Semantic meta-path enhanced global and local topology learning for lncRNA-disease association prediction

Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM Transactions on Computational Biology and Bioinformatics Vol. 20; no. 2; pp. 1 - 11
Main Authors: Xuan, Ping, Zhao, Yue, Cui, Hui, Zhan, Linyun, Jin, Qiangguo, Zhang, Tiangang, Nakaguchi, Toshiya
Format: Journal Article
Language:English
Published: United States IEEE 01.03.2023
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1545-5963, 1557-9964, 2374-0043, 1557-9964
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and diseases. The rich semantic information of meta-paths, composed of multiple kinds of connections between lncRNA and disease nodes, is neglected. We propose a new prediction method, MGLDA, to encode and integrate the semantics of multiple meta-paths, the global topology of heterogeneous graph, and pairwise attributes of lncRNA and disease nodes. First, a tri-layer heterogeneous graph is constructed to associate multi-sourced data across the lncRNA, disease, and miRNA nodes. Afterwards, we establish multiple meta-paths connecting the lncRNA and disease nodes to derive and denote various semantics. Each meta-path contains its specific semantics formulated by an embedding strategy, and each embedding covers local topology formed by the diverse semantic connections among the lncRNA, disease, and miRNA nodes. We construct multiple graph convolutional autoencoders (GCA) with topology-level attention to learn global and multiple local topologies from the tri-layer graph and each meta-path, respectively. The topology-level attention mechanism can learn the importance of various global and local topologies for adaptive pairwise topology fusion. Finally, a convolutional autoencoder learns the attribute representations of lncRNA-disease pairs, which integrates the learnt detailed and representative pairwise features. Experimental results show that MGLDA outperforms other state-of-the-art prediction methods in comparison and retrieves more real lncRNA-disease associations in the top-ranked candidates. The ablation study also demonstrates the important contributions of the local and global topology learning, and pairwise attribute learning. Case studies on three diseases further demonstrate MGLDA's ability to identify potential disease-related lncRNAs.
AbstractList Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and diseases. The rich semantic information of meta-paths, composed of multiple kinds of connections between lncRNA and disease nodes, is neglected. We propose a new prediction method, MGLDA, to encode and integrate the semantics of multiple meta-paths, the global topology of heterogeneous graph, and pairwise attributes of lncRNA and disease nodes. First, a tri-layer heterogeneous graph is constructed to associate multi-sourced data across the lncRNA, disease, and miRNA nodes. Afterwards, we establish multiple meta-paths connecting the lncRNA and disease nodes to derive and denote various semantics. Each meta-path contains its specific semantics formulated by an embedding strategy, and each embedding covers local topology formed by the diverse semantic connections among the lncRNA, disease, and miRNA nodes. We construct multiple graph convolutional autoencoders (GCA) with topology-level attention to learn global and multiple local topologies from the tri-layer graph and each meta-path, respectively. The topology-level attention mechanism can learn the importance of various global and local topologies for adaptive pairwise topology fusion. Finally, a convolutional autoencoder learns the attribute representations of lncRNA-disease pairs, which integrates the learnt detailed and representative pairwise features. Experimental results show that MGLDA outperforms other state-of-the-art prediction methods in comparison and retrieves more real lncRNA-disease associations in the top-ranked candidates. The ablation study also demonstrates the important contributions of the local and global topology learning, and pairwise attribute learning. Case studies on three diseases further demonstrate MGLDA's ability to identify potential disease-related lncRNAs.Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and diseases. The rich semantic information of meta-paths, composed of multiple kinds of connections between lncRNA and disease nodes, is neglected. We propose a new prediction method, MGLDA, to encode and integrate the semantics of multiple meta-paths, the global topology of heterogeneous graph, and pairwise attributes of lncRNA and disease nodes. First, a tri-layer heterogeneous graph is constructed to associate multi-sourced data across the lncRNA, disease, and miRNA nodes. Afterwards, we establish multiple meta-paths connecting the lncRNA and disease nodes to derive and denote various semantics. Each meta-path contains its specific semantics formulated by an embedding strategy, and each embedding covers local topology formed by the diverse semantic connections among the lncRNA, disease, and miRNA nodes. We construct multiple graph convolutional autoencoders (GCA) with topology-level attention to learn global and multiple local topologies from the tri-layer graph and each meta-path, respectively. The topology-level attention mechanism can learn the importance of various global and local topologies for adaptive pairwise topology fusion. Finally, a convolutional autoencoder learns the attribute representations of lncRNA-disease pairs, which integrates the learnt detailed and representative pairwise features. Experimental results show that MGLDA outperforms other state-of-the-art prediction methods in comparison and retrieves more real lncRNA-disease associations in the top-ranked candidates. The ablation study also demonstrates the important contributions of the local and global topology learning, and pairwise attribute learning. Case studies on three diseases further demonstrate MGLDA's ability to identify potential disease-related lncRNAs.
Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and diseases. The rich semantic information of meta-paths, composed of multiple kinds of connections between lncRNA and disease nodes, is neglected. We propose a new prediction method, MGLDA, to encode and integrate the semantics of multiple meta-paths, the global topology of heterogeneous graph, and pairwise attributes of lncRNA and disease nodes. First, a tri-layer heterogeneous graph is constructed to associate multi-sourced data across the lncRNA, disease, and miRNA nodes. Afterwards, we establish multiple meta-paths connecting the lncRNA and disease nodes to derive and denote various semantics. Each meta-path contains its specific semantics formulated by an embedding strategy, and each embedding covers local topology formed by the diverse semantic connections among the lncRNA, disease, and miRNA nodes. We construct multiple graph convolutional autoencoders (GCA) with topology-level attention to learn global and multiple local topologies from the tri-layer graph and each meta-path, respectively. The topology-level attention mechanism can learn the importance of various global and local topologies for adaptive pairwise topology fusion. Finally, a convolutional autoencoder learns the attribute representations of lncRNA-disease pairs, which integrates the learnt detailed and representative pairwise features. Experimental results show that MGLDA outperforms other state-of-the-art prediction methods in comparison and retrieves more real lncRNA-disease associations in the top-ranked candidates. The ablation study also demonstrates the important contributions of the local and global topology learning, and pairwise attribute learning. Case studies on three diseases further demonstrate MGLDA's ability to identify potential disease-related lncRNAs.
Author Cui, Hui
Zhao, Yue
Jin, Qiangguo
Xuan, Ping
Nakaguchi, Toshiya
Zhang, Tiangang
Zhan, Linyun
Author_xml – sequence: 1
  givenname: Ping
  orcidid: 0000-0001-5328-691X
  surname: Xuan
  fullname: Xuan, Ping
  organization: School of Computer Science and Technology, Heilongjiang University, Harbin, China
– sequence: 2
  givenname: Yue
  surname: Zhao
  fullname: Zhao, Yue
  organization: School of Computer Science and Technology, Heilongjiang University, Harbin, China
– sequence: 3
  givenname: Hui
  orcidid: 0000-0001-8224-4698
  surname: Cui
  fullname: Cui, Hui
  organization: Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia
– sequence: 4
  givenname: Linyun
  orcidid: 0000-0003-0231-4399
  surname: Zhan
  fullname: Zhan, Linyun
  organization: School of Computer Science and Technology, Heilongjiang University, Harbin, China
– sequence: 5
  givenname: Qiangguo
  orcidid: 0000-0002-1781-1067
  surname: Jin
  fullname: Jin, Qiangguo
  organization: School of Software, Northwestern Polytechnical University, Shaanxi, China
– sequence: 6
  givenname: Tiangang
  orcidid: 0000-0002-7528-3581
  surname: Zhang
  fullname: Zhang, Tiangang
  organization: School of Mathematical Science, Heilongjiang University, Harbin, China
– sequence: 7
  givenname: Toshiya
  surname: Nakaguchi
  fullname: Nakaguchi, Toshiya
  organization: Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
BackLink https://cir.nii.ac.jp/crid/1871146593178269824$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/36173783$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEUhS0URDYLPwAhIUtJQTOLn2O7TFbhIUUgkfSWx-PZdeSxB3u2yL_Hw24oUtDce4vvnHvtcwHOYooOgPcYbTBG6vPD9uZmQxAhG0qQ4gK_AitCBWsQYvQMrDBnvOGqpefgopRHhAhTiL0B57TFggpJV2B_70YTZ2_h6GbTTGbeQxf3JlrXw11InQnQxB6GZOs0pymFtHuCwZkcfdzBIWUYov3147rpfXGmOGhKSdab2acIp-x6b5fxLXg9mFDcu1Nfg_svtw_bb83dz6_ft9d3jWWMzY0ZHOqE6Rm1LbU9sYpJZhFlrVPCGskF7zouKULYEINwh9TQDS3BSlSGrsGno-uU0--DK7MefbEuBBNdOhRNBFYMS1kd1uDyBfqYDjnW2yqluER1lajUxxN16EbX6yn70eQn_fyDFRBHwOZUSnaDtn7--_g5Gx80RnrJSi9Z6SUrfcqqKvEL5bP5_zRXR030vi5aKpYCY9ZyRbGQpFWSsIp9OGLeOffPVinElZL0D_ZkqFQ
CODEN ITCBCY
CitedBy_id crossref_primary_10_1016_j_knosys_2025_114344
crossref_primary_10_2339_politeknik_1627668
crossref_primary_10_1089_cmb_2024_0587
crossref_primary_10_1186_s12911_024_02495_2
Cites_doi 10.1038/srep11338
10.1186/s12859-021-04273-7
10.1371/journal.pone.0084408
10.1093/bioinformatics/btw639
10.1093/bioinformatics/btt426
10.1016/j.tig.2016.08.004
10.1007/s11427-014-4692-4
10.3390/ijms20184458
10.1038/s41598-017-12763-z
10.2174/1566523221666210506131055
10.1038/nrg2521
10.3389/fgene.2019.00416
10.3390/cells8091012
10.1109/TCBB.2020.2964221
10.1038/nsmb.2942
10.3390/genes10020126
10.1093/bib/bbaa391
10.1007/978-3-319-08991-1_86
10.1093/nar/gky1096
10.1093/bib/bbaa067
10.1093/nar/gky1010
10.1186/s12859-020-3458-1
10.3390/ncrna5010017
10.1038/srep16840
10.1109/TKDE.2005.50
10.1039/C3MB70608G
10.1093/bib/bbw060
10.1109/BIBM47256.2019.8983261
10.1038/nrg3074
10.1093/bioinformatics/btq241
10.1038/nrd4018
10.18632/oncotarget.11141
10.3892/ijo.2014.2431
10.1101/gr.131037.111
10.1109/JBHI.2021.3130110
10.1109/TCBB.2019.2934958
10.1038/s41556-019-0311-8
10.1093/bioinformatics/btx794
10.1093/nar/gkt1248
10.1093/bioinformatics/bty327
10.1109/TCBB.2018.2827373
10.1039/C4MB00478G
10.1093/nar/gky905
10.1371/journal.pone.0118432
10.1016/j.cell.2013.02.012
10.2147/OTT.S151121
10.1126/science.1138341
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2022.3209571
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2374-0043
1557-9964
EndPage 11
ExternalDocumentID 36173783
10_1109_TCBB_2022_3209571
9905998
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
RYH
AAYXX
CITATION
AAYOK
ADPZR
CGR
CUY
CVF
ECM
EIF
NPM
RIC
RIG
W7O
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c444t-afe0b7ad43c63cd2c9484c0346e97ca8575bb583001a2a01b09fbf621973463
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965674700063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5963
1557-9964
IngestDate Sat Sep 27 18:02:25 EDT 2025
Mon Jun 30 04:49:58 EDT 2025
Thu Jan 02 22:52:40 EST 2025
Tue Nov 18 22:43:32 EST 2025
Sat Nov 29 01:52:06 EST 2025
Mon Nov 10 09:04:25 EST 2025
Wed Aug 27 02:29:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-afe0b7ad43c63cd2c9484c0346e97ca8575bb583001a2a01b09fbf621973463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5328-691X
0000-0003-0231-4399
0000-0002-7528-3581
0000-0001-8224-4698
0000-0002-1781-1067
0000-0003-2020-1451
PMID 36173783
PQID 2795805757
PQPubID 85499
PageCount 11
ParticipantIDs proquest_journals_2795805757
crossref_citationtrail_10_1109_TCBB_2022_3209571
crossref_primary_10_1109_TCBB_2022_3209571
ieee_primary_9905998
pubmed_primary_36173783
proquest_miscellaneous_2719418858
nii_cinii_1871146593178269824
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM Transactions on Computational Biology and Bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2023
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Wang (ref50) 2018; 38
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Liu (ref49) 2018; 22
ref2
ref1
ref39
ref38
ref24
Kingma (ref44)
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref18
  doi: 10.1038/srep11338
– ident: ref39
  doi: 10.1186/s12859-021-04273-7
– ident: ref11
  doi: 10.1371/journal.pone.0084408
– ident: ref20
  doi: 10.1093/bioinformatics/btw639
– ident: ref17
  doi: 10.1093/bioinformatics/btt426
– ident: ref10
  doi: 10.1016/j.tig.2016.08.004
– ident: ref13
  doi: 10.1007/s11427-014-4692-4
– ident: ref33
  doi: 10.3390/ijms20184458
– ident: ref26
  doi: 10.1038/s41598-017-12763-z
– ident: ref38
  doi: 10.2174/1566523221666210506131055
– ident: ref4
  doi: 10.1038/nrg2521
– ident: ref31
  doi: 10.3389/fgene.2019.00416
– ident: ref35
  doi: 10.3390/cells8091012
– ident: ref32
  doi: 10.1109/TCBB.2020.2964221
– ident: ref2
  doi: 10.1038/nsmb.2942
– ident: ref24
  doi: 10.3390/genes10020126
– ident: ref30
  doi: 10.1093/bib/bbaa391
– ident: ref14
  doi: 10.1007/978-3-319-08991-1_86
– ident: ref48
  doi: 10.1093/nar/gky1096
– ident: ref36
  doi: 10.1093/bib/bbaa067
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref44
  article-title: Adam: A method for stochastic optimization
– ident: ref42
  doi: 10.1093/nar/gky1010
– ident: ref29
  doi: 10.1186/s12859-020-3458-1
– ident: ref8
  doi: 10.3390/ncrna5010017
– ident: ref15
  doi: 10.1038/srep16840
– ident: ref45
  doi: 10.1109/TKDE.2005.50
– ident: ref28
  doi: 10.1039/C3MB70608G
– ident: ref9
  doi: 10.1093/bib/bbw060
– ident: ref37
  doi: 10.1109/BIBM47256.2019.8983261
– ident: ref7
  doi: 10.1038/nrg3074
– ident: ref43
  doi: 10.1093/bioinformatics/btq241
– ident: ref6
  doi: 10.1038/nrd4018
– ident: ref25
  doi: 10.18632/oncotarget.11141
– volume: 38
  start-page: 1179
  issue: 6
  year: 2018
  ident: ref50
  article-title: Down-regulation of long noncoding RNA-HULC suppresses cell proliferation and invasion in lung adenocarcinoma,
  publication-title: J. Clin. Pathological Res.
– ident: ref16
  doi: 10.3892/ijo.2014.2431
– ident: ref12
  doi: 10.1101/gr.131037.111
– ident: ref34
  doi: 10.1109/JBHI.2021.3130110
– volume: 22
  start-page: 8722
  issue: 24
  year: 2018
  ident: ref49
  article-title: LncRNA HULC promotes non-small cell lung cancer cell proliferation and inhibits the apoptosis by up-regulating sphingosine kinase 1 (SPHK1) and its downstream PI3K/Akt pathway
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– ident: ref27
  doi: 10.1109/TCBB.2019.2934958
– ident: ref3
  doi: 10.1038/s41556-019-0311-8
– ident: ref22
  doi: 10.1093/bioinformatics/btx794
– ident: ref41
  doi: 10.1093/nar/gkt1248
– ident: ref23
  doi: 10.1093/bioinformatics/bty327
– ident: ref47
  doi: 10.1109/TCBB.2018.2827373
– ident: ref19
  doi: 10.1039/C4MB00478G
– ident: ref40
  doi: 10.1093/nar/gky905
– ident: ref46
  doi: 10.1371/journal.pone.0118432
– ident: ref5
  doi: 10.1016/j.cell.2013.02.012
– ident: ref21
  doi: 10.2147/OTT.S151121
– ident: ref1
  doi: 10.1126/science.1138341
SSID ssj0024904
ssib023430946
ssib058575021
ssib009367273
ssib007723009
ssib012866491
ssib017384936
ssib026261253
ssib000850374
ssib006553169
ssib000650757
Score 2.391603
Snippet Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the...
SourceID proquest
pubmed
crossref
nii
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Ablation
Bioinformatics
Convolution
Decoding
Disease
Diseases
Embedding
Graph convolutional autoencoder with attention
Humans
Learning
LncRNA-disease association prediction
LncRNA-disease-miRNA heterogeneous graph
Meta-path based semantic learning
MicroRNAs
MicroRNAs - genetics
miRNA
Nodes
Non-coding RNA
Pathogenesis
Predictions
Predictive models
RNA, Long Noncoding
RNA, Long Noncoding - genetics
Semantics
Topology
Title Semantic meta-path enhanced global and local topology learning for lncRNA-disease association prediction
URI https://ieeexplore.ieee.org/document/9905998
https://cir.nii.ac.jp/crid/1871146593178269824
https://www.ncbi.nlm.nih.gov/pubmed/36173783
https://www.proquest.com/docview/2795805757
https://www.proquest.com/docview/2719418858
Volume 20
WOSCitedRecordID wos000965674700063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2374-0043
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EIvfaUPt0lQoadSJ7IlW9IxCQ09lKU0oezNSLLcLCTesPEW8u87I2sdCm2hFyPwGAl9I82MR5oP4L3pBHe87XInvculL4rcWaJ7qW2tCiKqicxz37-o2UzP5-brFnyc7sKEEOLhs3BIzZjLb5d-Tb_KjnDnrDA82IZtpdR4V-u-rp6JVIHkEeQValXKYBbcHF2cnpxgJFiWh6JEj0IRO4xAyy2UFr-Zo8ivgkamXyz-7nBGw3P25P-G_BQeJweTHY8a8Qy2Qv8cHo6Uk3e7cHkernEyF55dh8HmREjMQn8ZzwGwsToIs33Loo1jw0ihcMcSucQPhj4uu-r9t9lxnnI7zN4jzG5WlPih5gs4P_t0cfo5T2wLuZdSDrntAnfKtlL4Wvi29EZq6bmQdTDKW2LydK7SAu2aLS0vHDed62rc8RTKiJew0y_78BpYh5tAsNYpHpwseeuoiL7qbBWUpvKlGfDNlDc-FSInPoyrJgYk3DQEWEOANQmwDD5Mn9yMVTj-JbxLOEyCCYIM9hFX7JGeBcaJaCMqg6qIAZbRpcxgb4N4k9bxbVMqU2lyaVUG76bXuAIprWL7sFyTTGFkoXWFXbwaNWXqe6Nmb_48prfwiOjrxzNte7AzrNZhHx74n8PidnWAaj7XB1HNfwE5pvMC
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAoILr_IItGAkTgi3TuzE8bGtqIpYVoiuUG-R7Th0pTZbbbNI_ffMONlUSIDEJbKUiWz5G3tmMvZ8AO9MI4UTdcOd8o4rn6bcWaJ7KWyhUyKqicxz3yd6Oi1PT83XDfgw3oUJIcTDZ2GXmjGXXy_8in6V7eHOmWN4cAtu50plaX9b66aynolkgeQT8Bz1ashhpsLszQ4PDjAWzLJdmaFPoYkfRqLtlrqUvxmkyLCCZqadz__uckbTc_Tw_wb9CB4MLibb73XiMWyE9gnc7Uknr7fg7CRc4HTOPbsIneVEScxCexZPArC-Pgizbc2ilWNdT6JwzQZ6iR8MvVx23vpv030-ZHeYvcGYXS4p9UPNp3By9HF2eMwHvgXulVIdt00QTttaSV9IX2feqFJ5IVURjPaWuDydy0uJls1mVqROmMY1Be55GmXkM9hsF214AazBbSBY67QITmWidlRGXzc2D7qkAqYJiPWUV34oRU6MGOdVDEmEqQiwigCrBsASeD9-ctnX4fiX8BbhMAoOECSwg7hij_RMMVJEK5EbVEYMsUyZqQS214hXw0q-qjJt8pKcWp3A2_E1rkFKrNg2LFYkkxqVlmWOXTzvNWXse61mL_88pjdw73j2ZVJNPk0_v4L7RGbfn3Dbhs1uuQo7cMf_7OZXy9dR2X8BSpf1YQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Meta-Path+Enhanced+Global+and+Local+Topology+Learning+for+lncRNA-Disease+Association+Prediction&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Xuan%2C+Ping&rft.au=Zhao%2C+Yue&rft.au=Cui%2C+Hui&rft.au=Zhan%2C+Linyun&rft.date=2023-03-01&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=20&rft.issue=2&rft.spage=1480&rft.epage=1491&rft_id=info:doi/10.1109%2FTCBB.2022.3209571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCBB_2022_3209571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon