Semantic meta-path enhanced global and local topology learning for lncRNA-disease association prediction
Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and d...
Saved in:
| Published in: | IEEE/ACM Transactions on Computational Biology and Bioinformatics Vol. 20; no. 2; pp. 1 - 11 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.03.2023
Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1545-5963, 1557-9964, 2374-0043, 1557-9964 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and diseases. The rich semantic information of meta-paths, composed of multiple kinds of connections between lncRNA and disease nodes, is neglected. We propose a new prediction method, MGLDA, to encode and integrate the semantics of multiple meta-paths, the global topology of heterogeneous graph, and pairwise attributes of lncRNA and disease nodes. First, a tri-layer heterogeneous graph is constructed to associate multi-sourced data across the lncRNA, disease, and miRNA nodes. Afterwards, we establish multiple meta-paths connecting the lncRNA and disease nodes to derive and denote various semantics. Each meta-path contains its specific semantics formulated by an embedding strategy, and each embedding covers local topology formed by the diverse semantic connections among the lncRNA, disease, and miRNA nodes. We construct multiple graph convolutional autoencoders (GCA) with topology-level attention to learn global and multiple local topologies from the tri-layer graph and each meta-path, respectively. The topology-level attention mechanism can learn the importance of various global and local topologies for adaptive pairwise topology fusion. Finally, a convolutional autoencoder learns the attribute representations of lncRNA-disease pairs, which integrates the learnt detailed and representative pairwise features. Experimental results show that MGLDA outperforms other state-of-the-art prediction methods in comparison and retrieves more real lncRNA-disease associations in the top-ranked candidates. The ablation study also demonstrates the important contributions of the local and global topology learning, and pairwise attribute learning. Case studies on three diseases further demonstrate MGLDA's ability to identify potential disease-related lncRNAs. |
|---|---|
| AbstractList | Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and diseases. The rich semantic information of meta-paths, composed of multiple kinds of connections between lncRNA and disease nodes, is neglected. We propose a new prediction method, MGLDA, to encode and integrate the semantics of multiple meta-paths, the global topology of heterogeneous graph, and pairwise attributes of lncRNA and disease nodes. First, a tri-layer heterogeneous graph is constructed to associate multi-sourced data across the lncRNA, disease, and miRNA nodes. Afterwards, we establish multiple meta-paths connecting the lncRNA and disease nodes to derive and denote various semantics. Each meta-path contains its specific semantics formulated by an embedding strategy, and each embedding covers local topology formed by the diverse semantic connections among the lncRNA, disease, and miRNA nodes. We construct multiple graph convolutional autoencoders (GCA) with topology-level attention to learn global and multiple local topologies from the tri-layer graph and each meta-path, respectively. The topology-level attention mechanism can learn the importance of various global and local topologies for adaptive pairwise topology fusion. Finally, a convolutional autoencoder learns the attribute representations of lncRNA-disease pairs, which integrates the learnt detailed and representative pairwise features. Experimental results show that MGLDA outperforms other state-of-the-art prediction methods in comparison and retrieves more real lncRNA-disease associations in the top-ranked candidates. The ablation study also demonstrates the important contributions of the local and global topology learning, and pairwise attribute learning. Case studies on three diseases further demonstrate MGLDA's ability to identify potential disease-related lncRNAs.Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and diseases. The rich semantic information of meta-paths, composed of multiple kinds of connections between lncRNA and disease nodes, is neglected. We propose a new prediction method, MGLDA, to encode and integrate the semantics of multiple meta-paths, the global topology of heterogeneous graph, and pairwise attributes of lncRNA and disease nodes. First, a tri-layer heterogeneous graph is constructed to associate multi-sourced data across the lncRNA, disease, and miRNA nodes. Afterwards, we establish multiple meta-paths connecting the lncRNA and disease nodes to derive and denote various semantics. Each meta-path contains its specific semantics formulated by an embedding strategy, and each embedding covers local topology formed by the diverse semantic connections among the lncRNA, disease, and miRNA nodes. We construct multiple graph convolutional autoencoders (GCA) with topology-level attention to learn global and multiple local topologies from the tri-layer graph and each meta-path, respectively. The topology-level attention mechanism can learn the importance of various global and local topologies for adaptive pairwise topology fusion. Finally, a convolutional autoencoder learns the attribute representations of lncRNA-disease pairs, which integrates the learnt detailed and representative pairwise features. Experimental results show that MGLDA outperforms other state-of-the-art prediction methods in comparison and retrieves more real lncRNA-disease associations in the top-ranked candidates. The ablation study also demonstrates the important contributions of the local and global topology learning, and pairwise attribute learning. Case studies on three diseases further demonstrate MGLDA's ability to identify potential disease-related lncRNAs. Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and diseases. The rich semantic information of meta-paths, composed of multiple kinds of connections between lncRNA and disease nodes, is neglected. We propose a new prediction method, MGLDA, to encode and integrate the semantics of multiple meta-paths, the global topology of heterogeneous graph, and pairwise attributes of lncRNA and disease nodes. First, a tri-layer heterogeneous graph is constructed to associate multi-sourced data across the lncRNA, disease, and miRNA nodes. Afterwards, we establish multiple meta-paths connecting the lncRNA and disease nodes to derive and denote various semantics. Each meta-path contains its specific semantics formulated by an embedding strategy, and each embedding covers local topology formed by the diverse semantic connections among the lncRNA, disease, and miRNA nodes. We construct multiple graph convolutional autoencoders (GCA) with topology-level attention to learn global and multiple local topologies from the tri-layer graph and each meta-path, respectively. The topology-level attention mechanism can learn the importance of various global and local topologies for adaptive pairwise topology fusion. Finally, a convolutional autoencoder learns the attribute representations of lncRNA-disease pairs, which integrates the learnt detailed and representative pairwise features. Experimental results show that MGLDA outperforms other state-of-the-art prediction methods in comparison and retrieves more real lncRNA-disease associations in the top-ranked candidates. The ablation study also demonstrates the important contributions of the local and global topology learning, and pairwise attribute learning. Case studies on three diseases further demonstrate MGLDA's ability to identify potential disease-related lncRNAs. |
| Author | Cui, Hui Zhao, Yue Jin, Qiangguo Xuan, Ping Nakaguchi, Toshiya Zhang, Tiangang Zhan, Linyun |
| Author_xml | – sequence: 1 givenname: Ping orcidid: 0000-0001-5328-691X surname: Xuan fullname: Xuan, Ping organization: School of Computer Science and Technology, Heilongjiang University, Harbin, China – sequence: 2 givenname: Yue surname: Zhao fullname: Zhao, Yue organization: School of Computer Science and Technology, Heilongjiang University, Harbin, China – sequence: 3 givenname: Hui orcidid: 0000-0001-8224-4698 surname: Cui fullname: Cui, Hui organization: Department of Computer Science and Information Technology, La Trobe University, Melbourne, Australia – sequence: 4 givenname: Linyun orcidid: 0000-0003-0231-4399 surname: Zhan fullname: Zhan, Linyun organization: School of Computer Science and Technology, Heilongjiang University, Harbin, China – sequence: 5 givenname: Qiangguo orcidid: 0000-0002-1781-1067 surname: Jin fullname: Jin, Qiangguo organization: School of Software, Northwestern Polytechnical University, Shaanxi, China – sequence: 6 givenname: Tiangang orcidid: 0000-0002-7528-3581 surname: Zhang fullname: Zhang, Tiangang organization: School of Mathematical Science, Heilongjiang University, Harbin, China – sequence: 7 givenname: Toshiya surname: Nakaguchi fullname: Nakaguchi, Toshiya organization: Center for Frontier Medical Engineering, Chiba University, Chiba, Japan |
| BackLink | https://cir.nii.ac.jp/crid/1871146593178269824$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/36173783$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kTtvFDEUhS0URDYLPwAhIUtJQTOLn2O7TFbhIUUgkfSWx-PZdeSxB3u2yL_Hw24oUtDce4vvnHvtcwHOYooOgPcYbTBG6vPD9uZmQxAhG0qQ4gK_AitCBWsQYvQMrDBnvOGqpefgopRHhAhTiL0B57TFggpJV2B_70YTZ2_h6GbTTGbeQxf3JlrXw11InQnQxB6GZOs0pymFtHuCwZkcfdzBIWUYov3147rpfXGmOGhKSdab2acIp-x6b5fxLXg9mFDcu1Nfg_svtw_bb83dz6_ft9d3jWWMzY0ZHOqE6Rm1LbU9sYpJZhFlrVPCGskF7zouKULYEINwh9TQDS3BSlSGrsGno-uU0--DK7MefbEuBBNdOhRNBFYMS1kd1uDyBfqYDjnW2yqluER1lajUxxN16EbX6yn70eQn_fyDFRBHwOZUSnaDtn7--_g5Gx80RnrJSi9Z6SUrfcqqKvEL5bP5_zRXR030vi5aKpYCY9ZyRbGQpFWSsIp9OGLeOffPVinElZL0D_ZkqFQ |
| CODEN | ITCBCY |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2025_114344 crossref_primary_10_2339_politeknik_1627668 crossref_primary_10_1089_cmb_2024_0587 crossref_primary_10_1186_s12911_024_02495_2 |
| Cites_doi | 10.1038/srep11338 10.1186/s12859-021-04273-7 10.1371/journal.pone.0084408 10.1093/bioinformatics/btw639 10.1093/bioinformatics/btt426 10.1016/j.tig.2016.08.004 10.1007/s11427-014-4692-4 10.3390/ijms20184458 10.1038/s41598-017-12763-z 10.2174/1566523221666210506131055 10.1038/nrg2521 10.3389/fgene.2019.00416 10.3390/cells8091012 10.1109/TCBB.2020.2964221 10.1038/nsmb.2942 10.3390/genes10020126 10.1093/bib/bbaa391 10.1007/978-3-319-08991-1_86 10.1093/nar/gky1096 10.1093/bib/bbaa067 10.1093/nar/gky1010 10.1186/s12859-020-3458-1 10.3390/ncrna5010017 10.1038/srep16840 10.1109/TKDE.2005.50 10.1039/C3MB70608G 10.1093/bib/bbw060 10.1109/BIBM47256.2019.8983261 10.1038/nrg3074 10.1093/bioinformatics/btq241 10.1038/nrd4018 10.18632/oncotarget.11141 10.3892/ijo.2014.2431 10.1101/gr.131037.111 10.1109/JBHI.2021.3130110 10.1109/TCBB.2019.2934958 10.1038/s41556-019-0311-8 10.1093/bioinformatics/btx794 10.1093/nar/gkt1248 10.1093/bioinformatics/bty327 10.1109/TCBB.2018.2827373 10.1039/C4MB00478G 10.1093/nar/gky905 10.1371/journal.pone.0118432 10.1016/j.cell.2013.02.012 10.2147/OTT.S151121 10.1126/science.1138341 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TCBB.2022.3209571 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2374-0043 1557-9964 |
| EndPage | 11 |
| ExternalDocumentID | 36173783 10_1109_TCBB_2022_3209571 9905998 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL RYH AAYXX CITATION AAYOK ADPZR CGR CUY CVF ECM EIF NPM RIC RIG W7O 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c444t-afe0b7ad43c63cd2c9484c0346e97ca8575bb583001a2a01b09fbf621973463 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965674700063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5963 1557-9964 |
| IngestDate | Sat Sep 27 18:02:25 EDT 2025 Mon Jun 30 04:49:58 EDT 2025 Thu Jan 02 22:52:40 EST 2025 Tue Nov 18 22:43:32 EST 2025 Sat Nov 29 01:52:06 EST 2025 Mon Nov 10 09:04:25 EST 2025 Wed Aug 27 02:29:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c444t-afe0b7ad43c63cd2c9484c0346e97ca8575bb583001a2a01b09fbf621973463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5328-691X 0000-0003-0231-4399 0000-0002-7528-3581 0000-0001-8224-4698 0000-0002-1781-1067 0000-0003-2020-1451 |
| PMID | 36173783 |
| PQID | 2795805757 |
| PQPubID | 85499 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2795805757 crossref_citationtrail_10_1109_TCBB_2022_3209571 crossref_primary_10_1109_TCBB_2022_3209571 ieee_primary_9905998 pubmed_primary_36173783 proquest_miscellaneous_2719418858 nii_cinii_1871146593178269824 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE/ACM Transactions on Computational Biology and Bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
| PublicationYear | 2023 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers (IEEE) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers (IEEE) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Wang (ref50) 2018; 38 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Liu (ref49) 2018; 22 ref2 ref1 ref39 ref38 ref24 Kingma (ref44) ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref18 doi: 10.1038/srep11338 – ident: ref39 doi: 10.1186/s12859-021-04273-7 – ident: ref11 doi: 10.1371/journal.pone.0084408 – ident: ref20 doi: 10.1093/bioinformatics/btw639 – ident: ref17 doi: 10.1093/bioinformatics/btt426 – ident: ref10 doi: 10.1016/j.tig.2016.08.004 – ident: ref13 doi: 10.1007/s11427-014-4692-4 – ident: ref33 doi: 10.3390/ijms20184458 – ident: ref26 doi: 10.1038/s41598-017-12763-z – ident: ref38 doi: 10.2174/1566523221666210506131055 – ident: ref4 doi: 10.1038/nrg2521 – ident: ref31 doi: 10.3389/fgene.2019.00416 – ident: ref35 doi: 10.3390/cells8091012 – ident: ref32 doi: 10.1109/TCBB.2020.2964221 – ident: ref2 doi: 10.1038/nsmb.2942 – ident: ref24 doi: 10.3390/genes10020126 – ident: ref30 doi: 10.1093/bib/bbaa391 – ident: ref14 doi: 10.1007/978-3-319-08991-1_86 – ident: ref48 doi: 10.1093/nar/gky1096 – ident: ref36 doi: 10.1093/bib/bbaa067 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref44 article-title: Adam: A method for stochastic optimization – ident: ref42 doi: 10.1093/nar/gky1010 – ident: ref29 doi: 10.1186/s12859-020-3458-1 – ident: ref8 doi: 10.3390/ncrna5010017 – ident: ref15 doi: 10.1038/srep16840 – ident: ref45 doi: 10.1109/TKDE.2005.50 – ident: ref28 doi: 10.1039/C3MB70608G – ident: ref9 doi: 10.1093/bib/bbw060 – ident: ref37 doi: 10.1109/BIBM47256.2019.8983261 – ident: ref7 doi: 10.1038/nrg3074 – ident: ref43 doi: 10.1093/bioinformatics/btq241 – ident: ref6 doi: 10.1038/nrd4018 – ident: ref25 doi: 10.18632/oncotarget.11141 – volume: 38 start-page: 1179 issue: 6 year: 2018 ident: ref50 article-title: Down-regulation of long noncoding RNA-HULC suppresses cell proliferation and invasion in lung adenocarcinoma, publication-title: J. Clin. Pathological Res. – ident: ref16 doi: 10.3892/ijo.2014.2431 – ident: ref12 doi: 10.1101/gr.131037.111 – ident: ref34 doi: 10.1109/JBHI.2021.3130110 – volume: 22 start-page: 8722 issue: 24 year: 2018 ident: ref49 article-title: LncRNA HULC promotes non-small cell lung cancer cell proliferation and inhibits the apoptosis by up-regulating sphingosine kinase 1 (SPHK1) and its downstream PI3K/Akt pathway publication-title: Eur. Rev. Med. Pharmacol. Sci. – ident: ref27 doi: 10.1109/TCBB.2019.2934958 – ident: ref3 doi: 10.1038/s41556-019-0311-8 – ident: ref22 doi: 10.1093/bioinformatics/btx794 – ident: ref41 doi: 10.1093/nar/gkt1248 – ident: ref23 doi: 10.1093/bioinformatics/bty327 – ident: ref47 doi: 10.1109/TCBB.2018.2827373 – ident: ref19 doi: 10.1039/C4MB00478G – ident: ref40 doi: 10.1093/nar/gky905 – ident: ref46 doi: 10.1371/journal.pone.0118432 – ident: ref5 doi: 10.1016/j.cell.2013.02.012 – ident: ref21 doi: 10.2147/OTT.S151121 – ident: ref1 doi: 10.1126/science.1138341 |
| SSID | ssj0024904 ssib023430946 ssib058575021 ssib009367273 ssib007723009 ssib012866491 ssib017384936 ssib026261253 ssib000850374 ssib006553169 ssib000650757 |
| Score | 2.391603 |
| Snippet | Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the... |
| SourceID | proquest pubmed crossref nii ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Ablation Bioinformatics Convolution Decoding Disease Diseases Embedding Graph convolutional autoencoder with attention Humans Learning LncRNA-disease association prediction LncRNA-disease-miRNA heterogeneous graph Meta-path based semantic learning MicroRNAs MicroRNAs - genetics miRNA Nodes Non-coding RNA Pathogenesis Predictions Predictive models RNA, Long Noncoding RNA, Long Noncoding - genetics Semantics Topology |
| Title | Semantic meta-path enhanced global and local topology learning for lncRNA-disease association prediction |
| URI | https://ieeexplore.ieee.org/document/9905998 https://cir.nii.ac.jp/crid/1871146593178269824 https://www.ncbi.nlm.nih.gov/pubmed/36173783 https://www.proquest.com/docview/2795805757 https://www.proquest.com/docview/2719418858 |
| Volume | 20 |
| WOSCitedRecordID | wos000965674700063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2374-0043 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSxwxFH6otNBLf9nabVVS6Kk0Opsfm-SooniQRaqHvQ2ZTKYu6KysswX_-76XyY4U2kIvQ2AyJOR7yfvevCQfwBdjddGEynGB5J6r4CUnls9t5XQljEcOm5C-MNOpnc3c5QZ8G87CxBjT5rN4QMWUy68XYUW_yg5x5dQYHmzCpjGmP6v1dK-eS1KBxAi4RqvKGcxx4Q6vT46PMRIU4kAKZBSG1GEkem5prPzNHSV9FXQy7Xz-d8KZHM_Zq__r8mt4mQkmO-ot4g1sxPYtPO8lJx-34eYq3uFgzgO7i53nJEjMYnuT9gGw_nYQ5tuaJR_Hul5C4ZFlcYkfDDkuu23D9-kRz7kd5p8QZvdLSvxQ8R1cnZ1en5zzrLbAg1Kq476JRWV8rWSYyFCL4JRVoZBqEp0JnpQ8q0pbiX7NC1-Mq8I1VTPBFc9gHfkettpFGz8ACyq4WjQqRk0BmvWk-xcp3RdoxqsRFOshL0O-iJz0MG7LFJAUriTASgKszICN4OvwyX1_C8e_Km8TDkPFDMEI9hBXbJGe2CM6jq0d0icMsJwV2K3dNeJlnscPpTBOW6K0ZgSfh9c4Aymt4tu4WFGdsVNjazU2sdNbytD22sw-_rlPn-AFydf3e9p2YatbruIePAs_u_nDch_NfGb3k5n_AkJe8gw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VAoILXy2w0IKROCHcJv5Y28e2oipiWSG6h94ix3HoSm222maR-u-ZcbKpkACJS2Qpjmz5jT1vMrYfwHtjdVaH0nGB5J6r4CUnls9t6XQpjEcOm5CemOnUnp25bxvwcTgLE2NMm8_iHhVTLr9ahBX9KtvHlVNjeHAH7mqlRN6d1rq9Wc8lsUDiBFyjXfU5zDxz-7Ojw0OMBYXYkwI5hSF9GIm-Wxorf3NISWEF3Uwzn_-dcibXc_z4_zr9BB71FJMddDbxFDZi8wzud6KTN1twfhovcTjngV3G1nOSJGaxOU87AVh3PwjzTcWSl2NtJ6Jww3p5iR8MWS67aML36QHvszvM32LMrpaU-qHiNpwef5odnfBeb4EHpVTLfR2z0vhKyTCWoRLBKatCJtU4OhM8aXmWpbYSPZsXPsvLzNVlPcY1z2Ad-Rw2m0UTXwILKrhK1CpGTSGa9aT8FynhF2jOqxFk6yEvQn8VOSliXBQpJMlcQYAVBFjRAzaCD8MnV909HP-qvEU4DBV7CEawi7hii_TEHtGBbO2QQGGI5azAbu2sES_6mXxdCOO0JVJrRvBueI1zkBIrvomLFdXJncqt1djEi85ShrbXZvbqz316Cw9OZl8nxeTz9MtreEhi9t0Otx3YbJeruAv3ws92fr18k4z9F0zT9Gs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Meta-Path+Enhanced+Global+and+Local+Topology+Learning+for+lncRNA-Disease+Association+Prediction&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Xuan%2C+Ping&rft.au=Zhao%2C+Yue&rft.au=Cui%2C+Hui&rft.au=Zhan%2C+Linyun&rft.date=2023-03-01&rft.eissn=1557-9964&rft.volume=20&rft.issue=2&rft.spage=1480&rft_id=info:doi/10.1109%2FTCBB.2022.3209571&rft_id=info%3Apmid%2F36173783&rft.externalDocID=36173783 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |