Forecasting bus ridership using a “Blended Approach”

As sources of “Big Data” continue to grow, transportation planners and researchers seek to utilize these new resources. Given the current dependency on traditional transportation data sources and conventional tools (e.g., spreadsheets and propriety models), how can these new resources be used? This...

Full description

Saved in:
Bibliographic Details
Published in:Transportation (Dordrecht) Vol. 48; no. 2; pp. 617 - 641
Main Authors: Lawson, Catherine T., Muro, Alex, Krans, Eric
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2021
Springer Nature B.V
Subjects:
ISSN:0049-4488, 1572-9435
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As sources of “Big Data” continue to grow, transportation planners and researchers seek to utilize these new resources. Given the current dependency on traditional transportation data sources and conventional tools (e.g., spreadsheets and propriety models), how can these new resources be used? This research examines a “blended data” approach, using a web-based, open source platform to assist transit agencies to forecast bus ridership. The platform is capable of incorporating new Big Data sources and traditional data sources, using modern processing techniques and tools, particularly Application Programming Interfaces (APIs). This research demonstrates the use of APIs in a transit demand methodology that yields a robust model for bus ridership. The approach uses the Census Transportation Planning Products data, modified with American Community Survey data, to generate origin–destination tables for bus trips in a designated market area. Microsimulation models us a transit scheduling specification (General Transit Feed Specification) and an open source routing engine (OpenTripPlanner). Local farebox data validates the microsimulation models. Analyses of model output and farebox data for the Atlantic City transit market area, and a scenario analysis of service reduction in the Princeton/Trenton transit market area, illustrate the use a “blended approach” for bus ridership forecasting.
AbstractList As sources of “Big Data” continue to grow, transportation planners and researchers seek to utilize these new resources. Given the current dependency on traditional transportation data sources and conventional tools (e.g., spreadsheets and propriety models), how can these new resources be used? This research examines a “blended data” approach, using a web-based, open source platform to assist transit agencies to forecast bus ridership. The platform is capable of incorporating new Big Data sources and traditional data sources, using modern processing techniques and tools, particularly Application Programming Interfaces (APIs). This research demonstrates the use of APIs in a transit demand methodology that yields a robust model for bus ridership. The approach uses the Census Transportation Planning Products data, modified with American Community Survey data, to generate origin–destination tables for bus trips in a designated market area. Microsimulation models us a transit scheduling specification (General Transit Feed Specification) and an open source routing engine (OpenTripPlanner). Local farebox data validates the microsimulation models. Analyses of model output and farebox data for the Atlantic City transit market area, and a scenario analysis of service reduction in the Princeton/Trenton transit market area, illustrate the use a “blended approach” for bus ridership forecasting.
Author Muro, Alex
Lawson, Catherine T.
Krans, Eric
Author_xml – sequence: 1
  givenname: Catherine T.
  orcidid: 0000-0003-4169-2069
  surname: Lawson
  fullname: Lawson, Catherine T.
  email: lawsonc@albany.edu
  organization: State University of New York, Albany
– sequence: 2
  givenname: Alex
  surname: Muro
  fullname: Muro, Alex
  organization: State University of New York, Albany
– sequence: 3
  givenname: Eric
  surname: Krans
  fullname: Krans, Eric
  organization: State University of New York, Albany
BookMark eNp9kL9OwzAQxi1UJNrCCzBFYjb4b2OPpaIFqRILzJbtOK2rkgQ7GejUB4GX65PgEiQkht5yutP97rv7RmBQ1ZUD4BqjW4xQfhdxiglEWMJjTeHuDAwxzwmUjPIBGCLEJGRMiAswinGDEOKY4yEQ8zo4q2Prq1VmupgFX7gQ177Junjs6eyw_7zfuqpwRTZtmlBruz7svy7Beam30V395jF4nT-8zB7h8nnxNJsuoWWMtTDnVmDuComtKZF0hE-spqagUhMupZZESOkQKrXlpTGFFMxyV1IjJoYxLekY3PR7k_J752KrNnUXqiSpCEfpO5YTmqZIP2VDHWNwpWqCf9PhQ2Gkjo6o3iGVHPqpqdolSPyDrG916-uqDdpvT6O0R2PSqVYu_F11gvoGHiF-xQ
CitedBy_id crossref_primary_10_3390_app12083867
crossref_primary_10_3390_su14042223
Cites_doi 10.1016/j.jtrangeo.2017.10.010
10.1016/j.compenvurbsys.2018.03.001
10.1186/s12544-019-0365-5
10.1016/j.jtrangeo.2018.01.005
10.1016/j.trip.2019.100028
10.3141/2653-0
10.1007/978-3-319-40902-3_16
10.5038/2375-0901.21.2.2
10.1016/j.apgeog.2017.07.004
10.5038/2375-0901.19.2.6
10.1177/0042098013493021
10.3141/2217-11
10.1177/0042098012443864
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7ST
7WY
7WZ
7X5
7XB
87Z
88I
8BJ
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FQK
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JBE
K60
K6~
KR7
L.-
L6V
M0C
M2O
M2P
M7S
MBDVC
PATMY
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
DOI 10.1007/s11116-019-10073-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Entrepreneurship Database
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
International Bibliography of the Social Sciences
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Environmental Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
ProQuest Entrepreneurship
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1572-9435
EndPage 641
ExternalDocumentID 10_1007_s11116_019_10073_z
GrantInformation_xml – fundername: New Jersey Department of Transportation
  grantid: 1108100-1-63626
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
7WY
7XC
88I
8FE
8FG
8FH
8FL
8FW
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDEX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHQT
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACYUM
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
EOH
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_ARCHIVE
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
LAK
LLZTM
LPU
M0C
M2O
M2P
M4Y
M7S
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
OHT
OVD
P19
P9M
PATMY
PF-
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z7S
Z81
Z83
Z86
Z88
Z8N
Z8U
Z8W
Z92
ZMTXR
ZYFGU
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7ST
7X5
7XB
8BJ
8FD
8FK
C1K
FQK
FR3
JBE
KR7
L.-
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
ID FETCH-LOGICAL-c444t-75c815ed91cbf09e256ca3bd39a2599a92899e00fac5fbbd984c5ef3b86b44a93
IEDL.DBID 7WY
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000500275300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0049-4488
IngestDate Mon Nov 10 00:41:21 EST 2025
Sat Nov 29 01:36:22 EST 2025
Tue Nov 18 22:45:27 EST 2025
Fri Feb 21 02:48:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Farebox data
Census Transportation Planning Products (CTPP)
General Transit Feed Specification (GTFS)
Application Programming Interface (API)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-75c815ed91cbf09e256ca3bd39a2599a92899e00fac5fbbd984c5ef3b86b44a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4169-2069
OpenAccessLink https://link.springer.com/10.1007/s11116-019-10073-z
PQID 2509434723
PQPubID 36781
PageCount 25
ParticipantIDs proquest_journals_2509434723
crossref_primary_10_1007_s11116_019_10073_z
crossref_citationtrail_10_1007_s11116_019_10073_z
springer_journals_10_1007_s11116_019_10073_z
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Planning - Policy - Research - Practice
PublicationTitle Transportation (Dordrecht)
PublicationTitleAbbrev Transportation
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Census Transportation Planning Products: (2015) Retrieved September 7, 2016, from http://www.fhwa.dot.gov/planning/census_issues/ctpp
Verbas, I. Frei, C, Mahmassani, H., Chan, R.: Stretching resources: sensitivity of optimal bus frequency allocation to stop-level demand elasticities. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington, DC (2013)
Giraud, A., Trépanier, M., Morency, C., Légaré, F.: Data fusion of APC, smart card and GTFS to visualize public transit use (No. CIRRELT-2016-54). CIRRELT, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport = Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (2016)
WangKWooMThe relationship between transit rich neighborhoods and transit ridership: evidence from the decentralization of povertyAppl. Geogr.20178618319610.1016/j.apgeog.2017.07.004
Kressner, J.D., Macfarlane, G., Huntsinger, L., Donnelly, R.: Using passive data to build an agile tour-based model: a case study in Asheville. In: 6th Transportation Research Board Conference on Innovations in Travel Modeling, Denver, CO (2016)
Lawson, C.T.: Integration of Bus Stop Counts Data with Census Data for Improving Bus Service. Final Report FHWA-NJ-2016-001, published for the New Jersey Department of Transportation (2016b). https://dspace.njstatelib.org/xmlui/bitstream/handle/10929/40830/t7642016c.pdf?sequence=1&isAllowed=y
OpenTripPlanner: (no date). http://www.opentripplanner.org
SunDPengZRShanXChenWZengXDevelopment of web-based transit trip-planning system based on service-oriented architectureTransp. Res. Rec. J. Transp. Res. Board20112217879410.3141/2217-11
MaXZhangJDingCWangYA geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridershipComput. Environ. Urban Syst.20187011312410.1016/j.compenvurbsys.2018.03.001
Wong, J.: Leveraging the general transit feed specification (GTFS) for efficient transit analysis. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington DC (2013)
Antrim, A., Barbeau, S.J.: The many uses of GTFS data–opening the door to transit and multimodal applications. Location-Aware Information Systems Laboratory at the University of South Florida, 4 (2013)
Lawson, C.T.: 2018 National household travel survey workshop. Transp. Res. Circ., (E-C238) (2018b)
Dill, J., Scholossberg, M., Ma, L., Meyer, C.: Predicting transit ridership at the stop level: the role of service and urban form. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013)
ConwayMWByrdAvan der LindenMEvidence-based transit and land use sketch planning using interactive accessibility methods on combined schedule and headway-based networksTransp. Res. Rec.20172653455310.3141/2653-0
RSG: User Guide Simplified Trips-on-Project Software: Version 2.50. An unpublished report (2019)
Liebig, T., Piatkowski, N., Bockerman, C., Morik, K.: Predictive trip planning-smart routing in smart cities. In: Extended Database Technology/International Conference on Database Theory (EDBT/ICDT) Workshops (pp. 331–338) (2014)
RSG: User Guide Simplified Trips-on-Project Software (STOPS). An unpublished report (2015). https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/STOPS_1.50_user_documentation_v5.pdf
Lee, S., Tong, D., Hickman, M.: A comparative study of alternative methods for generating route-level mutually exclusive service areas. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013b)
Wu, X., Cao, J.: Exploring satisfaction with arterial BRT in the Twin Cities: a machine learning approach. Presented at the 2018 Annual Transportation Meetings on January 7–11, 2018, in Washington, DC (2018)
ThompsonGBrownJBhattacharyaTWhat really matters for increasing transit ridership: understanding the determinants of transit ridership demand in Broward County, FloridaUrban Stud.201249153327334510.1177/0042098012443864
Frei, C., Mahmassani, H.: Riding more frequently: disaggregate ridership elasticity estimation for a large urban bus transit network. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington, DC (2013)
BoisjolyGGriséEMaguireMVeilletteMPDeboosereRBerrebiEEl-GeneidyAInvest in the ride: a 14 year longitudinal analysis of the determinants of public transport ridership in 25 North American citiesTransp. Res. A: Policy Pract.2018116434445
Bureau of Labor: Job Flexibilities and Work Schedules—2017–2018 Data from the American Time Use Survey (2019). https://www.bls.gov/news.release/pdf/flex2.pdf
LawsonCTTransformative trends in bus data: a bright future aheadTR News201630328
RodnyanskySDo it yourself: obtaining updated transit stop and route shapefiles in urban and nonurban areasCityscape2018201205214
HanftJIyerSLevineBReddyATransforming bus service planning using integrated electronic data sources at NYC transitJ. Public Transp.2016192610.5038/2375-0901.19.2.6
Census BureauUSUnderstanding and Using American Community Survey Data: What All Data Users Need to Know2018Washington, DCU.S. Government Printing Office
Iliopoulou, C., Kepaptsoglou, K.: Combining ITS and optimization in public transportation planning: state of the art and future research paths (2019)
Swayne, M., Miller, M.: Innovation on Job Accessibility with General Transit Feed Specification (GTFS) Data. An unpublished report (2018)
PiXEggeMWhitmoreJSilbermannAQianZSUnderstanding transit system performance using AVL-APC data: an analytics platform with case studies for the Pittsburgh RegionJ. Public Transp.2018212210.5038/2375-0901.21.2.2
Zhang, J., Ma, X., Ding, C., Wang Y.: Forecasting subway demand in large-scale networks: a deep learning approach. Presented at the 2018 Annual Transportation Meetings on January 7–11, 2018, in Washington, DC (2018)
McKenzie, B.: Transit Access and Labor Market Outcomes across Segregated Neighborhoods. An unpublished dissertation (2011)
Peng, Z.: A Simultaneous Route-level Transit Patronage Model: Demand, Supply and Inter-route Relationship. An unpublished dissertation (1994). http://www.pdx.edu/sites/www.pdx.edu.cus/files/SR027.pdf
Lawson, C.T., Tomchik, P., Muro, A., Krans, E. Translation software: an alternative to transit data standards. Transp. Res. Interdiscip. Perspect. 100028 (2019)
Lee, S., Hickman, M., Tong, D.: A time-varying route-level transit patronage model. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013a)
Vij, A., Walker, J.: You can lead travelers to the bus stops but you can’t make them ride. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013)
Wong, J., Reed, L., Watkins, K., Hammond, R.: One transit data: state of the practice and experiences from participating agencies in the United States. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington DC (2013)
Erhardt, G.D., Dennett, A.: Understanding the role and relevance of the census in a changing transportation data landscape. Applying Census Data for Transportation, 96 (2017)
Pulchalsky, C., Joshi, D., Scherr: Development of a regional model based on Google Transit Feed Specification. A Paper Presented at the 13th TRB Planning Application Conference, May 2011, in Reno, NV (2012)
KarnerAAssessing public transit service equity using route-level accessibility measures and public dataJ. Transp. Geogr.201867243210.1016/j.jtrangeo.2018.01.005
Brown, J, Thompson, G., Bhattacharya, T., Jaroszynski, M.: Understanding transit ridership demand for the multi-destination, multi-modal transit network in Atlanta, Georgia: Lessons for increasing rail transit choice ridership while maintaining transit-dependent bus. A paper presented at the 92nd transportation Research Board Annual Meetings, January 13–17, 2013, in Washington, DC (2013)
SmithBLUsing geographic information systems and the world wide web for interactive transit-trip itinerary planningJ. Public Transp.2000323
WeiRLiuXMuYWangLGolubAFarberSEvaluating public transit services for operational efficiency and access equityJ. Transp. Geogr.201765707910.1016/j.jtrangeo.2017.10.010
Lawson, C.T. Applying census data for transportation: 50 years of transportation planning data progress. Transp. Res. Circ., (E-C233) (2018a)
Liu, C., Porter, R., Zlatkovic, M., Fazzaz, K., Taylor, J.: First and Last Mile Assessment for Transit System (2018). https://pdfs.semanticscholar.org/d760/ba6f9a0a69a83df7481a71119efbb26ac4d8.pdf
GTFS Static Overview: (2016) Retrieved September 7, 2016, from https://developers.google.com/transit/gtfs
Kimpel, T.: Time Point-level Analysis of Transit Service Reliability and Passenger Demand (2001). An unpublished dissertation. [http://www.pdx.edu/sites/www.pdx.edu.cus/files/SR036.pdf]
Owen, A., Levinson, D.M. Developing a comprehensive US transit accessibility database. In: Seeing Cities Through Big Data (pp. 279–290). Springer, Cham (2017)
Conveyal: Conveyal Analysis Documentation: Release v4.5.0 (2019). https://buildmedia.readthedocs.org/media/pdf/analysis-ui/latest/analysis-ui.pdf
10073_CR30
10073_CR31
D Sun (10073_CR38) 2011; 2217
10073_CR25
10073_CR26
US Census Bureau (10073_CR41) 2018
10073_CR28
10073_CR21
10073_CR22
10073_CR23
10073_CR24
10073_CR29
R Wei (10073_CR45) 2017; 65
10073_CR3
10073_CR4
X Pi (10073_CR32) 2018; 21
10073_CR1
10073_CR8
10073_CR5
10073_CR6
10073_CR9
10073_CR20
BL Smith (10073_CR37) 2000; 3
10073_CR14
10073_CR16
10073_CR17
10073_CR10
10073_CR11
10073_CR12
X Ma (10073_CR27) 2018; 70
G Thompson (10073_CR40) 2012; 49
10073_CR19
S Rodnyansky (10073_CR34) 2018; 20
J Hanft (10073_CR13) 2016; 19
10073_CR47
10073_CR48
10073_CR49
10073_CR43
10073_CR46
MW Conway (10073_CR7) 2017; 2653
A Karner (10073_CR15) 2018; 67
10073_CR42
10073_CR36
CT Lawson (10073_CR18) 2016; 303
10073_CR39
G Boisjoly (10073_CR2) 2018; 116
10073_CR33
K Wang (10073_CR44) 2017; 86
10073_CR35
References_xml – reference: SunDPengZRShanXChenWZengXDevelopment of web-based transit trip-planning system based on service-oriented architectureTransp. Res. Rec. J. Transp. Res. Board20112217879410.3141/2217-11
– reference: Frei, C., Mahmassani, H.: Riding more frequently: disaggregate ridership elasticity estimation for a large urban bus transit network. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington, DC (2013)
– reference: OpenTripPlanner: (no date). http://www.opentripplanner.org/
– reference: Kimpel, T.: Time Point-level Analysis of Transit Service Reliability and Passenger Demand (2001). An unpublished dissertation. [http://www.pdx.edu/sites/www.pdx.edu.cus/files/SR036.pdf]
– reference: RodnyanskySDo it yourself: obtaining updated transit stop and route shapefiles in urban and nonurban areasCityscape2018201205214
– reference: Wong, J.: Leveraging the general transit feed specification (GTFS) for efficient transit analysis. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington DC (2013)
– reference: Lawson, C.T., Tomchik, P., Muro, A., Krans, E. Translation software: an alternative to transit data standards. Transp. Res. Interdiscip. Perspect. 100028 (2019)
– reference: BoisjolyGGriséEMaguireMVeilletteMPDeboosereRBerrebiEEl-GeneidyAInvest in the ride: a 14 year longitudinal analysis of the determinants of public transport ridership in 25 North American citiesTransp. Res. A: Policy Pract.2018116434445
– reference: McKenzie, B.: Transit Access and Labor Market Outcomes across Segregated Neighborhoods. An unpublished dissertation (2011)
– reference: Giraud, A., Trépanier, M., Morency, C., Légaré, F.: Data fusion of APC, smart card and GTFS to visualize public transit use (No. CIRRELT-2016-54). CIRRELT, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport = Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (2016)
– reference: Kressner, J.D., Macfarlane, G., Huntsinger, L., Donnelly, R.: Using passive data to build an agile tour-based model: a case study in Asheville. In: 6th Transportation Research Board Conference on Innovations in Travel Modeling, Denver, CO (2016)
– reference: Verbas, I. Frei, C, Mahmassani, H., Chan, R.: Stretching resources: sensitivity of optimal bus frequency allocation to stop-level demand elasticities. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington, DC (2013)
– reference: Liu, C., Porter, R., Zlatkovic, M., Fazzaz, K., Taylor, J.: First and Last Mile Assessment for Transit System (2018). https://pdfs.semanticscholar.org/d760/ba6f9a0a69a83df7481a71119efbb26ac4d8.pdf
– reference: Lee, S., Hickman, M., Tong, D.: A time-varying route-level transit patronage model. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013a)
– reference: Swayne, M., Miller, M.: Innovation on Job Accessibility with General Transit Feed Specification (GTFS) Data. An unpublished report (2018)
– reference: Peng, Z.: A Simultaneous Route-level Transit Patronage Model: Demand, Supply and Inter-route Relationship. An unpublished dissertation (1994). http://www.pdx.edu/sites/www.pdx.edu.cus/files/SR027.pdf
– reference: WeiRLiuXMuYWangLGolubAFarberSEvaluating public transit services for operational efficiency and access equityJ. Transp. Geogr.201765707910.1016/j.jtrangeo.2017.10.010
– reference: RSG: User Guide Simplified Trips-on-Project Software (STOPS). An unpublished report (2015). https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/STOPS_1.50_user_documentation_v5.pdf
– reference: Owen, A., Levinson, D.M. Developing a comprehensive US transit accessibility database. In: Seeing Cities Through Big Data (pp. 279–290). Springer, Cham (2017)
– reference: Zhang, J., Ma, X., Ding, C., Wang Y.: Forecasting subway demand in large-scale networks: a deep learning approach. Presented at the 2018 Annual Transportation Meetings on January 7–11, 2018, in Washington, DC (2018)
– reference: Dill, J., Scholossberg, M., Ma, L., Meyer, C.: Predicting transit ridership at the stop level: the role of service and urban form. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013)
– reference: Census Transportation Planning Products: (2015) Retrieved September 7, 2016, from http://www.fhwa.dot.gov/planning/census_issues/ctpp/
– reference: MaXZhangJDingCWangYA geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridershipComput. Environ. Urban Syst.20187011312410.1016/j.compenvurbsys.2018.03.001
– reference: ThompsonGBrownJBhattacharyaTWhat really matters for increasing transit ridership: understanding the determinants of transit ridership demand in Broward County, FloridaUrban Stud.201249153327334510.1177/0042098012443864
– reference: Lawson, C.T.: Integration of Bus Stop Counts Data with Census Data for Improving Bus Service. Final Report FHWA-NJ-2016-001, published for the New Jersey Department of Transportation (2016b). https://dspace.njstatelib.org/xmlui/bitstream/handle/10929/40830/t7642016c.pdf?sequence=1&isAllowed=y
– reference: RSG: User Guide Simplified Trips-on-Project Software: Version 2.50. An unpublished report (2019)
– reference: Erhardt, G.D., Dennett, A.: Understanding the role and relevance of the census in a changing transportation data landscape. Applying Census Data for Transportation, 96 (2017)
– reference: ConwayMWByrdAvan der LindenMEvidence-based transit and land use sketch planning using interactive accessibility methods on combined schedule and headway-based networksTransp. Res. Rec.20172653455310.3141/2653-0
– reference: WangKWooMThe relationship between transit rich neighborhoods and transit ridership: evidence from the decentralization of povertyAppl. Geogr.20178618319610.1016/j.apgeog.2017.07.004
– reference: HanftJIyerSLevineBReddyATransforming bus service planning using integrated electronic data sources at NYC transitJ. Public Transp.2016192610.5038/2375-0901.19.2.6
– reference: Wong, J., Reed, L., Watkins, K., Hammond, R.: One transit data: state of the practice and experiences from participating agencies in the United States. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington DC (2013)
– reference: GTFS Static Overview: (2016) Retrieved September 7, 2016, from https://developers.google.com/transit/gtfs/
– reference: Conveyal: Conveyal Analysis Documentation: Release v4.5.0 (2019). https://buildmedia.readthedocs.org/media/pdf/analysis-ui/latest/analysis-ui.pdf
– reference: Lawson, C.T.: 2018 National household travel survey workshop. Transp. Res. Circ., (E-C238) (2018b)
– reference: SmithBLUsing geographic information systems and the world wide web for interactive transit-trip itinerary planningJ. Public Transp.2000323
– reference: Lawson, C.T. Applying census data for transportation: 50 years of transportation planning data progress. Transp. Res. Circ., (E-C233) (2018a)
– reference: Iliopoulou, C., Kepaptsoglou, K.: Combining ITS and optimization in public transportation planning: state of the art and future research paths (2019)
– reference: Pulchalsky, C., Joshi, D., Scherr: Development of a regional model based on Google Transit Feed Specification. A Paper Presented at the 13th TRB Planning Application Conference, May 2011, in Reno, NV (2012)
– reference: Vij, A., Walker, J.: You can lead travelers to the bus stops but you can’t make them ride. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013)
– reference: Wu, X., Cao, J.: Exploring satisfaction with arterial BRT in the Twin Cities: a machine learning approach. Presented at the 2018 Annual Transportation Meetings on January 7–11, 2018, in Washington, DC (2018)
– reference: LawsonCTTransformative trends in bus data: a bright future aheadTR News201630328
– reference: Census BureauUSUnderstanding and Using American Community Survey Data: What All Data Users Need to Know2018Washington, DCU.S. Government Printing Office
– reference: Bureau of Labor: Job Flexibilities and Work Schedules—2017–2018 Data from the American Time Use Survey (2019). https://www.bls.gov/news.release/pdf/flex2.pdf
– reference: PiXEggeMWhitmoreJSilbermannAQianZSUnderstanding transit system performance using AVL-APC data: an analytics platform with case studies for the Pittsburgh RegionJ. Public Transp.2018212210.5038/2375-0901.21.2.2
– reference: Brown, J, Thompson, G., Bhattacharya, T., Jaroszynski, M.: Understanding transit ridership demand for the multi-destination, multi-modal transit network in Atlanta, Georgia: Lessons for increasing rail transit choice ridership while maintaining transit-dependent bus. A paper presented at the 92nd transportation Research Board Annual Meetings, January 13–17, 2013, in Washington, DC (2013)
– reference: Liebig, T., Piatkowski, N., Bockerman, C., Morik, K.: Predictive trip planning-smart routing in smart cities. In: Extended Database Technology/International Conference on Database Theory (EDBT/ICDT) Workshops (pp. 331–338) (2014)
– reference: KarnerAAssessing public transit service equity using route-level accessibility measures and public dataJ. Transp. Geogr.201867243210.1016/j.jtrangeo.2018.01.005
– reference: Antrim, A., Barbeau, S.J.: The many uses of GTFS data–opening the door to transit and multimodal applications. Location-Aware Information Systems Laboratory at the University of South Florida, 4 (2013)
– reference: Lee, S., Tong, D., Hickman, M.: A comparative study of alternative methods for generating route-level mutually exclusive service areas. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013b)
– ident: 10073_CR8
– ident: 10073_CR28
– ident: 10073_CR24
– ident: 10073_CR47
– ident: 10073_CR20
– volume: 116
  start-page: 434
  year: 2018
  ident: 10073_CR2
  publication-title: Transp. Res. A: Policy Pract.
– ident: 10073_CR19
– ident: 10073_CR5
– volume: 65
  start-page: 70
  year: 2017
  ident: 10073_CR45
  publication-title: J. Transp. Geogr.
  doi: 10.1016/j.jtrangeo.2017.10.010
– ident: 10073_CR1
– ident: 10073_CR11
– ident: 10073_CR29
– ident: 10073_CR31
– volume: 70
  start-page: 113
  year: 2018
  ident: 10073_CR27
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2018.03.001
– ident: 10073_CR14
  doi: 10.1186/s12544-019-0365-5
– ident: 10073_CR25
– ident: 10073_CR46
– volume: 67
  start-page: 24
  year: 2018
  ident: 10073_CR15
  publication-title: J. Transp. Geogr.
  doi: 10.1016/j.jtrangeo.2018.01.005
– ident: 10073_CR21
– ident: 10073_CR22
  doi: 10.1016/j.trip.2019.100028
– ident: 10073_CR39
– ident: 10073_CR35
– ident: 10073_CR4
– ident: 10073_CR10
– volume: 2653
  start-page: 45
  year: 2017
  ident: 10073_CR7
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2653-0
– ident: 10073_CR30
  doi: 10.1007/978-3-319-40902-3_16
– volume: 21
  start-page: 2
  issue: 2
  year: 2018
  ident: 10073_CR32
  publication-title: J. Public Transp.
  doi: 10.5038/2375-0901.21.2.2
– ident: 10073_CR49
– volume-title: Understanding and Using American Community Survey Data: What All Data Users Need to Know
  year: 2018
  ident: 10073_CR41
– volume: 303
  start-page: 28
  year: 2016
  ident: 10073_CR18
  publication-title: TR News
– ident: 10073_CR26
– ident: 10073_CR17
– ident: 10073_CR42
– volume: 86
  start-page: 183
  year: 2017
  ident: 10073_CR44
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2017.07.004
– volume: 19
  start-page: 6
  issue: 2
  year: 2016
  ident: 10073_CR13
  publication-title: J. Public Transp.
  doi: 10.5038/2375-0901.19.2.6
– ident: 10073_CR36
– ident: 10073_CR9
– ident: 10073_CR23
– ident: 10073_CR48
– ident: 10073_CR3
  doi: 10.1177/0042098013493021
– ident: 10073_CR16
– ident: 10073_CR43
– volume: 2217
  start-page: 87
  year: 2011
  ident: 10073_CR38
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/2217-11
– volume: 20
  start-page: 205
  issue: 1
  year: 2018
  ident: 10073_CR34
  publication-title: Cityscape
– ident: 10073_CR33
– volume: 3
  start-page: 3
  issue: 2
  year: 2000
  ident: 10073_CR37
  publication-title: J. Public Transp.
– ident: 10073_CR6
– volume: 49
  start-page: 3327
  issue: 15
  year: 2012
  ident: 10073_CR40
  publication-title: Urban Stud.
  doi: 10.1177/0042098012443864
– ident: 10073_CR12
SSID ssj0005151
Score 2.2889113
Snippet As sources of “Big Data” continue to grow, transportation planners and researchers seek to utilize these new resources. Given the current dependency on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 617
SubjectTerms Big Data
Buses
Censuses
Copyright
Data processing
Data sources
Dependency
Economic forecasting
Economic Geography
Economics
Economics and Finance
Engineering Economics
Forecasting
Households
Information sharing
Innovation/Technology Management
Interfaces
Internet
Logistics
Marketing
Markets
Mathematical models
Open data
Organization
Planning
Regional/Spatial Science
Research methodology
Ridership
Software
Specification
Specifications
Spreadsheets
Transportation
Transportation planning
Travel
Urban transportation
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBR1WsL3LwpoFuHt3kWMXiqQg-6G1JslkplCrd6sFTf4j-uf4Sk23WVVFB9xY2G8Ikk5nZfPMNwFEsRRa1hMZRqi1myminUqnGmTM9cZY5i8lNUWwi7nZFrycvQ1JYXqLdyyvJ4qSukt3c46NfiX2b4ud5WOCebcbH6Fe3FbAj4rM6eUxiF3yIkCrz_RifzVHlY365Fi2sTWftf_Nch9XgXaL2bDtswJwd1mGpTD7O67DygX9wE4QvzGlU7qHPSD_maNQPuGbk8fB3SKHp5OV0UPwmR-1APz6dvG7BTef8-uwCh1IK2DDGxthJXETcpjIyOmtK6xwdo6hOqVQu_pFK-rjLNpuZMjzTOpWCGW4zqkVLM6Yk3Yba8H5odwAZHSliLZHGe3stopxKE5kyHkvFOVENiEqJJibwjPtyF4OkYkj2EkqchIo2TZ4bcPz-zcOMZePX3vvlQiVB4_KEeCZAymJCG3BSLkz1-ufRdv_WfQ-WiYe1FOCdfaiNR4_2ABbN07ifjw6LnfgGnDnY1Q
  priority: 102
  providerName: Springer Nature
Title Forecasting bus ridership using a “Blended Approach”
URI https://link.springer.com/article/10.1007/s11116-019-10073-z
https://www.proquest.com/docview/2509434723
Volume 48
WOSCitedRecordID wos000500275300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Online Journals
  customDbUrl:
  eissn: 1572-9435
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005151
  issn: 0049-4488
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BQQIG3ohCqTKwgUWTOE08oYKKWChVeZUpsh0HIaG2NC1Dp_4Q-HP9JfhShwASXchwkpXEinK27-HP9wEc-iyI7WogiB0JRSiXQk-pSJBYmx4_jrXF9GRKNuE3GkG7zZom4ZYYWGW2JqYLddSVmCM_cbDSm0t9xz3tvRJkjcLdVUOhMQ8L2lB7yGDgPzzmEA_bmzLmUUZ0GBKYQzPTo3P6wliaEWy7ZPTTMOXe5q8N0tTuXKz994vXYdV4nFZtOkQ2YE51NmEpO5CcbMLKt5qEWxAgWafkCcKhLTFMrP6zwTpbiJF_srg1Gb-fvaSpc6tmSpJPxh_bcHdRvz2_JIZegUhK6YBoLQS2pyJmSxFXmNLOj-SuiFzGdUzEOMNYTFUqMZdeLETEAio9FbsiqApKOXN3oNDpdtQuWFLY3FHKYRI9wKrD9TR3WEQ9n3GtFl4EO_u3oTS1x5EC4yXMqyajPkKtj7TthqMiHH2905tW3pj5dClTQmhmYRLmGijCcabG_Pbfve3N7m0flh2EtqQAnhIUBv2hOoBF-TZ4TvrldAyWYeGs3mi2dOuqco7SuU5lE6V_o2Xr5v4Tl6_osA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1PT9swFH9iBanbAbZuaOXP8GFw2aw1jt3YBw4FhkDQqocidafMdhyEhAprCghOfBD4CnwoPgl24pBt0nrjsNysJI6SZ78_ee_9fgCfI8HToM0VDhJlMJVa2S2VKJxa0xOlqbWYTOdkE1Gvx4dD0Z-Bh7IXxpVVljoxV9TJmXb_yL8Rh_QW0oiUTNUH5vrKxmfZ5v6OFeY6IbvfB9t72FMIYE0pnWD7JB4wk4hAq7QljDXwWoYqCYW0fr-QwsUbptVKpWapUongVDOThoq3FaXSIS2RjfNf2LFUuWyup-x4BbO8LRipwWy_M-j-qIpKAlZw9FGBbeDDfZtO0axnDxe9C-zGIb750xRW_u1fKdnc0u0u_G_f6C3Me58adYpN8A5mzKgB9bLlOmvAm99QF98Dd3SkWmau4BupiwyNT3w1N3JdAMdIosfbu63TPDmAOh50_fH2_gMcvcibLUJtdDYyHwFpFUhiDBHa-bhtIq0iIyKhLBKSMSKbEJSyjLVHV3ckH6dxhQvt5B9b-efjML5pwpfne84LbJGpV6-UQo-9nsniSuJN-Foum-r0v2dbmj7bGtT3Bt3D-HC_d7AMr4kr5MnLlVagNhlfmFWY05eTk2z8ye8ABD9feo09Aa4jQkY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LSsQwFL3IKD4WvsXxmYWuNDhN02mzEPE1KMowiIK7mqSJCDLqdFR05Yfoj_g5folJm1oVdOfC7kLb0DYn9-Y2954DsBSySHv1SGAvEQpTLoWZUonA2rieUGvjMQOZiU2EzWZ0espaPfBa1MLYtMrCJmaGOrmS9h_5GrFMbz4Nib-mXVpEa6excX2DrYKU3Wkt5DRyiByoh3sTvqXr-ztmrJcJaeweb-9hpzCAJaW0i82DRF6gEuZJoWtMGf8vuS8Sn3ETFjDObDiiajXNZaCFSFhEZaC0L6K6oJRbIiZj_ntD3wQ9Fejd2m22jsoEEy_I9foowyYIilzJTl64Zw4byTNs2z5-_OoWy7Xut-3ZzOs1Rv7z9xqFYbfWRpv55BiDHtUeh4GiFDsdh6FPbIwTEFmZUslTmwiOxG2KOhcuyxvZ6oBzxNHb0_PWZbZpgDYdGfvb08sknPzJa0xBpX3VVtOApPA4UYowade-dcKNgSMsoUHIeBAQXgWvGNdYOtZ1K_5xGZd80RYLscFC1vbjxyqsfNxznXOO_Hr1XAGA2NmfNC5HvwqrBYTK0z_3NvN7b4vQb1AUH-43D2ZhkNj8niyLaQ4q3c6tmoc-ede9SDsLbjIgOPtrPL0DhclK2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+bus+ridership+using+a+%E2%80%9CBlended+Approach%E2%80%9D&rft.jtitle=Transportation+%28Dordrecht%29&rft.au=Lawson%2C+Catherine+T.&rft.au=Muro%2C+Alex&rft.au=Krans%2C+Eric&rft.date=2021-04-01&rft.issn=0049-4488&rft.eissn=1572-9435&rft.volume=48&rft.issue=2&rft.spage=617&rft.epage=641&rft_id=info:doi/10.1007%2Fs11116-019-10073-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11116_019_10073_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-4488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-4488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-4488&client=summon