Dopamine-deprived striatal GABAergic interneurons burst and generate repetitive gigantic IPSCs in medium spiny neurons

Striatal GABAergic microcircuits modulate cortical responses and movement execution in part by controlling the activity of medium spiny neurons (MSNs). How this is altered by chronic dopamine depletion, such as in Parkinson's disease, is not presently understood. We now report that, in dopamine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience Jg. 29; H. 24; S. 7776
Hauptverfasser: Dehorter, Nathalie, Guigoni, Celine, Lopez, Catherine, Hirsch, June, Eusebio, Alexandre, Ben-Ari, Yehezkel, Hammond, Constance
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 17.06.2009
Schlagworte:
ISSN:1529-2401, 1529-2401
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Striatal GABAergic microcircuits modulate cortical responses and movement execution in part by controlling the activity of medium spiny neurons (MSNs). How this is altered by chronic dopamine depletion, such as in Parkinson's disease, is not presently understood. We now report that, in dopamine-depleted slices of the striatum, MSNs generate giant spontaneous postsynaptic GABAergic currents (single or in bursts at 60 Hz) interspersed with silent episodes, rather than the continuous, low-frequency GABAergic drive (5 Hz) observed in control MSNs. This shift was observed in one-half of the MSN population, including both "D(1)-negative" and "D(1)-positive" MSNs. Single GABA and NMDA channel recordings revealed that the resting membrane potential and reversal potential of GABA were similar in control and dopamine-depleted MSNs, and depolarizing, but not excitatory, actions of GABA were observed. Glutamatergic and cholinergic antagonists did not block the GABAergic oscillations, suggesting that they were generated by GABAergic neurons. In support of this, cell-attached recordings revealed that a subpopulation of intrastriatal GABAergic interneurons generated bursts of spikes in dopamine-deprived conditions. This subpopulation included low-threshold spike interneurons but not fast-spiking interneurons, cholinergic interneurons, or MSNs. Therefore, a population of local GABAergic interneurons shifts from tonic to oscillatory mode when dopamine deprived and gives rise to spontaneous repetitive giant GABAergic currents in one-half the MSNs. We suggest that this may in turn alter integration of cortical signals by MSNs.
AbstractList Striatal GABAergic microcircuits modulate cortical responses and movement execution in part by controlling the activity of medium spiny neurons (MSNs). How this is altered by chronic dopamine depletion, such as in Parkinson's disease, is not presently understood. We now report that, in dopamine-depleted slices of the striatum, MSNs generate giant spontaneous postsynaptic GABAergic currents (single or in bursts at 60 Hz) interspersed with silent episodes, rather than the continuous, low-frequency GABAergic drive (5 Hz) observed in control MSNs. This shift was observed in one-half of the MSN population, including both "D(1)-negative" and "D(1)-positive" MSNs. Single GABA and NMDA channel recordings revealed that the resting membrane potential and reversal potential of GABA were similar in control and dopamine-depleted MSNs, and depolarizing, but not excitatory, actions of GABA were observed. Glutamatergic and cholinergic antagonists did not block the GABAergic oscillations, suggesting that they were generated by GABAergic neurons. In support of this, cell-attached recordings revealed that a subpopulation of intrastriatal GABAergic interneurons generated bursts of spikes in dopamine-deprived conditions. This subpopulation included low-threshold spike interneurons but not fast-spiking interneurons, cholinergic interneurons, or MSNs. Therefore, a population of local GABAergic interneurons shifts from tonic to oscillatory mode when dopamine deprived and gives rise to spontaneous repetitive giant GABAergic currents in one-half the MSNs. We suggest that this may in turn alter integration of cortical signals by MSNs.
Striatal GABAergic microcircuits modulate cortical responses and movement execution in part by controlling the activity of medium spiny neurons (MSNs). How this is altered by chronic dopamine depletion, such as in Parkinson's disease, is not presently understood. We now report that, in dopamine-depleted slices of the striatum, MSNs generate giant spontaneous postsynaptic GABAergic currents (single or in bursts at 60 Hz) interspersed with silent episodes, rather than the continuous, low-frequency GABAergic drive (5 Hz) observed in control MSNs. This shift was observed in one-half of the MSN population, including both "D(1)-negative" and "D(1)-positive" MSNs. Single GABA and NMDA channel recordings revealed that the resting membrane potential and reversal potential of GABA were similar in control and dopamine-depleted MSNs, and depolarizing, but not excitatory, actions of GABA were observed. Glutamatergic and cholinergic antagonists did not block the GABAergic oscillations, suggesting that they were generated by GABAergic neurons. In support of this, cell-attached recordings revealed that a subpopulation of intrastriatal GABAergic interneurons generated bursts of spikes in dopamine-deprived conditions. This subpopulation included low-threshold spike interneurons but not fast-spiking interneurons, cholinergic interneurons, or MSNs. Therefore, a population of local GABAergic interneurons shifts from tonic to oscillatory mode when dopamine deprived and gives rise to spontaneous repetitive giant GABAergic currents in one-half the MSNs. We suggest that this may in turn alter integration of cortical signals by MSNs.Striatal GABAergic microcircuits modulate cortical responses and movement execution in part by controlling the activity of medium spiny neurons (MSNs). How this is altered by chronic dopamine depletion, such as in Parkinson's disease, is not presently understood. We now report that, in dopamine-depleted slices of the striatum, MSNs generate giant spontaneous postsynaptic GABAergic currents (single or in bursts at 60 Hz) interspersed with silent episodes, rather than the continuous, low-frequency GABAergic drive (5 Hz) observed in control MSNs. This shift was observed in one-half of the MSN population, including both "D(1)-negative" and "D(1)-positive" MSNs. Single GABA and NMDA channel recordings revealed that the resting membrane potential and reversal potential of GABA were similar in control and dopamine-depleted MSNs, and depolarizing, but not excitatory, actions of GABA were observed. Glutamatergic and cholinergic antagonists did not block the GABAergic oscillations, suggesting that they were generated by GABAergic neurons. In support of this, cell-attached recordings revealed that a subpopulation of intrastriatal GABAergic interneurons generated bursts of spikes in dopamine-deprived conditions. This subpopulation included low-threshold spike interneurons but not fast-spiking interneurons, cholinergic interneurons, or MSNs. Therefore, a population of local GABAergic interneurons shifts from tonic to oscillatory mode when dopamine deprived and gives rise to spontaneous repetitive giant GABAergic currents in one-half the MSNs. We suggest that this may in turn alter integration of cortical signals by MSNs.
Author Dehorter, Nathalie
Lopez, Catherine
Guigoni, Celine
Hirsch, June
Hammond, Constance
Eusebio, Alexandre
Ben-Ari, Yehezkel
Author_xml – sequence: 1
  givenname: Nathalie
  surname: Dehorter
  fullname: Dehorter, Nathalie
  organization: Institut de Neurobiologie de Méditerranée Unité Mixte de Recherche 901, Inserm and Aix Marseille II University, 13009 Marseille, France
– sequence: 2
  givenname: Celine
  surname: Guigoni
  fullname: Guigoni, Celine
– sequence: 3
  givenname: Catherine
  surname: Lopez
  fullname: Lopez, Catherine
– sequence: 4
  givenname: June
  surname: Hirsch
  fullname: Hirsch, June
– sequence: 5
  givenname: Alexandre
  surname: Eusebio
  fullname: Eusebio, Alexandre
– sequence: 6
  givenname: Yehezkel
  surname: Ben-Ari
  fullname: Ben-Ari, Yehezkel
– sequence: 7
  givenname: Constance
  surname: Hammond
  fullname: Hammond, Constance
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19535589$$D View this record in MEDLINE/PubMed
BookMark eNpNkF9LwzAUxYMo7o9-hZEn3zrTpF2ax1nnnAwnzj2XtLktkTatSTrYt7fiBJ_uOXB-h8uZoEvTGkBoFpJ5GFN2__K6Orzv9unmx_KAiDklRFyg8WBFQCMSXv7TIzRx7pMQwknIr9EoFDGL40SM0fGx7WSjDQQKOquPoLDzVksva7xePizBVrrA2niwBnrbGofz3jqPpVG4AgNWesAWOvDaDziudCWNH5jN2z51A4kbULpvsOu0OeFzyQ26KmXt4PZ8p-jwtPpIn4Ptbr1Jl9ugiKLIB5xwVlAqIlGokiqSSxaW4SImHOJcqJwXhEVRKXkOCmJJQ6YSmlDGcybZQio6RXe_vZ1tv3pwPmu0K6CupYG2d9mCMxEnJBqCs3Owz4eHs2GLRtpT9rcU_QZklXCi
CitedBy_id crossref_primary_10_1152_jn_00511_2016
crossref_primary_10_3390_molecules28031344
crossref_primary_10_1177_1073858420972662
crossref_primary_10_1038_s41467_018_03802_y
crossref_primary_10_1111_ejn_12045
crossref_primary_10_1111_ejn_14344
crossref_primary_10_3389_fncel_2016_00168
crossref_primary_10_1101_lm_025015_111
crossref_primary_10_1016_j_bbr_2016_09_030
crossref_primary_10_1152_jn_00516_2010
crossref_primary_10_1523_JNEUROSCI_5796_12_2013
crossref_primary_10_1097_WNF_0000000000000114
crossref_primary_10_1111_jnc_13438
crossref_primary_10_1523_JNEUROSCI_2628_11_2011
crossref_primary_10_1152_jn_00272_2009
crossref_primary_10_1007_s10072_022_06235_0
crossref_primary_10_1016_j_neuroscience_2014_10_054
crossref_primary_10_1152_jn_00059_2020
crossref_primary_10_1523_JNEUROSCI_1380_10_2010
crossref_primary_10_1152_jn_00283_2012
crossref_primary_10_1016_j_expneurol_2023_114562
crossref_primary_10_1016_j_tins_2012_06_008
crossref_primary_10_1002_mds_27651
crossref_primary_10_1113_jphysiol_2012_241786
crossref_primary_10_1016_j_nbd_2016_02_023
crossref_primary_10_1016_j_neuron_2011_08_012
crossref_primary_10_1038_npp_2010_99
crossref_primary_10_1039_C4AN01918K
crossref_primary_10_1111_ejn_14528
crossref_primary_10_1016_j_neures_2011_08_011
crossref_primary_10_1038_s41467_018_05847_5
crossref_primary_10_1016_j_conb_2009_10_003
crossref_primary_10_1007_s00429_013_0658_8
crossref_primary_10_1523_JNEUROSCI_2474_12_2012
crossref_primary_10_1146_annurev_neuro_061010_113641
crossref_primary_10_1152_jn_00244_2012
crossref_primary_10_1523_JNEUROSCI_4870_09_2010
crossref_primary_10_1016_j_neuron_2011_06_035
crossref_primary_10_1016_j_baga_2013_10_001
crossref_primary_10_1016_j_neubiorev_2015_09_007
crossref_primary_10_1523_JNEUROSCI_2137_12_2013
crossref_primary_10_1523_JNEUROSCI_4721_12_2013
crossref_primary_10_1016_j_expneurol_2014_03_001
crossref_primary_10_4236_health_2012_431174
crossref_primary_10_1016_j_baga_2013_11_003
crossref_primary_10_1038_npp_2013_299
crossref_primary_10_3389_fncel_2016_00090
crossref_primary_10_1038_s41467_023_43930_8
crossref_primary_10_1113_JP278416
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1523/JNEUROSCI.1527-09.2009
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
ExternalDocumentID 19535589
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
AENEX
AFCFT
AFFNX
AFHIN
AFOSN
AFSQR
AHWXS
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
NPM
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
7X8
AAJMC
ADHGD
AETEA
ID FETCH-LOGICAL-c444t-7073c22949cdf2d0ba31f16507e5b9db7c0344fa7bede5a213d828237b3a36ad2
IEDL.DBID 7X8
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000267131000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1529-2401
IngestDate Fri Sep 05 06:45:17 EDT 2025
Wed Feb 19 02:34:22 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-7073c22949cdf2d0ba31f16507e5b9db7c0344fa7bede5a213d828237b3a36ad2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jneurosci.org/content/jneuro/29/24/7776.full.pdf
PMID 19535589
PQID 67395804
PQPubID 23479
ParticipantIDs proquest_miscellaneous_67395804
pubmed_primary_19535589
PublicationCentury 2000
PublicationDate 2009-Jun-17
20090617
PublicationDateYYYYMMDD 2009-06-17
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-Jun-17
  day: 17
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2009
SSID ssj0007017
Score 2.2414646
Snippet Striatal GABAergic microcircuits modulate cortical responses and movement execution in part by controlling the activity of medium spiny neurons (MSNs). How...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 7776
SubjectTerms 6-Cyano-7-nitroquinoxaline-2,3-dione - pharmacology
Action Potentials - drug effects
Action Potentials - physiology
Adrenergic Agents - pharmacology
Animals
Biological Clocks - drug effects
Biophysics
Corpus Striatum - cytology
Dopamine - deficiency
Dose-Response Relationship, Drug
Electric Stimulation
Excitatory Amino Acid Antagonists - pharmacology
GABA Agents - pharmacology
gamma-Aminobutyric Acid - metabolism
In Vitro Techniques
Inhibitory Postsynaptic Potentials - drug effects
Inhibitory Postsynaptic Potentials - physiology
Interneurons - classification
Interneurons - drug effects
Interneurons - metabolism
Lysine - analogs & derivatives
Lysine - metabolism
Mice
Nicotine - pharmacology
Nicotinic Agonists - pharmacology
Oxidopamine - pharmacology
Patch-Clamp Techniques - methods
Spectrum Analysis
Tyrosine 3-Monooxygenase - metabolism
Valine - analogs & derivatives
Valine - pharmacology
Title Dopamine-deprived striatal GABAergic interneurons burst and generate repetitive gigantic IPSCs in medium spiny neurons
URI https://www.ncbi.nlm.nih.gov/pubmed/19535589
https://www.proquest.com/docview/67395804
Volume 29
WOSCitedRecordID wos000267131000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKZWDhVR7l6QGxWc3DiWMJCYVCoUhUlQpSt8qJnSpD09CklfrvOTup2GBgiZThoii-nL_zd3cfQrdccK48ixLqMYdQxV0iKIdgyKnwAC9Q3xdGbIINBsF4zIcNdL_phdFllZuYaAK1nMf6jLzja0YpsOhD_kW0ZpTmVmsBjS3UdAHIaJ9m459Z4cwyeruwQRkOwa77gyHz6rwNdJ3cqNvXt4xYpmPlF5BpNpve_v9e8wDt1SATh5VXHKKGyo5QK8wgwZ6t8R02ZZ_mPL2FVk-QNs8AaxJdFAuxT2Ij5QGgHL-Ej6FaQGzEqTk41IM8sgLDOhQlFpnEUzO0ulR4oXLdrgbmeJpOYbXApj8cdQuwxJq_X85wkafZGtcPOUafveeP7iupxRhITCktCYNYEDsOpzyWiSOtSLh2YgO-Y8qLuIxYrIcHJoJFSipPOLYrIZlzXBa5wvWFdE7QdjbP1BnCCQ-cJIJNwgoS6jIRBLGwpaW0Ijm1LdlGN5tvOwFn1wyGyNR8WUw2X7eNTqvlmeTVTI6JZgM9L-Dnf9peoN2KEfKJzS5RM4HfXF2hnXhVpsXi2vgQXAfD92_Y_dH6
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dopamine-deprived+striatal+GABAergic+interneurons+burst+and+generate+repetitive+gigantic+IPSCs+in+medium+spiny+neurons&rft.jtitle=The+Journal+of+neuroscience&rft.au=Dehorter%2C+Nathalie&rft.au=Guigoni%2C+Celine&rft.au=Lopez%2C+Catherine&rft.au=Hirsch%2C+June&rft.date=2009-06-17&rft.eissn=1529-2401&rft.volume=29&rft.issue=24&rft.spage=7776&rft_id=info:doi/10.1523%2FJNEUROSCI.1527-09.2009&rft_id=info%3Apmid%2F19535589&rft_id=info%3Apmid%2F19535589&rft.externalDocID=19535589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2401&client=summon