. – ident: CR15 – volume: 10 start-page: 317 year: 2006 ident: CR22 article-title: The Vertex on a strip publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2006.v10.n3.a2 – volume: 13 start-page: 621 year: 2007 ident: CR45 article-title: Properties of q-holonomic functions publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236190701264925 – volume: 07 start-page: 032 year: 2017 ident: CR34 article-title: BPS Graphs: From Spectral Networks to BPS Quivers publication-title: JHEP doi: 10.1007/JHEP07(2017)032 – volume: 08 start-page: 063 year: 2017 ident: CR33 article-title: Exponential Networks and Representations of Quivers publication-title: JHEP doi: 10.1007/JHEP08(2017)063 – ident: CR36 – volume: D 96 start-page: 121902 year: 2017 ident: CR11 article-title: BPS states, knots and quivers publication-title: Phys. Rev. – ident: CR26 – volume: 18 start-page: 827 year: 2014 ident: CR48 article-title: Topological Strings, D-Model and Knot Contact Homology publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2014.v18.n4.a3 – volume: B 577 start-page: 419 year: 2000 ident: CR5 article-title: Knot invariants and topological strings publication-title: Nucl. Phys. doi: 10.1016/S0550-3213(00)00118-8 – ident: CR18 – ident: CR43 – ident: CR47 – ident: CR14 – ident: CR37 – ident: CR30 – volume: 261 start-page: 451 year: 2006 ident: CR2 article-title: Topological strings and integrable hierarchies publication-title: Commun. Math. Phys. doi: 10.1007/s00220-005-1448-9 – volume: 217 start-page: 423 year: 2001 ident: CR6 article-title: Polynomial invariants for torus knots and topological strings publication-title: Commun. Math. Phys. doi: 10.1007/s002200100374 – volume: 147 start-page: 943 year: 2011 ident: CR40 article-title: Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants publication-title: Compos. Math. doi: 10.1112/S0010437X1000521X – volume: A 57 start-page: 1 year: 2002 ident: CR19 article-title: Disk instantons, mirror symmetry and the duality web publication-title: Z. Naturforsch. – volume: 5 start-page: 231 year: 2011 ident: CR21 article-title: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants publication-title: Commun. Num. Theor. Phys. doi: 10.4310/CNTP.2011.v5.n2.a1 – ident: CR27 – volume: 05 start-page: 166 year: 2013 ident: CR32 article-title: On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants publication-title: JHEP doi: 10.1007/JHEP05(2013)166 – ident: CR23 – volume: 08 start-page: 139 year: 2017 ident: CR10 article-title: Checks of integrality properties in topological strings publication-title: JHEP doi: 10.1007/JHEP08(2017)139 – volume: B 600 start-page: 487 year: 2001 ident: CR9 article-title: On link invariants and topological string amplitudes publication-title: Nucl. Phys. doi: 10.1016/S0550-3213(00)00761-6 – volume: 02 start-page: 070 year: 2012 ident: CR39 article-title: A-polynomial, B-model and Quantization publication-title: JHEP doi: 10.1007/JHEP02(2012)070 – ident: CR44 – volume: 06 start-page: 178 year: 2012 ident: CR24 article-title: Vertices, Vortices and Interacting Surface Operators publication-title: JHEP doi: 10.1007/JHEP06(2012)178 – ident: CR3 – volume: 244 start-page: 597 year: 2006 ident: CR38 article-title: Quantum Calabi-Yau and classical crystals publication-title: Prog. Math. doi: 10.1007/0-8176-4467-9_16 – ident: CR17 – ident: CR13 – volume: 90 start-page: 113 year: 2015 ident: CR50 article-title: Framing the Di-Logarithm (over Z) publication-title: Proc. Symp. Pure Math. doi: 10.1090/pspum/090/01532 – ident: CR7 – volume: 254 start-page: 425 year: 2005 ident: CR1 article-title: The Topological vertex publication-title: Commun. Math. Phys. doi: 10.1007/s00220-004-1162-z – volume: 01 start-page: 040 year: 2006 ident: CR51 article-title: Knot invariants and Calabi-Yau crystals publication-title: JHEP doi: 10.1088/1126-6708/2006/01/040 – ident: CR20 – volume: 5 start-page: 231 year: 2011 ident: 9765_CR21 publication-title: Commun. Num. Theor. Phys. doi: 10.4310/CNTP.2011.v5.n2.a1 – volume: B 577 start-page: 419 year: 2000 ident: 9765_CR5 publication-title: Nucl. Phys. doi: 10.1016/S0550-3213(00)00118-8 – volume: D 98 year: 2018 ident: 9765_CR16 publication-title: Phys. Rev. – ident: 9765_CR30 – ident: 9765_CR15 – volume: 06 start-page: 178 year: 2012 ident: 9765_CR24 publication-title: JHEP doi: 10.1007/JHEP06(2012)178 – volume: B 600 start-page: 487 year: 2001 ident: 9765_CR9 publication-title: Nucl. Phys. doi: 10.1016/S0550-3213(00)00761-6 – volume: 323 start-page: 1185 year: 2013 ident: 9765_CR31 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-013-1789-8 – volume: 244 start-page: 597 year: 2006 ident: 9765_CR38 publication-title: Prog. Math. doi: 10.1007/0-8176-4467-9_16 – ident: 9765_CR18 – ident: 9765_CR25 – volume: 07 start-page: 032 year: 2017 ident: 9765_CR34 publication-title: JHEP doi: 10.1007/JHEP07(2017)032 – volume: 167 start-page: 397 year: 2018 ident: 9765_CR46 publication-title: Duke Math. J. doi: 10.1215/00127094-2017-0030 – ident: 9765_CR37 – ident: 9765_CR12 – volume: A 57 start-page: 1 year: 2002 ident: 9765_CR19 publication-title: Z. Naturforsch. – ident: 9765_CR44 doi: 10.1007/978-3-540-30308-4_2 – ident: 9765_CR47 – volume: 01 start-page: 040 year: 2006 ident: 9765_CR51 publication-title: JHEP doi: 10.1088/1126-6708/2006/01/040 – volume: 254 start-page: 425 year: 2005 ident: 9765_CR1 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-004-1162-z – ident: 9765_CR43 – ident: 9765_CR26 – volume: 08 start-page: 139 year: 2017 ident: 9765_CR10 publication-title: JHEP doi: 10.1007/JHEP08(2017)139 – ident: 9765_CR23 doi: 10.1017/CBO9780511526251 – volume: 17 start-page: 1 year: 2012 ident: 9765_CR41 publication-title: Doc. Math. doi: 10.4171/dm/359 – volume: 261 start-page: 451 year: 2006 ident: 9765_CR2 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-005-1448-9 – ident: 9765_CR8 doi: 10.1142/S0218216502001561 – ident: 9765_CR36 – volume: 10 start-page: 317 year: 2006 ident: 9765_CR22 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2006.v10.n3.a2 – volume: 133 start-page: 637 year: 1995 ident: 9765_CR4 publication-title: Prog. Math. – volume: 148 start-page: 1133 year: 2012 ident: 9765_CR28 publication-title: Compos. Math. doi: 10.1112/S0010437X12000152 – volume: 147 start-page: 943 year: 2011 ident: 9765_CR40 publication-title: Compos. Math. doi: 10.1112/S0010437X1000521X – volume: 02 start-page: 070 year: 2012 ident: 9765_CR39 publication-title: JHEP doi: 10.1007/JHEP02(2012)070 – volume: 13 start-page: 621 year: 2007 ident: 9765_CR45 publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236190701264925 – volume: 18 start-page: 827 year: 2014 ident: 9765_CR48 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2014.v18.n4.a3 – ident: 9765_CR42 – ident: 9765_CR35 – ident: 9765_CR7 doi: 10.1088/1126-6708/2000/11/007 – ident: 9765_CR14 – ident: 9765_CR13 doi: 10.1007/JHEP11(2016)120 – volume: 90 start-page: 113 year: 2015 ident: 9765_CR50 publication-title: Proc. Symp. Pure Math. doi: 10.1090/pspum/090/01532 – ident: 9765_CR27 – volume: 346 start-page: 75 year: 2016 ident: 9765_CR29 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-016-2682-z – ident: 9765_CR20 doi: 10.1007/s002200050461 – ident: 9765_CR3 doi: 10.1007/BF01217730 – volume: 03 start-page: 004 year: 2016 ident: 9765_CR49 publication-title: JHEP doi: 10.1007/JHEP03(2016)004 – ident: 9765_CR17 – volume: 05 start-page: 166 year: 2013 ident: 9765_CR32 publication-title: JHEP doi: 10.1007/JHEP05(2013)166 – volume: 217 start-page: 423 year: 2001 ident: 9765_CR6 publication-title: Commun. Math. Phys. doi: 10.1007/s002200100374 – volume: D 96 start-page: 121902 year: 2017 ident: 9765_CR11 publication-title: Phys. Rev. – volume: 08 start-page: 063 year: 2017 ident: 9765_CR33 publication-title: JHEP doi: 10.1007/JHEP08(2017)063 |
| SSID | ssj0015190 |
| Score | 2.4761844 |
| Snippet | A
bstract
We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without... We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without compact... Abstract We find a direct relation between quiver representation theory and open topological string theory on a class of toric Calabi-Yau manifolds without... |
| SourceID | doaj osti proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Classical and Quantum Gravitation Elementary Particles High energy physics Hypergeometric functions Invariants Knots M-Theory Manifolds (mathematics) Mathematical analysis Partitions Partitions (mathematics) Physics Physics and Astronomy PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Polynomials Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Representations String Theory Strings Strip Topological Field Theories Topological Strings |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yFHwRP7FuSh8EN7AuST_zqLIxfBh7mLC3kOZDBOnmuvn3e0nb6QTxxZemJGk5ftfj7prjdwhdK3DisY51gFMlgkiYMGCS6IDmhBotDIy5azaRjsfZbMYm31p92Zqwih64Aq4vJBGZykIiZBwlRuY0NwkTTCXg-iVzTKA4ZU0yVZ8fQFyCGyIfnPafRoMJJl1wdqxHaLTlgxxVPwxzMKmtMPPHyahzOMNDdFBHiv59JeER2tHFMdpzFZuyPEE306q9gQXZt803ipfy1t0sSl8Uyn9fu5KLU_Q8HEwfR0Hd9SCQURStApVI8JoG_Kgx1Nj4ALKMEKuYmRwbAwgkeaa1xKmmITMRIzpNSJbFkjENFhWeoVYxL_Q58iGXUAKUxDQD21SQ7GK4UpiLhTZCeuiuwYHLmhLcdqZ44w2ZcQUct8BxAM5D3c0Di4oN4_etDxbYzTZLY-0mQLm8Vi7_S7kealu1cIgGLKWttLU_csUhSoUwElY7jbZ4bXklpySxfESQp3mo12jwa_kXaS_-Q9o22rfvq37QdFBrtVzrS7QrP1av5fLKfaCfUdroDg priority: 102 providerName: Directory of Open Access Journals – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB-8VcEXP-4U1y_6IJzC1U36nSdRUVRQ9kHBewppPkSQ7rpd_fudadMVD_TpXpqSpKHpTDK_JNPfAOwbNOKpTW3IcqPCRLk4FJrbMCp55KxymJZNsIn89rZ4eBBD_3t07d0quzmxmahbtmfy28ZJeGBGmnbMBxHPiHUG0fjx-CWkGFJ01uoDavyAeSLeYj2YH17dDP_OThUQrbCO3oflg-vL8yHjB2gCxSGPkk-WqSHwx2SEA-0T-PznvLQxQxcr_7cDq7Ds4Whw0urPGszZ6icsNm6huv4Fv-_aGAokyYAifFSP9Z_mZlwHqjLBy2vj17EO9xfnd2eXoQ-tEOokSaahyTSaZofG2rnIEQjBpUzMTCpcyZxzuszKwlrNchvFwiWC2zzjRZFqISwO23gDetWospsQ4ILFKNQEYQVOAAZX1AyvEealyjql-3DUfVapPe84hb94lh1jcisHSXKQKIc-HMweGLeUG19XPSU5zaoRV3aTMZo8Sj_0pNJcFaaIudJpkmHXotJlQgmTIXjUAhvZJilLhBzEm6vJwUhPJUJhxKpYutOJU_rhXcsP6fXhsFOIj-Iv3nbr-6a2YYlqtvs7O9CbTl7tLizot-lTPdnzuvwOSAMCLA priority: 102 providerName: ProQuest |
| Title | Topological strings, strips and quivers |
| URI | https://link.springer.com/article/10.1007/JHEP01(2019)124 https://www.proquest.com/docview/2167216626 https://www.osti.gov/servlets/purl/1611634 https://doaj.org/article/ac1a8d831ac546fcb2bf69a9d6456c94 |
| Volume | 2019 |
| WOSCitedRecordID | wos000455787000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: ER. dateStart: 20140101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mF_jitzg3Rx8EJ1jpd5dHNzZUcBSZoL6ENB8iSKdr9e_3kraTKT7oSxLyUZJcrndJLr8DOBYoxEMZStuJBbMDpnybcFfaXup6SjKFcWqcTcTjce_-niQNcOu3MMbavb6SNH_q-rHb9eUwcdwuCixyikJpCVY0lpi24hroBw7VxQEqJE6N4POz0YLwMRj9GE2Rlxb0y29XokbSjDb_0cct2KjUSuuiXAfb0JDZDqwZ806e78LJpPSFoCliaU8d2VN-ZhKvucUyYb29G_uMPbgbDSeDS7tykWDzIAgKW0QcRaxCoauUp7QygVsS3xEhUamjlOJplPak5E4sPZ-ogLgyjnDaQk6IRPbz92E5m2byACzceAiGFCWSICMLnFoHQw_zQiYV4004r-eO8go_XLuxeKE18nE5eqpHT3H0TejOG7yW0Bm_V-1rYsyracxrkzGdPdGKhSjjLuuJnu8yHgYRDs1LVUQYEREqgZzgR1qalBRVB41_y7WhEC8oqrSoc2Jpu6Ywrdg0p54bafAi3NQ14bSm6FfxL709_EPdFqzrZHlo04blYvYuj2CVfxTP-awDK_3hOLntmDXcMecBGCbhI5YkVzfJwyf9Ye4K |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BKCqXlgJV0wTwoQiQMNjrR7yHChUISgpEOQQpnJb1PlAl5DycFPGn-hs760cikODGgYvX2l2v1p5vZ759eAbgh0QjHqhA2U5Dctvn2rOpcJVNYpdoxTWmcRZsotHpRP0-7S7Av_JfGHOsstSJmaKWA2HWyI-IGxo_M8i_j4cj20SNMrurZQiNHBYX6vEBp2zpz_YZyneHkPNm77RlF1EFbOH7_sSWoUCrpNFOaU20sb_I4j1HBlTHjtZaxGEcKSWchiIe1T51FU71oygQlCpErIftLsKSj2B3KrDUbV91b2b7FsiHnNKBkNM4-t1qdh13D40s3XeJ_8T2ZSECMBngUH5Cb5_tyGaG7vzze_tEq_CpoNTWr3wMfIEFlazBcna0VaTrsNvL40AYNFomSklylx5kN8PU4om0RtPsbMoGXL9JL79CJRkk6htYOOmSHNFMFUUlJiNUanglmBdwpbmowmEpOCYK3-kmhMc9K70-55JmRtIMJV2FvdkDw9xtyMtVTwwSZtWMv-8sYzC-Y4X6YFy4PJKR53IR-CG-Gol1SDmVIRJgQbGRmsERQ9pkfP8Kc0hKTBjSeeTbWFovAcMKFZWyOVqqsF9Cbl78Qm-_v97UNnxs9a4u2WW7c1GDFfNUvl5Vh8pkPFWb8EH8nfxJx1vFyLHg9q2R-B-r4VNL |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BeIgLLaWINCn1AVSQ6sZeP_eAqgKJEkBRhEDitl3vAyEhJ8ShVf8av45ZPxIFCW4cuNiWH6u159uZb3bHMwC7Eo14oAJlO5Hkts-1Z1PhKpskLtGKa9wnebGJqN-Pr6_pYAEeq39hTFhlpRNzRS2HwsyRt4gbmjwzyL9bugyLGJx0fo3ubVNByqy0VuU0Coicqf__0H3LDnsnKOs9Qjrty-OuXVYYsIXv-xNbhgItlEabpTXRxhYjo_ccGVCdOFprkYRJrJRwIkU8qn3qKnT74zgQlCpEr4ftLsJS5KHTU4Olo3Z_cDFdw0Bu5FTJhJyoddptDxx3Hw0uPXCJP2cH83IBuBvisJ6jus9WZ3Oj1_nwnj_XR1gvqbb1uxgbG7Cg0k-wkoe8imwTvl8W9SEMSi1TvSS9yX7kB6PM4qm07h_ymJXPcPUmvdyCWjpM1TZY6IxJjiiniqJykzEqO9wSPBdwpbmow89KiEyUOdVNaY87VmWDLqTOjNQZSr0O-9MHRkU6kZdvPTKomN5m8oDnJ4bjG1aqFcaFy2MZey4XgR_iq5FEh5RTGSIxFhQbaRhMMaRTJiewMMFTYsKQ5iMPx6vNCjysVF0ZmyGnDgcV_GaXX-jtl9eb-garCD923uufNWDNPFRMYzWhNhk_qK-wLP5ObrPxTjmILPjz1kB8AtyHW-U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+strings%2C+strips+and+quivers&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Panfil%2C+Mi%C5%82osz&rft.au=Su%C5%82kowski%2C+Piotr&rft.date=2019-01-01&rft.pub=Springer+Berlin&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2019&rft.issue=1&rft_id=info:doi/10.1007%2FJHEP01%282019%29124&rft.externalDocID=1611634 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |