Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images

Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on medical imaging Ročník 41; číslo 12; s. 3952 - 3968
Hlavní autoři: Wang, Zhenzhen, Saoud, Carla, Wangsiricharoen, Sintawat, James, Aaron W., Popel, Aleksander S., Sulam, Jeremias
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0062, 1558-254X, 1558-254X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing only coarse and approximate annotations is a much easier task, less costly, and it alleviates pathologists' workload. In this paper, we study the problem of refining these approximate annotations in digital pathology to obtain more accurate ones. Some previous works have explored obtaining machine learning models from these inaccurate annotations, but few of them tackle the refinement problem where the mislabeled regions should be explicitly identified and corrected, and all of them require a - often very large - number of training samples. We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need for external training data. Patches cropped from a WSI with inaccurate labels are processed jointly within a multiple instance learning framework, mitigating their impact on the predictive model and refining the segmentation. Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming state-of-the-art alternatives, even while learning from a single slide. Moreover, we demonstrate how real annotations drawn by pathologists can be efficiently refined and improved by the proposed approach. All these results demonstrate that LC-MIL is a promising, lightweight tool to provide fine-grained annotations from coarsely annotated pathology sets.
AbstractList Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing only coarse and approximate annotations is a much easier task, less costly, and it alleviates pathologists’ workload. In this paper, we study the problem of refining these approximate annotations in digital pathology to obtain more accurate ones. Some previous works have explored obtaining machine learning models from these inaccurate annotations, but few of them tackle the refinement problem where the mislabeled regions should be explicitly identified and corrected, and all of them require a – often very large – number of training samples. We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need for external training data. Patches cropped from a WSI with inaccurate labels are processed jointly within a multiple instance learning framework, mitigating their impact on the predictive model and refining the segmentation. Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming state-of-the-art alternatives, even while learning from a single slide. Moreover, we demonstrate how real annotations drawn by pathologists can be efficiently refined and improved by the proposed approach. All these results demonstrate that LC-MIL is a promising, lightweight tool to provide fine-grained annotations from coarsely annotated pathology sets.
Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing only coarse and approximate annotations is a much easier task, less costly, and it alleviates pathologists' workload. In this paper, we study the problem of refining these approximate annotations in digital pathology to obtain more accurate ones. Some previous works have explored obtaining machine learning models from these inaccurate annotations, but few of them tackle the refinement problem where the mislabeled regions should be explicitly identified and corrected, and all of them require a - often very large - number of training samples. We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need for external training data. Patches cropped from a WSI with inaccurate labels are processed jointly within a multiple instance learning framework, mitigating their impact on the predictive model and refining the segmentation. Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming state-of-the-art alternatives, even while learning from a single slide. Moreover, we demonstrate how real annotations drawn by pathologists can be efficiently refined and improved by the proposed approach. All these results demonstrate that LC-MIL is a promising, lightweight tool to provide fine-grained annotations from coarsely annotated pathology sets.Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing only coarse and approximate annotations is a much easier task, less costly, and it alleviates pathologists' workload. In this paper, we study the problem of refining these approximate annotations in digital pathology to obtain more accurate ones. Some previous works have explored obtaining machine learning models from these inaccurate annotations, but few of them tackle the refinement problem where the mislabeled regions should be explicitly identified and corrected, and all of them require a - often very large - number of training samples. We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need for external training data. Patches cropped from a WSI with inaccurate labels are processed jointly within a multiple instance learning framework, mitigating their impact on the predictive model and refining the segmentation. Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming state-of-the-art alternatives, even while learning from a single slide. Moreover, we demonstrate how real annotations drawn by pathologists can be efficiently refined and improved by the proposed approach. All these results demonstrate that LC-MIL is a promising, lightweight tool to provide fine-grained annotations from coarsely annotated pathology sets.
Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing only coarse and approximate annotations is a much easier task, less costly, and it alleviates pathologists’ workload. In this paper, we study the problem of refining these approximate annotations in digital pathology to obtain more accurate ones. Some previous works have explored obtaining machine learning models from these inaccurate annotations, but few of them tackle the refinement problem where the mislabeled regions should be explicitly identified and corrected, and all of them require a – often very large – number of training samples. We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need for external training data. Patches cropped from a WSI with inaccurate labels are processed jointly within a multiple instance learning framework, mitigating their impact on the predictive model and refining the segmentation. Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, out-performing state-of-the-art alternatives, even while learning from a single slide. Moreover, we demonstrate how real annotations drawn by pathologists can be efficiently refined and improved by the proposed approach. All these results demonstrate that LC-MIL is a promising, lightweight tool to provide fine-grained annotations from coarsely annotated pathology sets.
Author Wang, Zhenzhen
Wangsiricharoen, Sintawat
James, Aaron W.
Popel, Aleksander S.
Saoud, Carla
Sulam, Jeremias
Author_xml – sequence: 1
  givenname: Zhenzhen
  orcidid: 0000-0002-0195-4362
  surname: Wang
  fullname: Wang, Zhenzhen
  email: zwang218@jhu.edu
  organization: Department of Biomedical Engineering, Mathematical Institute of Data Science, Johns Hopkins University, Baltimore, MD, USA
– sequence: 2
  givenname: Carla
  surname: Saoud
  fullname: Saoud, Carla
  email: csaoud1@jhmi.edu
  organization: Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA
– sequence: 3
  givenname: Sintawat
  surname: Wangsiricharoen
  fullname: Wangsiricharoen, Sintawat
  email: swangsi1@jhmi.edu
  organization: Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA
– sequence: 4
  givenname: Aaron W.
  surname: James
  fullname: James, Aaron W.
  email: awjames@jhmi.edu
  organization: Department of Pathology, Johns Hopkins Medicine, Baltimore, MD, USA
– sequence: 5
  givenname: Aleksander S.
  surname: Popel
  fullname: Popel, Aleksander S.
  email: apopel@jhu.edu
  organization: Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
– sequence: 6
  givenname: Jeremias
  orcidid: 0000-0003-0946-1957
  surname: Sulam
  fullname: Sulam, Jeremias
  email: jsulam1@jhu.edu
  organization: Department of Biomedical Engineering, Mathematical Institute of Data Science, Johns Hopkins University, Baltimore, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36037454$$D View this record in MEDLINE/PubMed
BookMark eNp9kc2LFDEQxYOsuLOjd0GQBi9eekw6H93xICyDHwOzCO6K3kJ1pno2SyaZ7XQL_vemnXHQPXhJIPV7L1X1LshZiAEJec7ogjGq39xcrRYVraoFz2ct9SMyY1I2ZSXF9zMyy29NSamqzslFSneUMiGpfkLOuaK8FlLMiF1Di75YeoTgwra4Gv3g9h6LVUgDBIvFGqGfSm-LL9i539AyQp-wuAwhDjC4GFIRQ3GdS1n47TZ6LK-922STHWwxPSWPO_AJnx3vOfn64f3N8lO5_vxxtbxcl1YIMZR1KxR2VcesAsF103Kx4VrABjQIUExboVvetp3EmjUbLlHxFmurrJR1B8Dn5N3Bdz-2O9xYDEMP3ux7t4P-p4ngzL-V4G7NNv4wuqnktJI5eX006OP9iGkwO5cseg8B45hMVdNMalarjL56gN7FsQ95vEwJyaqaN5Phy787OrXyZ_8ZoAfA9jGlHrsTwqiZIjY5YjNFbI4RZ4l6ILHukEKeyfn_CV8chA4RT__oRumm0fwX7P-z4w
CODEN ITMID4
CitedBy_id crossref_primary_10_1002_jor_25693
crossref_primary_10_1016_j_inffus_2025_103027
crossref_primary_10_1016_j_patter_2025_101178
crossref_primary_10_1016_j_compbiomed_2025_110293
crossref_primary_10_3390_diagnostics14040388
crossref_primary_10_3390_jlpea15030054
crossref_primary_10_1016_j_bspc_2025_107599
crossref_primary_10_1002_aisy_202300885
crossref_primary_10_1016_j_jpi_2024_100367
crossref_primary_10_1109_TMI_2024_3351213
crossref_primary_10_1186_s12859_024_06007_x
crossref_primary_10_1016_j_jpi_2024_100363
crossref_primary_10_1109_TMI_2024_3485120
crossref_primary_10_1007_s10489_023_05004_6
crossref_primary_10_1016_j_compmedimag_2024_102337
crossref_primary_10_1016_j_pt_2024_05_005
crossref_primary_10_1109_RBME_2024_3357877
Cites_doi 10.1016/j.media.2019.03.009
10.1007/978-3-030-78191-0_52
10.1109/WACV.2018.00138
10.3389/fonc.2018.00649
10.1109/ISBI.2018.8363599
10.1016/j.media.2020.101813
10.1016/j.canlet.2014.10.021
10.3389/fmed.2019.00310
10.1109/TIP.2017.2689998
10.1093/gigascience/giy065
10.1016/j.neucom.2020.03.127
10.1038/s41551-020-00682-w
10.1007/s10916-009-9299-0
10.1007/978-3-030-33391-1_24
10.1111/j.1365-2559.2011.04154.x
10.1038/s41591-019-0508-1
10.1609/aaai.v31i1.10894
10.1038/modpathol.2012.235
10.1097/PAP.0000000000000273
10.1016/j.media.2020.101854
10.1109/ICCV.2019.01078
10.1371/journal.pone.0070221
10.3389/fphys.2020.583333
10.1038/modpathol.3800496
10.1109/TBME.2017.2690863
10.1186/1471-2342-6-14
10.1109/TSMC.1979.4310076
10.1016/j.patcog.2017.08.026
10.1016/j.media.2014.01.010
10.1016/j.ajpath.2019.05.007
10.1126/science.aaa6204
10.3389/fonc.2018.00627
10.1016/S0004-3702(96)00034-3
10.1109/CBMI.2015.7153607
10.1007/978-3-030-32239-7_60
10.1109/TSMC.1972.4309137
10.1109/RBME.2009.2034865
10.1109/CVPR.2009.5206848
10.1109/ACCESS.2021.3086020
10.1109/TMI.2017.2724070
10.1109/ISBI.2018.8363518
10.1109/CVPR.2018.00571
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2022.3202759
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 3968
ExternalDocumentID PMC9825360
36037454
10_1109_TMI_2022_3202759
9869889
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: CISCO Research
  grantid: CG2686384
– fundername: NIH
  grantid: R01CA138264; U01CA212007
  funderid: 10.13039/100000002
– fundername: NCI NIH HHS
  grantid: U01 CA212007
– fundername: NCI NIH HHS
  grantid: R01 CA138264
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c444t-7b46ef2f1c6a4398b34d394ada9a4a619c49b3bbf5e718d35e63be7c6c557faa3
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000907324600039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Tue Sep 30 17:16:20 EDT 2025
Sun Nov 09 14:05:58 EST 2025
Mon Jun 30 03:43:22 EDT 2025
Thu Apr 03 07:11:19 EDT 2025
Sat Nov 29 05:14:10 EST 2025
Tue Nov 18 21:57:15 EST 2025
Wed Aug 27 02:15:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-7b46ef2f1c6a4398b34d394ada9a4a619c49b3bbf5e718d35e63be7c6c557faa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0946-1957
0000-0002-0195-4362
OpenAccessLink https://ieeexplore.ieee.org/document/9869889
PMID 36037454
PQID 2745127380
PQPubID 85460
PageCount 17
ParticipantIDs proquest_journals_2745127380
pubmed_primary_36037454
crossref_primary_10_1109_TMI_2022_3202759
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9825360
ieee_primary_9869889
proquest_miscellaneous_2708259176
crossref_citationtrail_10_1109_TMI_2022_3202759
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref15
ref58
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
mukhoti (ref54) 2020
ref18
rister (ref29) 2018
simonyan (ref61) 2015
northcutt (ref33) 2017
ref51
sukhbaatar (ref24) 2014
ref50
ref46
ref48
courtiol (ref49) 2018
ren (ref41) 2018
ref42
ref44
ref43
goldberger (ref25) 2017
ref8
ref7
ref9
ref4
ref3
ref6
ilse (ref47) 2018
ronneberger (ref13) 2015
ref5
cheng (ref23) 2020
ref40
wang (ref36) 2019
ref34
ref31
ref30
köhler (ref35) 0
ref32
ref2
bahri (ref45) 2020
ref1
ref39
shu (ref37) 2019
simonyan (ref59) 2015
ref26
ref20
northcutt (ref55) 2017
ref22
ref21
ref28
ref27
guo (ref38) 2017
ref60
References_xml – year: 2015
  ident: ref61
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc ICLR
– ident: ref19
  doi: 10.1016/j.media.2019.03.009
– start-page: 4334
  year: 2018
  ident: ref41
  article-title: Learning to reweight examples for robust deep learning
  publication-title: Proc ICML
– year: 0
  ident: ref35
  article-title: Uncertainty based detection and relabeling of noisy image labels
– ident: ref32
  doi: 10.1007/978-3-030-78191-0_52
– ident: ref34
  doi: 10.1109/WACV.2018.00138
– ident: ref6
  doi: 10.3389/fonc.2018.00649
– ident: ref28
  doi: 10.1109/ISBI.2018.8363599
– start-page: 234
  year: 2015
  ident: ref13
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc MICCAI
– ident: ref22
  doi: 10.1016/j.media.2020.101813
– start-page: 2127
  year: 2018
  ident: ref47
  article-title: Attention-based deep multiple instance learning
  publication-title: Proc ICML
– ident: ref3
  doi: 10.1016/j.canlet.2014.10.021
– ident: ref2
  doi: 10.3389/fmed.2019.00310
– ident: ref30
  doi: 10.1109/TIP.2017.2689998
– ident: ref56
  doi: 10.1093/gigascience/giy065
– ident: ref31
  doi: 10.1016/j.neucom.2020.03.127
– ident: ref21
  doi: 10.1038/s41551-020-00682-w
– ident: ref10
  doi: 10.1007/s10916-009-9299-0
– year: 2017
  ident: ref55
  article-title: Learning with confident examples: Rank pruning for robust classification with noisy labels
  publication-title: arXiv 1705 01936
– ident: ref43
  doi: 10.1007/978-3-030-33391-1_24
– ident: ref17
  doi: 10.1111/j.1365-2559.2011.04154.x
– ident: ref20
  doi: 10.1038/s41591-019-0508-1
– start-page: 540
  year: 2020
  ident: ref45
  article-title: Deep k-NN for noisy labels
  publication-title: Proc ICML
– ident: ref27
  doi: 10.1609/aaai.v31i1.10894
– year: 2019
  ident: ref36
  article-title: Emphasis regularisation by gradient rescaling for training deep neural networks with noisy labels
  publication-title: arXiv 1905 11233
– ident: ref18
  doi: 10.1038/modpathol.2012.235
– ident: ref1
  doi: 10.1097/PAP.0000000000000273
– ident: ref57
  doi: 10.1016/j.media.2020.101854
– ident: ref52
  doi: 10.1109/ICCV.2019.01078
– ident: ref11
  doi: 10.1371/journal.pone.0070221
– ident: ref5
  doi: 10.3389/fphys.2020.583333
– year: 2018
  ident: ref29
  article-title: CT organ segmentation using GPU data augmentation, unsupervised labels and IOU loss
  publication-title: arXiv 1811 11226
– ident: ref16
  doi: 10.1038/modpathol.3800496
– year: 2014
  ident: ref24
  article-title: Training convolutional networks with noisy labels
  publication-title: arXiv 1406 2080
– ident: ref12
  doi: 10.1109/TBME.2017.2690863
– start-page: 1321
  year: 2017
  ident: ref38
  article-title: On calibration of modern neural networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref9
  doi: 10.1186/1471-2342-6-14
– year: 2020
  ident: ref54
  article-title: Calibrating deep neural networks using focal loss
  publication-title: arXiv 2002 09437
– ident: ref58
  doi: 10.1109/TSMC.1979.4310076
– ident: ref50
  doi: 10.1016/j.patcog.2017.08.026
– ident: ref48
  doi: 10.1016/j.media.2014.01.010
– ident: ref15
  doi: 10.1016/j.ajpath.2019.05.007
– start-page: 117
  year: 2020
  ident: ref23
  article-title: Self-similarity student for partial label histopathology image segmentation
  publication-title: Proc ECCV
– year: 2017
  ident: ref25
  article-title: Training deep neural-networks using a noise adaptation layer
  publication-title: Proc ICLR
– year: 2015
  ident: ref59
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc ICLR
– ident: ref4
  doi: 10.1126/science.aaa6204
– ident: ref7
  doi: 10.3389/fonc.2018.00627
– ident: ref46
  doi: 10.1016/S0004-3702(96)00034-3
– ident: ref39
  doi: 10.1109/CBMI.2015.7153607
– ident: ref42
  doi: 10.1007/978-3-030-32239-7_60
– ident: ref44
  doi: 10.1109/TSMC.1972.4309137
– start-page: 1917
  year: 2019
  ident: ref37
  article-title: Meta-weight-net: Learning an explicit mapping for sample weighting
  publication-title: Proc NeurIPS
– ident: ref8
  doi: 10.1109/RBME.2009.2034865
– ident: ref60
  doi: 10.1109/CVPR.2009.5206848
– ident: ref53
  doi: 10.1016/j.patcog.2017.08.026
– start-page: 1321
  year: 2017
  ident: ref33
  article-title: Learning with confident examples: Rank pruning for robust classification with noisy labels
  publication-title: Proc UAI
– ident: ref14
  doi: 10.1109/ACCESS.2021.3086020
– ident: ref51
  doi: 10.1109/TMI.2017.2724070
– year: 2018
  ident: ref49
  article-title: Classification and disease localization in histopathology using only global labels: A weakly-supervised approach
  publication-title: arXiv 1802 02212
– ident: ref26
  doi: 10.1109/ISBI.2018.8363518
– ident: ref40
  doi: 10.1109/CVPR.2018.00571
SSID ssj0014509
Score 2.5347319
Snippet Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3952
SubjectTerms Algorithms
Annotations
Breast cancer
Breast Neoplasms - pathology
Cancer
Cleaning
coarse annotations
Colorectal carcinoma
Female
Humans
Image segmentation
Impact prediction
label cleaning
Learning algorithms
Liver cancer
Lymph nodes
Lymphatic Metastasis
Machine Learning
Medical imaging
Medical research
Metastases
multiple instance learning
Pathology
Prediction models
Predictive models
Refining
Training
Tumors
Whole-slide image segmentation
Title Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images
URI https://ieeexplore.ieee.org/document/9869889
https://www.ncbi.nlm.nih.gov/pubmed/36037454
https://www.proquest.com/docview/2745127380
https://www.proquest.com/docview/2708259176
https://pubmed.ncbi.nlm.nih.gov/PMC9825360
Volume 41
WOSCitedRecordID wos000907324600039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB7aImIfrLZao7Ws4Itgekl2sz98K0eLBa-IrXhvYXcz0YMzkd6df7-zSS70ShH6FtjZZcPMZOfLzH4D8F5Zk1Q-TWPUzgWAkpJLWRfbTFte2TSvdNk2m1CXl3o6NV-34ONwFwYR2-IzPAmPbS6_bPwq_CobGS2N1mYbtpWS3V2tIWMg8q6cIwuMsYnM1inJxIyuJxcEBLPsJPQKV3kgCuUy8K7kYuM0atur3Bdp3i2YvHUCne89bO_P4GkfabLTzjSewxbW-7B7i39wHx5P-sz6Afgv1uGcjedow58SNukLDdlFGz96ZD0T689P7BtWbVsJNm4IFiM7reumy-gvWFOzKxqiiT9C5934aj4raZHf9NlavIDv52fX489x34Ah9kKIZayckFhlVeqlpcBFOy5KboQtrbHCEvTywjjuXJUjHXElz1Fyh8pLn-eqspa_hJ26qfEVMEJdxuWcwA5FPCka48rUorVeuipDpyIYrRVR-J6dPDTJmBctSklMQVosghaLXosRfBhm_OmYOf4jexA0Msj1yojgaK3ronfdRUEwnYIgxXUSwbthmJwuZFJsjc0qyARkTUhXRnDYmcaw9tq0IlAbRjMIBELvzZF69qsl9ja0KE1_ff9u38CT8E5dLc0R7CxvVvgWHvm_y9ni5ph8YqqPW5_4B6myCFA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NgRg88GMbkDHASLwgkTWJ7STe21QxraKtECtib5HtnKFSSdDa8vdzTtJoRRMSb5FsnxzdXXxf7vwdwLtMq8jZOA4xN8YDlJhcSptQJ7nmTsfS5WXTbCKbTvOrK_V5Bz70d2EQsSk-wxP_2OTyy9qu_a-ygcpTlefqDtyVgsS2t7X6nIGQbUFH4jljozTZJCUjNZhNRgQFk-TEdwvPpKcK5alnXpFi6zxqGqzcFmv-XTJ54ww6f_x_u38Cj7pYk521xvEUdrDah4c3GAj34f6ky60fgB1rgws2XKD2_0rYpCs1ZKMmgrTIOi7W76fsC7qmsQQb1gSMkZ1VVd3m9JesrtglDdHCb773bni5mJck5Cd9uJaH8PX842x4EXYtGEIrhFiFmREpusTFNtUUuuSGi5IroUuttNAEvqxQhhvjJNIhV3KJKTeY2dRKmTmt-TPYreoKXwAj3KWM5AR3KOaJUSlTxhq1tqlxCZosgMFGEYXt-Ml9m4xF0eCUSBWkxcJrsei0GMD7fsWvlpvjH3MPvEb6eZ0yAjje6LronHdZEFCnMCjjeRTA236Y3M7nUnSF9drP8diasG4awPPWNHrZG9MKINsymn6Cp_TeHqnmPxpqb0VCafnR7bt9A3sXs8m4GI-mn17CA_9-bWXNMeyurtf4Cu7Z36v58vp14xl_AEvPCq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label+Cleaning+Multiple+Instance+Learning%3A+Refining+Coarse+Annotations+on+Single+Whole-Slide+Images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Wang%2C+Zhenzhen&rft.au=Saoud%2C+Carla&rft.au=Wangsiricharoen%2C+Sintawat&rft.au=James%2C+Aaron+W.&rft.date=2022-12-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=41&rft.issue=12&rft.spage=3952&rft.epage=3968&rft_id=info:doi/10.1109%2FTMI.2022.3202759&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2022_3202759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon