Forecasting bus ridership using a “Blended Approach”
As sources of “Big Data” continue to grow, transportation planners and researchers seek to utilize these new resources. Given the current dependency on traditional transportation data sources and conventional tools (e.g., spreadsheets and propriety models), how can these new resources be used? This...
Saved in:
| Published in: | Transportation (Dordrecht) Vol. 48; no. 2; pp. 617 - 641 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.04.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0049-4488, 1572-9435 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As sources of “Big Data” continue to grow, transportation planners and researchers seek to utilize these new resources. Given the current dependency on traditional transportation data sources and conventional tools (e.g., spreadsheets and propriety models), how can these new resources be used? This research examines a “blended data” approach, using a web-based, open source platform to assist transit agencies to forecast bus ridership. The platform is capable of incorporating new Big Data sources and traditional data sources, using modern processing techniques and tools, particularly Application Programming Interfaces (APIs). This research demonstrates the use of APIs in a transit demand methodology that yields a robust model for bus ridership. The approach uses the Census Transportation Planning Products data, modified with American Community Survey data, to generate origin–destination tables for bus trips in a designated market area. Microsimulation models us a transit scheduling specification (General Transit Feed Specification) and an open source routing engine (OpenTripPlanner). Local farebox data validates the microsimulation models. Analyses of model output and farebox data for the Atlantic City transit market area, and a scenario analysis of service reduction in the Princeton/Trenton transit market area, illustrate the use a “blended approach” for bus ridership forecasting. |
|---|---|
| AbstractList | As sources of “Big Data” continue to grow, transportation planners and researchers seek to utilize these new resources. Given the current dependency on traditional transportation data sources and conventional tools (e.g., spreadsheets and propriety models), how can these new resources be used? This research examines a “blended data” approach, using a web-based, open source platform to assist transit agencies to forecast bus ridership. The platform is capable of incorporating new Big Data sources and traditional data sources, using modern processing techniques and tools, particularly Application Programming Interfaces (APIs). This research demonstrates the use of APIs in a transit demand methodology that yields a robust model for bus ridership. The approach uses the Census Transportation Planning Products data, modified with American Community Survey data, to generate origin–destination tables for bus trips in a designated market area. Microsimulation models us a transit scheduling specification (General Transit Feed Specification) and an open source routing engine (OpenTripPlanner). Local farebox data validates the microsimulation models. Analyses of model output and farebox data for the Atlantic City transit market area, and a scenario analysis of service reduction in the Princeton/Trenton transit market area, illustrate the use a “blended approach” for bus ridership forecasting. |
| Author | Muro, Alex Lawson, Catherine T. Krans, Eric |
| Author_xml | – sequence: 1 givenname: Catherine T. orcidid: 0000-0003-4169-2069 surname: Lawson fullname: Lawson, Catherine T. email: lawsonc@albany.edu organization: State University of New York, Albany – sequence: 2 givenname: Alex surname: Muro fullname: Muro, Alex organization: State University of New York, Albany – sequence: 3 givenname: Eric surname: Krans fullname: Krans, Eric organization: State University of New York, Albany |
| BookMark | eNp9kL9OwzAQxi1UJNrCCzBFYjb4b2OPpaIFqRILzJbtOK2rkgQ7GejUB4GX65PgEiQkht5yutP97rv7RmBQ1ZUD4BqjW4xQfhdxiglEWMJjTeHuDAwxzwmUjPIBGCLEJGRMiAswinGDEOKY4yEQ8zo4q2Prq1VmupgFX7gQ177Junjs6eyw_7zfuqpwRTZtmlBruz7svy7Beam30V395jF4nT-8zB7h8nnxNJsuoWWMtTDnVmDuComtKZF0hE-spqagUhMupZZESOkQKrXlpTGFFMxyV1IjJoYxLekY3PR7k_J752KrNnUXqiSpCEfpO5YTmqZIP2VDHWNwpWqCf9PhQ2Gkjo6o3iGVHPqpqdolSPyDrG916-uqDdpvT6O0R2PSqVYu_F11gvoGHiF-xQ |
| CitedBy_id | crossref_primary_10_3390_app12083867 crossref_primary_10_3390_su14042223 |
| Cites_doi | 10.1016/j.jtrangeo.2017.10.010 10.1016/j.compenvurbsys.2018.03.001 10.1186/s12544-019-0365-5 10.1016/j.jtrangeo.2018.01.005 10.1016/j.trip.2019.100028 10.3141/2653-0 10.1007/978-3-319-40902-3_16 10.5038/2375-0901.21.2.2 10.1016/j.apgeog.2017.07.004 10.5038/2375-0901.19.2.6 10.1177/0042098013493021 10.3141/2217-11 10.1177/0042098012443864 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7ST 7WY 7WZ 7X5 7XB 87Z 88I 8BJ 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BGLVJ BHPHI C1K CCPQU DWQXO FQK FR3 FRNLG F~G GNUQQ GUQSH HCIFZ JBE K60 K6~ KR7 L.- L6V M0C M2O M2P M7S MBDVC PATMY PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI |
| DOI | 10.1007/s11116-019-10073-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Entrepreneurship Database ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) International Bibliography of the Social Sciences (IBSS) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea International Bibliography of the Social Sciences Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection International Bibliography of the Social Sciences ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Research Library Science Database Engineering Database Research Library (Corporate) Environmental Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection ProQuest Entrepreneurship Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1572-9435 |
| EndPage | 641 |
| ExternalDocumentID | 10_1007_s11116_019_10073_z |
| GrantInformation_xml | – fundername: New Jersey Department of Transportation grantid: 1108100-1-63626 |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 7WY 7XC 88I 8FE 8FG 8FH 8FL 8FW 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDEX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHQT ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACYUM ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATCPS AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD EOH ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_ARCHIVE GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V LAK LLZTM LPU M0C M2O M2P M4Y M7S MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM OHT OVD P19 P9M PATMY PF- PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QF4 QM1 QN7 QO4 QOK QOS R-Y R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z7S Z81 Z83 Z86 Z88 Z8N Z8U Z8W Z92 ZMTXR ZYFGU ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7ST 7X5 7XB 8BJ 8FD 8FK C1K FQK FR3 JBE KR7 L.- MBDVC PKEHL PQEST PQUKI PRINS Q9U SOI |
| ID | FETCH-LOGICAL-c444t-75c815ed91cbf09e256ca3bd39a2599a92899e00fac5fbbd984c5ef3b86b44a93 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000500275300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0049-4488 |
| IngestDate | Mon Nov 10 00:41:21 EST 2025 Sat Nov 29 01:36:22 EST 2025 Tue Nov 18 22:45:27 EST 2025 Fri Feb 21 02:48:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Farebox data Census Transportation Planning Products (CTPP) General Transit Feed Specification (GTFS) Application Programming Interface (API) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c444t-75c815ed91cbf09e256ca3bd39a2599a92899e00fac5fbbd984c5ef3b86b44a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4169-2069 |
| OpenAccessLink | https://link.springer.com/10.1007/s11116-019-10073-z |
| PQID | 2509434723 |
| PQPubID | 36781 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2509434723 crossref_primary_10_1007_s11116_019_10073_z crossref_citationtrail_10_1007_s11116_019_10073_z springer_journals_10_1007_s11116_019_10073_z |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | Planning - Policy - Research - Practice |
| PublicationTitle | Transportation (Dordrecht) |
| PublicationTitleAbbrev | Transportation |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Census Transportation Planning Products: (2015) Retrieved September 7, 2016, from http://www.fhwa.dot.gov/planning/census_issues/ctpp Verbas, I. Frei, C, Mahmassani, H., Chan, R.: Stretching resources: sensitivity of optimal bus frequency allocation to stop-level demand elasticities. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington, DC (2013) Giraud, A., Trépanier, M., Morency, C., Légaré, F.: Data fusion of APC, smart card and GTFS to visualize public transit use (No. CIRRELT-2016-54). CIRRELT, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport = Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (2016) WangKWooMThe relationship between transit rich neighborhoods and transit ridership: evidence from the decentralization of povertyAppl. Geogr.20178618319610.1016/j.apgeog.2017.07.004 Kressner, J.D., Macfarlane, G., Huntsinger, L., Donnelly, R.: Using passive data to build an agile tour-based model: a case study in Asheville. In: 6th Transportation Research Board Conference on Innovations in Travel Modeling, Denver, CO (2016) Lawson, C.T.: Integration of Bus Stop Counts Data with Census Data for Improving Bus Service. Final Report FHWA-NJ-2016-001, published for the New Jersey Department of Transportation (2016b). https://dspace.njstatelib.org/xmlui/bitstream/handle/10929/40830/t7642016c.pdf?sequence=1&isAllowed=y OpenTripPlanner: (no date). http://www.opentripplanner.org SunDPengZRShanXChenWZengXDevelopment of web-based transit trip-planning system based on service-oriented architectureTransp. Res. Rec. J. Transp. Res. Board20112217879410.3141/2217-11 MaXZhangJDingCWangYA geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridershipComput. Environ. Urban Syst.20187011312410.1016/j.compenvurbsys.2018.03.001 Wong, J.: Leveraging the general transit feed specification (GTFS) for efficient transit analysis. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington DC (2013) Antrim, A., Barbeau, S.J.: The many uses of GTFS data–opening the door to transit and multimodal applications. Location-Aware Information Systems Laboratory at the University of South Florida, 4 (2013) Lawson, C.T.: 2018 National household travel survey workshop. Transp. Res. Circ., (E-C238) (2018b) Dill, J., Scholossberg, M., Ma, L., Meyer, C.: Predicting transit ridership at the stop level: the role of service and urban form. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013) ConwayMWByrdAvan der LindenMEvidence-based transit and land use sketch planning using interactive accessibility methods on combined schedule and headway-based networksTransp. Res. Rec.20172653455310.3141/2653-0 RSG: User Guide Simplified Trips-on-Project Software: Version 2.50. An unpublished report (2019) Liebig, T., Piatkowski, N., Bockerman, C., Morik, K.: Predictive trip planning-smart routing in smart cities. In: Extended Database Technology/International Conference on Database Theory (EDBT/ICDT) Workshops (pp. 331–338) (2014) RSG: User Guide Simplified Trips-on-Project Software (STOPS). An unpublished report (2015). https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/STOPS_1.50_user_documentation_v5.pdf Lee, S., Tong, D., Hickman, M.: A comparative study of alternative methods for generating route-level mutually exclusive service areas. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013b) Wu, X., Cao, J.: Exploring satisfaction with arterial BRT in the Twin Cities: a machine learning approach. Presented at the 2018 Annual Transportation Meetings on January 7–11, 2018, in Washington, DC (2018) ThompsonGBrownJBhattacharyaTWhat really matters for increasing transit ridership: understanding the determinants of transit ridership demand in Broward County, FloridaUrban Stud.201249153327334510.1177/0042098012443864 Frei, C., Mahmassani, H.: Riding more frequently: disaggregate ridership elasticity estimation for a large urban bus transit network. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington, DC (2013) BoisjolyGGriséEMaguireMVeilletteMPDeboosereRBerrebiEEl-GeneidyAInvest in the ride: a 14 year longitudinal analysis of the determinants of public transport ridership in 25 North American citiesTransp. Res. A: Policy Pract.2018116434445 Bureau of Labor: Job Flexibilities and Work Schedules—2017–2018 Data from the American Time Use Survey (2019). https://www.bls.gov/news.release/pdf/flex2.pdf LawsonCTTransformative trends in bus data: a bright future aheadTR News201630328 RodnyanskySDo it yourself: obtaining updated transit stop and route shapefiles in urban and nonurban areasCityscape2018201205214 HanftJIyerSLevineBReddyATransforming bus service planning using integrated electronic data sources at NYC transitJ. Public Transp.2016192610.5038/2375-0901.19.2.6 Census BureauUSUnderstanding and Using American Community Survey Data: What All Data Users Need to Know2018Washington, DCU.S. Government Printing Office Iliopoulou, C., Kepaptsoglou, K.: Combining ITS and optimization in public transportation planning: state of the art and future research paths (2019) Swayne, M., Miller, M.: Innovation on Job Accessibility with General Transit Feed Specification (GTFS) Data. An unpublished report (2018) PiXEggeMWhitmoreJSilbermannAQianZSUnderstanding transit system performance using AVL-APC data: an analytics platform with case studies for the Pittsburgh RegionJ. Public Transp.2018212210.5038/2375-0901.21.2.2 Zhang, J., Ma, X., Ding, C., Wang Y.: Forecasting subway demand in large-scale networks: a deep learning approach. Presented at the 2018 Annual Transportation Meetings on January 7–11, 2018, in Washington, DC (2018) McKenzie, B.: Transit Access and Labor Market Outcomes across Segregated Neighborhoods. An unpublished dissertation (2011) Peng, Z.: A Simultaneous Route-level Transit Patronage Model: Demand, Supply and Inter-route Relationship. An unpublished dissertation (1994). http://www.pdx.edu/sites/www.pdx.edu.cus/files/SR027.pdf Lawson, C.T., Tomchik, P., Muro, A., Krans, E. Translation software: an alternative to transit data standards. Transp. Res. Interdiscip. Perspect. 100028 (2019) Lee, S., Hickman, M., Tong, D.: A time-varying route-level transit patronage model. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013a) Vij, A., Walker, J.: You can lead travelers to the bus stops but you can’t make them ride. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013) Wong, J., Reed, L., Watkins, K., Hammond, R.: One transit data: state of the practice and experiences from participating agencies in the United States. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington DC (2013) Erhardt, G.D., Dennett, A.: Understanding the role and relevance of the census in a changing transportation data landscape. Applying Census Data for Transportation, 96 (2017) Pulchalsky, C., Joshi, D., Scherr: Development of a regional model based on Google Transit Feed Specification. A Paper Presented at the 13th TRB Planning Application Conference, May 2011, in Reno, NV (2012) KarnerAAssessing public transit service equity using route-level accessibility measures and public dataJ. Transp. Geogr.201867243210.1016/j.jtrangeo.2018.01.005 Brown, J, Thompson, G., Bhattacharya, T., Jaroszynski, M.: Understanding transit ridership demand for the multi-destination, multi-modal transit network in Atlanta, Georgia: Lessons for increasing rail transit choice ridership while maintaining transit-dependent bus. A paper presented at the 92nd transportation Research Board Annual Meetings, January 13–17, 2013, in Washington, DC (2013) SmithBLUsing geographic information systems and the world wide web for interactive transit-trip itinerary planningJ. Public Transp.2000323 WeiRLiuXMuYWangLGolubAFarberSEvaluating public transit services for operational efficiency and access equityJ. Transp. Geogr.201765707910.1016/j.jtrangeo.2017.10.010 Lawson, C.T. Applying census data for transportation: 50 years of transportation planning data progress. Transp. Res. Circ., (E-C233) (2018a) Liu, C., Porter, R., Zlatkovic, M., Fazzaz, K., Taylor, J.: First and Last Mile Assessment for Transit System (2018). https://pdfs.semanticscholar.org/d760/ba6f9a0a69a83df7481a71119efbb26ac4d8.pdf GTFS Static Overview: (2016) Retrieved September 7, 2016, from https://developers.google.com/transit/gtfs Kimpel, T.: Time Point-level Analysis of Transit Service Reliability and Passenger Demand (2001). An unpublished dissertation. [http://www.pdx.edu/sites/www.pdx.edu.cus/files/SR036.pdf] Owen, A., Levinson, D.M. Developing a comprehensive US transit accessibility database. In: Seeing Cities Through Big Data (pp. 279–290). Springer, Cham (2017) Conveyal: Conveyal Analysis Documentation: Release v4.5.0 (2019). https://buildmedia.readthedocs.org/media/pdf/analysis-ui/latest/analysis-ui.pdf 10073_CR30 10073_CR31 D Sun (10073_CR38) 2011; 2217 10073_CR25 10073_CR26 US Census Bureau (10073_CR41) 2018 10073_CR28 10073_CR21 10073_CR22 10073_CR23 10073_CR24 10073_CR29 R Wei (10073_CR45) 2017; 65 10073_CR3 10073_CR4 X Pi (10073_CR32) 2018; 21 10073_CR1 10073_CR8 10073_CR5 10073_CR6 10073_CR9 10073_CR20 BL Smith (10073_CR37) 2000; 3 10073_CR14 10073_CR16 10073_CR17 10073_CR10 10073_CR11 10073_CR12 X Ma (10073_CR27) 2018; 70 G Thompson (10073_CR40) 2012; 49 10073_CR19 S Rodnyansky (10073_CR34) 2018; 20 J Hanft (10073_CR13) 2016; 19 10073_CR47 10073_CR48 10073_CR49 10073_CR43 10073_CR46 MW Conway (10073_CR7) 2017; 2653 A Karner (10073_CR15) 2018; 67 10073_CR42 10073_CR36 CT Lawson (10073_CR18) 2016; 303 10073_CR39 G Boisjoly (10073_CR2) 2018; 116 10073_CR33 K Wang (10073_CR44) 2017; 86 10073_CR35 |
| References_xml | – reference: SunDPengZRShanXChenWZengXDevelopment of web-based transit trip-planning system based on service-oriented architectureTransp. Res. Rec. J. Transp. Res. Board20112217879410.3141/2217-11 – reference: Frei, C., Mahmassani, H.: Riding more frequently: disaggregate ridership elasticity estimation for a large urban bus transit network. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington, DC (2013) – reference: OpenTripPlanner: (no date). http://www.opentripplanner.org/ – reference: Kimpel, T.: Time Point-level Analysis of Transit Service Reliability and Passenger Demand (2001). An unpublished dissertation. [http://www.pdx.edu/sites/www.pdx.edu.cus/files/SR036.pdf] – reference: RodnyanskySDo it yourself: obtaining updated transit stop and route shapefiles in urban and nonurban areasCityscape2018201205214 – reference: Wong, J.: Leveraging the general transit feed specification (GTFS) for efficient transit analysis. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington DC (2013) – reference: Lawson, C.T., Tomchik, P., Muro, A., Krans, E. Translation software: an alternative to transit data standards. Transp. Res. Interdiscip. Perspect. 100028 (2019) – reference: BoisjolyGGriséEMaguireMVeilletteMPDeboosereRBerrebiEEl-GeneidyAInvest in the ride: a 14 year longitudinal analysis of the determinants of public transport ridership in 25 North American citiesTransp. Res. A: Policy Pract.2018116434445 – reference: McKenzie, B.: Transit Access and Labor Market Outcomes across Segregated Neighborhoods. An unpublished dissertation (2011) – reference: Giraud, A., Trépanier, M., Morency, C., Légaré, F.: Data fusion of APC, smart card and GTFS to visualize public transit use (No. CIRRELT-2016-54). CIRRELT, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport = Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (2016) – reference: Kressner, J.D., Macfarlane, G., Huntsinger, L., Donnelly, R.: Using passive data to build an agile tour-based model: a case study in Asheville. In: 6th Transportation Research Board Conference on Innovations in Travel Modeling, Denver, CO (2016) – reference: Verbas, I. Frei, C, Mahmassani, H., Chan, R.: Stretching resources: sensitivity of optimal bus frequency allocation to stop-level demand elasticities. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington, DC (2013) – reference: Liu, C., Porter, R., Zlatkovic, M., Fazzaz, K., Taylor, J.: First and Last Mile Assessment for Transit System (2018). https://pdfs.semanticscholar.org/d760/ba6f9a0a69a83df7481a71119efbb26ac4d8.pdf – reference: Lee, S., Hickman, M., Tong, D.: A time-varying route-level transit patronage model. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013a) – reference: Swayne, M., Miller, M.: Innovation on Job Accessibility with General Transit Feed Specification (GTFS) Data. An unpublished report (2018) – reference: Peng, Z.: A Simultaneous Route-level Transit Patronage Model: Demand, Supply and Inter-route Relationship. An unpublished dissertation (1994). http://www.pdx.edu/sites/www.pdx.edu.cus/files/SR027.pdf – reference: WeiRLiuXMuYWangLGolubAFarberSEvaluating public transit services for operational efficiency and access equityJ. Transp. Geogr.201765707910.1016/j.jtrangeo.2017.10.010 – reference: RSG: User Guide Simplified Trips-on-Project Software (STOPS). An unpublished report (2015). https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/STOPS_1.50_user_documentation_v5.pdf – reference: Owen, A., Levinson, D.M. Developing a comprehensive US transit accessibility database. In: Seeing Cities Through Big Data (pp. 279–290). Springer, Cham (2017) – reference: Zhang, J., Ma, X., Ding, C., Wang Y.: Forecasting subway demand in large-scale networks: a deep learning approach. Presented at the 2018 Annual Transportation Meetings on January 7–11, 2018, in Washington, DC (2018) – reference: Dill, J., Scholossberg, M., Ma, L., Meyer, C.: Predicting transit ridership at the stop level: the role of service and urban form. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013) – reference: Census Transportation Planning Products: (2015) Retrieved September 7, 2016, from http://www.fhwa.dot.gov/planning/census_issues/ctpp/ – reference: MaXZhangJDingCWangYA geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridershipComput. Environ. Urban Syst.20187011312410.1016/j.compenvurbsys.2018.03.001 – reference: ThompsonGBrownJBhattacharyaTWhat really matters for increasing transit ridership: understanding the determinants of transit ridership demand in Broward County, FloridaUrban Stud.201249153327334510.1177/0042098012443864 – reference: Lawson, C.T.: Integration of Bus Stop Counts Data with Census Data for Improving Bus Service. Final Report FHWA-NJ-2016-001, published for the New Jersey Department of Transportation (2016b). https://dspace.njstatelib.org/xmlui/bitstream/handle/10929/40830/t7642016c.pdf?sequence=1&isAllowed=y – reference: RSG: User Guide Simplified Trips-on-Project Software: Version 2.50. An unpublished report (2019) – reference: Erhardt, G.D., Dennett, A.: Understanding the role and relevance of the census in a changing transportation data landscape. Applying Census Data for Transportation, 96 (2017) – reference: ConwayMWByrdAvan der LindenMEvidence-based transit and land use sketch planning using interactive accessibility methods on combined schedule and headway-based networksTransp. Res. Rec.20172653455310.3141/2653-0 – reference: WangKWooMThe relationship between transit rich neighborhoods and transit ridership: evidence from the decentralization of povertyAppl. Geogr.20178618319610.1016/j.apgeog.2017.07.004 – reference: HanftJIyerSLevineBReddyATransforming bus service planning using integrated electronic data sources at NYC transitJ. Public Transp.2016192610.5038/2375-0901.19.2.6 – reference: Wong, J., Reed, L., Watkins, K., Hammond, R.: One transit data: state of the practice and experiences from participating agencies in the United States. A Paper Presented at the 92nd Transportation Research Board Annual Meetings, January 13–17, 2013, in Washington DC (2013) – reference: GTFS Static Overview: (2016) Retrieved September 7, 2016, from https://developers.google.com/transit/gtfs/ – reference: Conveyal: Conveyal Analysis Documentation: Release v4.5.0 (2019). https://buildmedia.readthedocs.org/media/pdf/analysis-ui/latest/analysis-ui.pdf – reference: Lawson, C.T.: 2018 National household travel survey workshop. Transp. Res. Circ., (E-C238) (2018b) – reference: SmithBLUsing geographic information systems and the world wide web for interactive transit-trip itinerary planningJ. Public Transp.2000323 – reference: Lawson, C.T. Applying census data for transportation: 50 years of transportation planning data progress. Transp. Res. Circ., (E-C233) (2018a) – reference: Iliopoulou, C., Kepaptsoglou, K.: Combining ITS and optimization in public transportation planning: state of the art and future research paths (2019) – reference: Pulchalsky, C., Joshi, D., Scherr: Development of a regional model based on Google Transit Feed Specification. A Paper Presented at the 13th TRB Planning Application Conference, May 2011, in Reno, NV (2012) – reference: Vij, A., Walker, J.: You can lead travelers to the bus stops but you can’t make them ride. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013) – reference: Wu, X., Cao, J.: Exploring satisfaction with arterial BRT in the Twin Cities: a machine learning approach. Presented at the 2018 Annual Transportation Meetings on January 7–11, 2018, in Washington, DC (2018) – reference: LawsonCTTransformative trends in bus data: a bright future aheadTR News201630328 – reference: Census BureauUSUnderstanding and Using American Community Survey Data: What All Data Users Need to Know2018Washington, DCU.S. Government Printing Office – reference: Bureau of Labor: Job Flexibilities and Work Schedules—2017–2018 Data from the American Time Use Survey (2019). https://www.bls.gov/news.release/pdf/flex2.pdf – reference: PiXEggeMWhitmoreJSilbermannAQianZSUnderstanding transit system performance using AVL-APC data: an analytics platform with case studies for the Pittsburgh RegionJ. Public Transp.2018212210.5038/2375-0901.21.2.2 – reference: Brown, J, Thompson, G., Bhattacharya, T., Jaroszynski, M.: Understanding transit ridership demand for the multi-destination, multi-modal transit network in Atlanta, Georgia: Lessons for increasing rail transit choice ridership while maintaining transit-dependent bus. A paper presented at the 92nd transportation Research Board Annual Meetings, January 13–17, 2013, in Washington, DC (2013) – reference: Liebig, T., Piatkowski, N., Bockerman, C., Morik, K.: Predictive trip planning-smart routing in smart cities. In: Extended Database Technology/International Conference on Database Theory (EDBT/ICDT) Workshops (pp. 331–338) (2014) – reference: KarnerAAssessing public transit service equity using route-level accessibility measures and public dataJ. Transp. Geogr.201867243210.1016/j.jtrangeo.2018.01.005 – reference: Antrim, A., Barbeau, S.J.: The many uses of GTFS data–opening the door to transit and multimodal applications. Location-Aware Information Systems Laboratory at the University of South Florida, 4 (2013) – reference: Lee, S., Tong, D., Hickman, M.: A comparative study of alternative methods for generating route-level mutually exclusive service areas. A Paper Presented at the 92nd Transportation Research Board Meetings, January 13–17, 2013, in Washington, DC (2013b) – ident: 10073_CR8 – ident: 10073_CR28 – ident: 10073_CR24 – ident: 10073_CR47 – ident: 10073_CR20 – volume: 116 start-page: 434 year: 2018 ident: 10073_CR2 publication-title: Transp. Res. A: Policy Pract. – ident: 10073_CR19 – ident: 10073_CR5 – volume: 65 start-page: 70 year: 2017 ident: 10073_CR45 publication-title: J. Transp. Geogr. doi: 10.1016/j.jtrangeo.2017.10.010 – ident: 10073_CR1 – ident: 10073_CR11 – ident: 10073_CR29 – ident: 10073_CR31 – volume: 70 start-page: 113 year: 2018 ident: 10073_CR27 publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2018.03.001 – ident: 10073_CR14 doi: 10.1186/s12544-019-0365-5 – ident: 10073_CR25 – ident: 10073_CR46 – volume: 67 start-page: 24 year: 2018 ident: 10073_CR15 publication-title: J. Transp. Geogr. doi: 10.1016/j.jtrangeo.2018.01.005 – ident: 10073_CR21 – ident: 10073_CR22 doi: 10.1016/j.trip.2019.100028 – ident: 10073_CR39 – ident: 10073_CR35 – ident: 10073_CR4 – ident: 10073_CR10 – volume: 2653 start-page: 45 year: 2017 ident: 10073_CR7 publication-title: Transp. Res. Rec. doi: 10.3141/2653-0 – ident: 10073_CR30 doi: 10.1007/978-3-319-40902-3_16 – volume: 21 start-page: 2 issue: 2 year: 2018 ident: 10073_CR32 publication-title: J. Public Transp. doi: 10.5038/2375-0901.21.2.2 – ident: 10073_CR49 – volume-title: Understanding and Using American Community Survey Data: What All Data Users Need to Know year: 2018 ident: 10073_CR41 – volume: 303 start-page: 28 year: 2016 ident: 10073_CR18 publication-title: TR News – ident: 10073_CR26 – ident: 10073_CR17 – ident: 10073_CR42 – volume: 86 start-page: 183 year: 2017 ident: 10073_CR44 publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2017.07.004 – volume: 19 start-page: 6 issue: 2 year: 2016 ident: 10073_CR13 publication-title: J. Public Transp. doi: 10.5038/2375-0901.19.2.6 – ident: 10073_CR36 – ident: 10073_CR9 – ident: 10073_CR23 – ident: 10073_CR48 – ident: 10073_CR3 doi: 10.1177/0042098013493021 – ident: 10073_CR16 – ident: 10073_CR43 – volume: 2217 start-page: 87 year: 2011 ident: 10073_CR38 publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.3141/2217-11 – volume: 20 start-page: 205 issue: 1 year: 2018 ident: 10073_CR34 publication-title: Cityscape – ident: 10073_CR33 – volume: 3 start-page: 3 issue: 2 year: 2000 ident: 10073_CR37 publication-title: J. Public Transp. – ident: 10073_CR6 – volume: 49 start-page: 3327 issue: 15 year: 2012 ident: 10073_CR40 publication-title: Urban Stud. doi: 10.1177/0042098012443864 – ident: 10073_CR12 |
| SSID | ssj0005151 |
| Score | 2.2889113 |
| Snippet | As sources of “Big Data” continue to grow, transportation planners and researchers seek to utilize these new resources. Given the current dependency on... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 617 |
| SubjectTerms | Big Data Buses Censuses Copyright Data processing Data sources Dependency Economic forecasting Economic Geography Economics Economics and Finance Engineering Economics Forecasting Households Information sharing Innovation/Technology Management Interfaces Internet Logistics Marketing Markets Mathematical models Open data Organization Planning Regional/Spatial Science Research methodology Ridership Software Specification Specifications Spreadsheets Transportation Transportation planning Travel Urban transportation |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBR1WsL3LwpoFuHt3kWMXiqQg-6G1JslkplCrd6sFTf4j-uf4Sk23WVVFB9xY2G8Ikk5nZfPMNwFEsRRa1hMZRqi1myminUqnGmTM9cZY5i8lNUWwi7nZFrycvQ1JYXqLdyyvJ4qSukt3c46NfiX2b4ud5WOCebcbH6Fe3FbAj4rM6eUxiF3yIkCrz_RifzVHlY365Fi2sTWftf_Nch9XgXaL2bDtswJwd1mGpTD7O67DygX9wE4QvzGlU7qHPSD_maNQPuGbk8fB3SKHp5OV0UPwmR-1APz6dvG7BTef8-uwCh1IK2DDGxthJXETcpjIyOmtK6xwdo6hOqVQu_pFK-rjLNpuZMjzTOpWCGW4zqkVLM6Yk3Yba8H5odwAZHSliLZHGe3stopxKE5kyHkvFOVENiEqJJibwjPtyF4OkYkj2EkqchIo2TZ4bcPz-zcOMZePX3vvlQiVB4_KEeCZAymJCG3BSLkz1-ufRdv_WfQ-WiYe1FOCdfaiNR4_2ABbN07ifjw6LnfgGnDnY1Q priority: 102 providerName: Springer Nature |
| Title | Forecasting bus ridership using a “Blended Approach” |
| URI | https://link.springer.com/article/10.1007/s11116-019-10073-z https://www.proquest.com/docview/2509434723 |
| Volume | 48 |
| WOSCitedRecordID | wos000500275300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Online Journals customDbUrl: eissn: 1572-9435 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005151 issn: 0049-4488 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BQQIG3ohCqTKwgUWTOE08oYKKWChVeZUpsh0HIaG2NC1Dp_4Q-HP9JfhShwASXchwkpXEinK27-HP9wEc-iyI7WogiB0JRSiXQk-pSJBYmx4_jrXF9GRKNuE3GkG7zZom4ZYYWGW2JqYLddSVmCM_cbDSm0t9xz3tvRJkjcLdVUOhMQ8L2lB7yGDgPzzmEA_bmzLmUUZ0GBKYQzPTo3P6wliaEWy7ZPTTMOXe5q8N0tTuXKz994vXYdV4nFZtOkQ2YE51NmEpO5CcbMLKt5qEWxAgWafkCcKhLTFMrP6zwTpbiJF_srg1Gb-fvaSpc6tmSpJPxh_bcHdRvz2_JIZegUhK6YBoLQS2pyJmSxFXmNLOj-SuiFzGdUzEOMNYTFUqMZdeLETEAio9FbsiqApKOXN3oNDpdtQuWFLY3FHKYRI9wKrD9TR3WEQ9n3GtFl4EO_u3oTS1x5EC4yXMqyajPkKtj7TthqMiHH2905tW3pj5dClTQmhmYRLmGijCcabG_Pbfve3N7m0flh2EtqQAnhIUBv2hOoBF-TZ4TvrldAyWYeGs3mi2dOuqco7SuU5lE6V_o2Xr5v4Tl6_osA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1PT9swFH9iBanbAbZuaOXP8GFw2aw1jt3YBw4FhkDQqocidafMdhyEhAprCghOfBD4CnwoPgl24pBt0nrjsNysJI6SZ78_ee_9fgCfI8HToM0VDhJlMJVa2S2VKJxa0xOlqbWYTOdkE1Gvx4dD0Z-Bh7IXxpVVljoxV9TJmXb_yL8Rh_QW0oiUTNUH5vrKxmfZ5v6OFeY6IbvfB9t72FMIYE0pnWD7JB4wk4hAq7QljDXwWoYqCYW0fr-QwsUbptVKpWapUongVDOThoq3FaXSIS2RjfNf2LFUuWyup-x4BbO8LRipwWy_M-j-qIpKAlZw9FGBbeDDfZtO0axnDxe9C-zGIb750xRW_u1fKdnc0u0u_G_f6C3Me58adYpN8A5mzKgB9bLlOmvAm99QF98Dd3SkWmau4BupiwyNT3w1N3JdAMdIosfbu63TPDmAOh50_fH2_gMcvcibLUJtdDYyHwFpFUhiDBHa-bhtIq0iIyKhLBKSMSKbEJSyjLVHV3ckH6dxhQvt5B9b-efjML5pwpfne84LbJGpV6-UQo-9nsniSuJN-Foum-r0v2dbmj7bGtT3Bt3D-HC_d7AMr4kr5MnLlVagNhlfmFWY05eTk2z8ye8ABD9feo09Aa4jQkY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LSsQwFL3IKD4WvsXxmYWuNDhN02mzEPE1KMowiIK7mqSJCDLqdFR05Yfoj_g5folJm1oVdOfC7kLb0DYn9-Y2954DsBSySHv1SGAvEQpTLoWZUonA2rieUGvjMQOZiU2EzWZ0espaPfBa1MLYtMrCJmaGOrmS9h_5GrFMbz4Nib-mXVpEa6excX2DrYKU3Wkt5DRyiByoh3sTvqXr-ztmrJcJaeweb-9hpzCAJaW0i82DRF6gEuZJoWtMGf8vuS8Sn3ETFjDObDiiajXNZaCFSFhEZaC0L6K6oJRbIiZj_ntD3wQ9Fejd2m22jsoEEy_I9foowyYIilzJTl64Zw4byTNs2z5-_OoWy7Xut-3ZzOs1Rv7z9xqFYbfWRpv55BiDHtUeh4GiFDsdh6FPbIwTEFmZUslTmwiOxG2KOhcuyxvZ6oBzxNHb0_PWZbZpgDYdGfvb08sknPzJa0xBpX3VVtOApPA4UYowade-dcKNgSMsoUHIeBAQXgWvGNdYOtZ1K_5xGZd80RYLscFC1vbjxyqsfNxznXOO_Hr1XAGA2NmfNC5HvwqrBYTK0z_3NvN7b4vQb1AUH-43D2ZhkNj8niyLaQ4q3c6tmoc-ede9SDsLbjIgOPtrPL0DhclK2Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+bus+ridership+using+a+%E2%80%9CBlended+Approach%E2%80%9D&rft.jtitle=Transportation+%28Dordrecht%29&rft.au=Lawson%2C+Catherine+T.&rft.au=Muro%2C+Alex&rft.au=Krans%2C+Eric&rft.date=2021-04-01&rft.issn=0049-4488&rft.eissn=1572-9435&rft.volume=48&rft.issue=2&rft.spage=617&rft.epage=641&rft_id=info:doi/10.1007%2Fs11116-019-10073-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11116_019_10073_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-4488&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-4488&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-4488&client=summon |