Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images
Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing o...
Uloženo v:
| Vydáno v: | IEEE transactions on medical imaging Ročník 41; číslo 12; s. 3952 - 3968 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing only coarse and approximate annotations is a much easier task, less costly, and it alleviates pathologists' workload. In this paper, we study the problem of refining these approximate annotations in digital pathology to obtain more accurate ones. Some previous works have explored obtaining machine learning models from these inaccurate annotations, but few of them tackle the refinement problem where the mislabeled regions should be explicitly identified and corrected, and all of them require a - often very large - number of training samples. We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need for external training data. Patches cropped from a WSI with inaccurate labels are processed jointly within a multiple instance learning framework, mitigating their impact on the predictive model and refining the segmentation. Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming state-of-the-art alternatives, even while learning from a single slide. Moreover, we demonstrate how real annotations drawn by pathologists can be efficiently refined and improved by the proposed approach. All these results demonstrate that LC-MIL is a promising, lightweight tool to provide fine-grained annotations from coarsely annotated pathology sets. |
|---|---|
| AbstractList | Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing only coarse and approximate annotations is a much easier task, less costly, and it alleviates pathologists’ workload. In this paper, we study the problem of refining these approximate annotations in digital pathology to obtain more accurate ones. Some previous works have explored obtaining machine learning models from these inaccurate annotations, but few of them tackle the refinement problem where the mislabeled regions should be explicitly identified and corrected, and all of them require a – often very large – number of training samples. We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need for external training data. Patches cropped from a WSI with inaccurate labels are processed jointly within a multiple instance learning framework, mitigating their impact on the predictive model and refining the segmentation. Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming state-of-the-art alternatives, even while learning from a single slide. Moreover, we demonstrate how real annotations drawn by pathologists can be efficiently refined and improved by the proposed approach. All these results demonstrate that LC-MIL is a promising, lightweight tool to provide fine-grained annotations from coarsely annotated pathology sets. Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing only coarse and approximate annotations is a much easier task, less costly, and it alleviates pathologists' workload. In this paper, we study the problem of refining these approximate annotations in digital pathology to obtain more accurate ones. Some previous works have explored obtaining machine learning models from these inaccurate annotations, but few of them tackle the refinement problem where the mislabeled regions should be explicitly identified and corrected, and all of them require a - often very large - number of training samples. We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need for external training data. Patches cropped from a WSI with inaccurate labels are processed jointly within a multiple instance learning framework, mitigating their impact on the predictive model and refining the segmentation. Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming state-of-the-art alternatives, even while learning from a single slide. Moreover, we demonstrate how real annotations drawn by pathologists can be efficiently refined and improved by the proposed approach. All these results demonstrate that LC-MIL is a promising, lightweight tool to provide fine-grained annotations from coarsely annotated pathology sets.Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing only coarse and approximate annotations is a much easier task, less costly, and it alleviates pathologists' workload. In this paper, we study the problem of refining these approximate annotations in digital pathology to obtain more accurate ones. Some previous works have explored obtaining machine learning models from these inaccurate annotations, but few of them tackle the refinement problem where the mislabeled regions should be explicitly identified and corrected, and all of them require a - often very large - number of training samples. We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need for external training data. Patches cropped from a WSI with inaccurate labels are processed jointly within a multiple instance learning framework, mitigating their impact on the predictive model and refining the segmentation. Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming state-of-the-art alternatives, even while learning from a single slide. Moreover, we demonstrate how real annotations drawn by pathologists can be efficiently refined and improved by the proposed approach. All these results demonstrate that LC-MIL is a promising, lightweight tool to provide fine-grained annotations from coarsely annotated pathology sets. Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing only coarse and approximate annotations is a much easier task, less costly, and it alleviates pathologists’ workload. In this paper, we study the problem of refining these approximate annotations in digital pathology to obtain more accurate ones. Some previous works have explored obtaining machine learning models from these inaccurate annotations, but few of them tackle the refinement problem where the mislabeled regions should be explicitly identified and corrected, and all of them require a – often very large – number of training samples. We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need for external training data. Patches cropped from a WSI with inaccurate labels are processed jointly within a multiple instance learning framework, mitigating their impact on the predictive model and refining the segmentation. Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, out-performing state-of-the-art alternatives, even while learning from a single slide. Moreover, we demonstrate how real annotations drawn by pathologists can be efficiently refined and improved by the proposed approach. All these results demonstrate that LC-MIL is a promising, lightweight tool to provide fine-grained annotations from coarsely annotated pathology sets. |
| Author | Wang, Zhenzhen Wangsiricharoen, Sintawat James, Aaron W. Popel, Aleksander S. Saoud, Carla Sulam, Jeremias |
| Author_xml | – sequence: 1 givenname: Zhenzhen orcidid: 0000-0002-0195-4362 surname: Wang fullname: Wang, Zhenzhen email: zwang218@jhu.edu organization: Department of Biomedical Engineering, Mathematical Institute of Data Science, Johns Hopkins University, Baltimore, MD, USA – sequence: 2 givenname: Carla surname: Saoud fullname: Saoud, Carla email: csaoud1@jhmi.edu organization: Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA – sequence: 3 givenname: Sintawat surname: Wangsiricharoen fullname: Wangsiricharoen, Sintawat email: swangsi1@jhmi.edu organization: Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA – sequence: 4 givenname: Aaron W. surname: James fullname: James, Aaron W. email: awjames@jhmi.edu organization: Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA – sequence: 5 givenname: Aleksander S. surname: Popel fullname: Popel, Aleksander S. email: apopel@jhu.edu organization: Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA – sequence: 6 givenname: Jeremias orcidid: 0000-0003-0946-1957 surname: Sulam fullname: Sulam, Jeremias email: jsulam1@jhu.edu organization: Department of Biomedical Engineering, Mathematical Institute of Data Science, Johns Hopkins University, Baltimore, MD, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36037454$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc2LFDEQxYOsuLOjd0GQBi9eekw6H93xICyDHwOzCO6K3kJ1pno2SyaZ7XQL_vemnXHQPXhJIPV7L1X1LshZiAEJec7ogjGq39xcrRYVraoFz2ct9SMyY1I2ZSXF9zMyy29NSamqzslFSneUMiGpfkLOuaK8FlLMiF1Di75YeoTgwra4Gv3g9h6LVUgDBIvFGqGfSm-LL9i539AyQp-wuAwhDjC4GFIRQ3GdS1n47TZ6LK-922STHWwxPSWPO_AJnx3vOfn64f3N8lO5_vxxtbxcl1YIMZR1KxR2VcesAsF103Kx4VrABjQIUExboVvetp3EmjUbLlHxFmurrJR1B8Dn5N3Bdz-2O9xYDEMP3ux7t4P-p4ngzL-V4G7NNv4wuqnktJI5eX006OP9iGkwO5cseg8B45hMVdNMalarjL56gN7FsQ95vEwJyaqaN5Phy787OrXyZ_8ZoAfA9jGlHrsTwqiZIjY5YjNFbI4RZ4l6ILHukEKeyfn_CV8chA4RT__oRumm0fwX7P-z4w |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1002_jor_25693 crossref_primary_10_1016_j_inffus_2025_103027 crossref_primary_10_1016_j_patter_2025_101178 crossref_primary_10_1016_j_compbiomed_2025_110293 crossref_primary_10_3390_diagnostics14040388 crossref_primary_10_3390_jlpea15030054 crossref_primary_10_1016_j_bspc_2025_107599 crossref_primary_10_1002_aisy_202300885 crossref_primary_10_1016_j_jpi_2024_100367 crossref_primary_10_1109_TMI_2024_3351213 crossref_primary_10_1186_s12859_024_06007_x crossref_primary_10_1016_j_jpi_2024_100363 crossref_primary_10_1109_TMI_2024_3485120 crossref_primary_10_1007_s10489_023_05004_6 crossref_primary_10_1016_j_compmedimag_2024_102337 crossref_primary_10_1016_j_pt_2024_05_005 crossref_primary_10_1109_RBME_2024_3357877 |
| Cites_doi | 10.1016/j.media.2019.03.009 10.1007/978-3-030-78191-0_52 10.1109/WACV.2018.00138 10.3389/fonc.2018.00649 10.1109/ISBI.2018.8363599 10.1016/j.media.2020.101813 10.1016/j.canlet.2014.10.021 10.3389/fmed.2019.00310 10.1109/TIP.2017.2689998 10.1093/gigascience/giy065 10.1016/j.neucom.2020.03.127 10.1038/s41551-020-00682-w 10.1007/s10916-009-9299-0 10.1007/978-3-030-33391-1_24 10.1111/j.1365-2559.2011.04154.x 10.1038/s41591-019-0508-1 10.1609/aaai.v31i1.10894 10.1038/modpathol.2012.235 10.1097/PAP.0000000000000273 10.1016/j.media.2020.101854 10.1109/ICCV.2019.01078 10.1371/journal.pone.0070221 10.3389/fphys.2020.583333 10.1038/modpathol.3800496 10.1109/TBME.2017.2690863 10.1186/1471-2342-6-14 10.1109/TSMC.1979.4310076 10.1016/j.patcog.2017.08.026 10.1016/j.media.2014.01.010 10.1016/j.ajpath.2019.05.007 10.1126/science.aaa6204 10.3389/fonc.2018.00627 10.1016/S0004-3702(96)00034-3 10.1109/CBMI.2015.7153607 10.1007/978-3-030-32239-7_60 10.1109/TSMC.1972.4309137 10.1109/RBME.2009.2034865 10.1109/CVPR.2009.5206848 10.1109/ACCESS.2021.3086020 10.1109/TMI.2017.2724070 10.1109/ISBI.2018.8363518 10.1109/CVPR.2018.00571 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
| DOI | 10.1109/TMI.2022.3202759 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 3968 |
| ExternalDocumentID | PMC9825360 36037454 10_1109_TMI_2022_3202759 9869889 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: CISCO Research grantid: CG2686384 – fundername: NIH grantid: R01CA138264; U01CA212007 funderid: 10.13039/100000002 – fundername: NCI NIH HHS grantid: U01 CA212007 – fundername: NCI NIH HHS grantid: R01 CA138264 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
| ID | FETCH-LOGICAL-c444t-7b46ef2f1c6a4398b34d394ada9a4a619c49b3bbf5e718d35e63be7c6c557faa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000907324600039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Tue Sep 30 17:16:20 EDT 2025 Sun Nov 09 14:05:58 EST 2025 Mon Jun 30 03:43:22 EDT 2025 Thu Apr 03 07:11:19 EDT 2025 Sat Nov 29 05:14:10 EST 2025 Tue Nov 18 21:57:15 EST 2025 Wed Aug 27 02:15:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c444t-7b46ef2f1c6a4398b34d394ada9a4a619c49b3bbf5e718d35e63be7c6c557faa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0946-1957 0000-0002-0195-4362 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9869889 |
| PMID | 36037454 |
| PQID | 2745127380 |
| PQPubID | 85460 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2745127380 pubmed_primary_36037454 crossref_primary_10_1109_TMI_2022_3202759 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9825360 ieee_primary_9869889 proquest_miscellaneous_2708259176 crossref_citationtrail_10_1109_TMI_2022_3202759 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref12 ref15 ref58 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 mukhoti (ref54) 2020 ref18 rister (ref29) 2018 simonyan (ref61) 2015 northcutt (ref33) 2017 ref51 sukhbaatar (ref24) 2014 ref50 ref46 ref48 courtiol (ref49) 2018 ren (ref41) 2018 ref42 ref44 ref43 goldberger (ref25) 2017 ref8 ref7 ref9 ref4 ref3 ref6 ilse (ref47) 2018 ronneberger (ref13) 2015 ref5 cheng (ref23) 2020 ref40 wang (ref36) 2019 ref34 ref31 ref30 köhler (ref35) 0 ref32 ref2 bahri (ref45) 2020 ref1 ref39 shu (ref37) 2019 simonyan (ref59) 2015 ref26 ref20 northcutt (ref55) 2017 ref22 ref21 ref28 ref27 guo (ref38) 2017 ref60 |
| References_xml | – year: 2015 ident: ref61 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc ICLR – ident: ref19 doi: 10.1016/j.media.2019.03.009 – start-page: 4334 year: 2018 ident: ref41 article-title: Learning to reweight examples for robust deep learning publication-title: Proc ICML – year: 0 ident: ref35 article-title: Uncertainty based detection and relabeling of noisy image labels – ident: ref32 doi: 10.1007/978-3-030-78191-0_52 – ident: ref34 doi: 10.1109/WACV.2018.00138 – ident: ref6 doi: 10.3389/fonc.2018.00649 – ident: ref28 doi: 10.1109/ISBI.2018.8363599 – start-page: 234 year: 2015 ident: ref13 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc MICCAI – ident: ref22 doi: 10.1016/j.media.2020.101813 – start-page: 2127 year: 2018 ident: ref47 article-title: Attention-based deep multiple instance learning publication-title: Proc ICML – ident: ref3 doi: 10.1016/j.canlet.2014.10.021 – ident: ref2 doi: 10.3389/fmed.2019.00310 – ident: ref30 doi: 10.1109/TIP.2017.2689998 – ident: ref56 doi: 10.1093/gigascience/giy065 – ident: ref31 doi: 10.1016/j.neucom.2020.03.127 – ident: ref21 doi: 10.1038/s41551-020-00682-w – ident: ref10 doi: 10.1007/s10916-009-9299-0 – year: 2017 ident: ref55 article-title: Learning with confident examples: Rank pruning for robust classification with noisy labels publication-title: arXiv 1705 01936 – ident: ref43 doi: 10.1007/978-3-030-33391-1_24 – ident: ref17 doi: 10.1111/j.1365-2559.2011.04154.x – ident: ref20 doi: 10.1038/s41591-019-0508-1 – start-page: 540 year: 2020 ident: ref45 article-title: Deep k-NN for noisy labels publication-title: Proc ICML – ident: ref27 doi: 10.1609/aaai.v31i1.10894 – year: 2019 ident: ref36 article-title: Emphasis regularisation by gradient rescaling for training deep neural networks with noisy labels publication-title: arXiv 1905 11233 – ident: ref18 doi: 10.1038/modpathol.2012.235 – ident: ref1 doi: 10.1097/PAP.0000000000000273 – ident: ref57 doi: 10.1016/j.media.2020.101854 – ident: ref52 doi: 10.1109/ICCV.2019.01078 – ident: ref11 doi: 10.1371/journal.pone.0070221 – ident: ref5 doi: 10.3389/fphys.2020.583333 – year: 2018 ident: ref29 article-title: CT organ segmentation using GPU data augmentation, unsupervised labels and IOU loss publication-title: arXiv 1811 11226 – ident: ref16 doi: 10.1038/modpathol.3800496 – year: 2014 ident: ref24 article-title: Training convolutional networks with noisy labels publication-title: arXiv 1406 2080 – ident: ref12 doi: 10.1109/TBME.2017.2690863 – start-page: 1321 year: 2017 ident: ref38 article-title: On calibration of modern neural networks publication-title: Proc Int Conf Mach Learn – ident: ref9 doi: 10.1186/1471-2342-6-14 – year: 2020 ident: ref54 article-title: Calibrating deep neural networks using focal loss publication-title: arXiv 2002 09437 – ident: ref58 doi: 10.1109/TSMC.1979.4310076 – ident: ref50 doi: 10.1016/j.patcog.2017.08.026 – ident: ref48 doi: 10.1016/j.media.2014.01.010 – ident: ref15 doi: 10.1016/j.ajpath.2019.05.007 – start-page: 117 year: 2020 ident: ref23 article-title: Self-similarity student for partial label histopathology image segmentation publication-title: Proc ECCV – year: 2017 ident: ref25 article-title: Training deep neural-networks using a noise adaptation layer publication-title: Proc ICLR – year: 2015 ident: ref59 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc ICLR – ident: ref4 doi: 10.1126/science.aaa6204 – ident: ref7 doi: 10.3389/fonc.2018.00627 – ident: ref46 doi: 10.1016/S0004-3702(96)00034-3 – ident: ref39 doi: 10.1109/CBMI.2015.7153607 – ident: ref42 doi: 10.1007/978-3-030-32239-7_60 – ident: ref44 doi: 10.1109/TSMC.1972.4309137 – start-page: 1917 year: 2019 ident: ref37 article-title: Meta-weight-net: Learning an explicit mapping for sample weighting publication-title: Proc NeurIPS – ident: ref8 doi: 10.1109/RBME.2009.2034865 – ident: ref60 doi: 10.1109/CVPR.2009.5206848 – ident: ref53 doi: 10.1016/j.patcog.2017.08.026 – start-page: 1321 year: 2017 ident: ref33 article-title: Learning with confident examples: Rank pruning for robust classification with noisy labels publication-title: Proc UAI – ident: ref14 doi: 10.1109/ACCESS.2021.3086020 – ident: ref51 doi: 10.1109/TMI.2017.2724070 – year: 2018 ident: ref49 article-title: Classification and disease localization in histopathology using only global labels: A weakly-supervised approach publication-title: arXiv 1802 02212 – ident: ref26 doi: 10.1109/ISBI.2018.8363518 – ident: ref40 doi: 10.1109/CVPR.2018.00571 |
| SSID | ssj0014509 |
| Score | 2.5347319 |
| Snippet | Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3952 |
| SubjectTerms | Algorithms Annotations Breast cancer Breast Neoplasms - pathology Cancer Cleaning coarse annotations Colorectal carcinoma Female Humans Image segmentation Impact prediction label cleaning Learning algorithms Liver cancer Lymph nodes Lymphatic Metastasis Machine Learning Medical imaging Medical research Metastases multiple instance learning Pathology Prediction models Predictive models Refining Training Tumors Whole-slide image segmentation |
| Title | Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images |
| URI | https://ieeexplore.ieee.org/document/9869889 https://www.ncbi.nlm.nih.gov/pubmed/36037454 https://www.proquest.com/docview/2745127380 https://www.proquest.com/docview/2708259176 https://pubmed.ncbi.nlm.nih.gov/PMC9825360 |
| Volume | 41 |
| WOSCitedRecordID | wos000907324600039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB7aImIfrLZao7Ws4Itgekl2sz98K0eLBa-IrXhvYXcz0YMzkd6df7-zSS70ShH6FtjZZcPMZOfLzH4D8F5Zk1Q-TWPUzgWAkpJLWRfbTFte2TSvdNk2m1CXl3o6NV-34ONwFwYR2-IzPAmPbS6_bPwq_CobGS2N1mYbtpWS3V2tIWMg8q6cIwuMsYnM1inJxIyuJxcEBLPsJPQKV3kgCuUy8K7kYuM0atur3Bdp3i2YvHUCne89bO_P4GkfabLTzjSewxbW-7B7i39wHx5P-sz6Afgv1uGcjedow58SNukLDdlFGz96ZD0T689P7BtWbVsJNm4IFiM7reumy-gvWFOzKxqiiT9C5934aj4raZHf9NlavIDv52fX489x34Ah9kKIZayckFhlVeqlpcBFOy5KboQtrbHCEvTywjjuXJUjHXElz1Fyh8pLn-eqspa_hJ26qfEVMEJdxuWcwA5FPCka48rUorVeuipDpyIYrRVR-J6dPDTJmBctSklMQVosghaLXosRfBhm_OmYOf4jexA0Msj1yojgaK3ronfdRUEwnYIgxXUSwbthmJwuZFJsjc0qyARkTUhXRnDYmcaw9tq0IlAbRjMIBELvzZF69qsl9ja0KE1_ff9u38CT8E5dLc0R7CxvVvgWHvm_y9ni5ph8YqqPW5_4B6myCFA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgRg88GMbkDHASLwgkTWJ7STe21QxraKtECtib5HtnKFSSdDa8vdzTtJoRRMSb5FsnxzdXXxf7vwdwLtMq8jZOA4xN8YDlJhcSptQJ7nmTsfS5WXTbCKbTvOrK_V5Bz70d2EQsSk-wxP_2OTyy9qu_a-ygcpTlefqDtyVgsS2t7X6nIGQbUFH4jljozTZJCUjNZhNRgQFk-TEdwvPpKcK5alnXpFi6zxqGqzcFmv-XTJ54ww6f_x_u38Cj7pYk521xvEUdrDah4c3GAj34f6ky60fgB1rgws2XKD2_0rYpCs1ZKMmgrTIOi7W76fsC7qmsQQb1gSMkZ1VVd3m9JesrtglDdHCb773bni5mJck5Cd9uJaH8PX842x4EXYtGEIrhFiFmREpusTFNtUUuuSGi5IroUuttNAEvqxQhhvjJNIhV3KJKTeY2dRKmTmt-TPYreoKXwAj3KWM5AR3KOaJUSlTxhq1tqlxCZosgMFGEYXt-Ml9m4xF0eCUSBWkxcJrsei0GMD7fsWvlpvjH3MPvEb6eZ0yAjje6LronHdZEFCnMCjjeRTA236Y3M7nUnSF9drP8diasG4awPPWNHrZG9MKINsymn6Cp_TeHqnmPxpqb0VCafnR7bt9A3sXs8m4GI-mn17CA_9-bWXNMeyurtf4Cu7Z36v58vp14xl_AEvPCq8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label+Cleaning+Multiple+Instance+Learning%3A+Refining+Coarse+Annotations+on+Single+Whole-Slide+Images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Wang%2C+Zhenzhen&rft.au=Saoud%2C+Carla&rft.au=Wangsiricharoen%2C+Sintawat&rft.au=James%2C+Aaron+W.&rft.date=2022-12-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=41&rft.issue=12&rft.spage=3952&rft.epage=3968&rft_id=info:doi/10.1109%2FTMI.2022.3202759&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2022_3202759 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |