Fluctuating Interfaces Subject to Stochastic Resetting
We study one-dimensional fluctuating interfaces of length L, where the interface stochastically resets to a fixed initial profile at a constant rate r. For finite r in the limit L→∞, the system settles into a nonequilibrium stationary state with non-Gaussian interface fluctuations, which we characte...
Saved in:
| Published in: | Physical review letters Vol. 112; no. 22; p. 220601 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Physical Society
06.06.2014
|
| Subjects: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We study one-dimensional fluctuating interfaces of length L, where the interface stochastically resets to a fixed initial profile at a constant rate r. For finite r in the limit L→∞, the system settles into a nonequilibrium stationary state with non-Gaussian interface fluctuations, which we characterize analytically for the Kardar-Parisi-Zhang and Edwards-Wilkinson universality class. Our results are corroborated by numerical simulations. We also discuss the generality of our results for a fluctuating interface in a generic universality class. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0031-9007 1079-7114 1079-7114 |
| DOI: | 10.1103/PhysRevLett.112.220601 |