When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?
We derive results of the following flavor: If a combinatorial optimization problem can be formulated via a dynamic program of a certain structure and if the involved cost and transition functions satisfy certain arithmetical and structural conditions, then the optimization problem automatically poss...
Gespeichert in:
| Veröffentlicht in: | INFORMS journal on computing Jg. 12; H. 1; S. 57 - 74 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Linthicum
INFORMS
22.12.2000
Institute for Operations Research and the Management Sciences |
| Schlagworte: | |
| ISSN: | 1091-9856, 1526-5528, 1091-9856 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We derive results of the following flavor: If a combinatorial optimization problem can be formulated via a dynamic program of a certain structure and if the involved cost and transition functions satisfy certain arithmetical and structural conditions, then the optimization problem automatically possesses a fully polynomial time approximation scheme (FPTAS). Our characterizations provide a natural and uniform approach to fully polynomial time approximation schemes. We illustrate their strength and generality by deducing from them the existence of FPTASs for a multitude of scheduling problems. Many known approximability results follow as corollaries from our main result. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 1091-9856 1526-5528 1091-9856 |
| DOI: | 10.1287/ijoc.12.1.57.11901 |