Monitoring beam charge during FLASH irradiations
In recent years, FLASH irradiation has attracted significant interest in radiation research. Studies have shown that irradiation at ultra-high dose rates (FLASH) reduces the severity of toxicities in normal tissues compared to irradiation at conventional dose rates (CONV), as currently used in clini...
Saved in:
| Published in: | Frontiers in physics Vol. 11 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Frontiers Media S.A
11.09.2023
|
| Subjects: | |
| ISSN: | 2296-424X, 2296-424X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent years, FLASH irradiation has attracted significant interest in radiation research. Studies have shown that irradiation at ultra-high dose rates (FLASH) reduces the severity of toxicities in normal tissues compared to irradiation at conventional dose rates (CONV), as currently used in clinical practice. Most pre-clinical work is currently carried out using charged particle beams and the beam charge monitor described here is relevant to such beams. Any biological effect comparisons between FLASH and CONV irradiations rely on measurement of tissue dose. While well-established approaches can be used to monitor, in real time, the dose delivered during CONV irradiations, monitoring FLASH doses is not so straightforward. Recently the use of non-intercepting beam current transformers (BCTs) has been proposed for FLASH work. Such BCTs have been used for decades in numerous accelerator installations to monitor temporal and intensity beam profiles. In order to serve as monitoring dosimeters, the BCT output current must be integrated, using electronic circuitry or using software integration following signal digitisation. While sensitive enough for FLASH irradiation, where few intense pulses deliver the requisite dose, the inherent insensitivity of BCTs and the need for a wide detection bandwidth makes them less suitable for use during CONV “reference” irradiations. The purpose of this article is to remind the FLASH community of a different mode of BCT operation: direct monitoring of charge, rather than current, achieved by loading the BCT capacitively rather than resistively. The resulting resonant operation achieves very high sensitivities, enabling straightforward monitoring of output during both CONV and FLASH regimes. Historically, such inductive charge monitors have been used for single pulse work; however, a straightforward circuit modification allows selective resonance damping when repetitive pulsing is used, as during FLASH and CONV irradiations. Practical means of achieving this are presented, as are construction and signal processing details. Finally, results are presented showing the beneficial behaviour of the BCT versus an (Advanced Markus) ionisation chamber for measurements over a dose rate range, from <0.1 Gys
−1
to >3 kGys
−1
. |
|---|---|
| AbstractList | In recent years, FLASH irradiation has attracted significant interest in radiation research. Studies have shown that irradiation at ultra-high dose rates (FLASH) reduces the severity of toxicities in normal tissues compared to irradiation at conventional dose rates (CONV), as currently used in clinical practice. Most pre-clinical work is currently carried out using charged particle beams and the beam charge monitor described here is relevant to such beams. Any biological effect comparisons between FLASH and CONV irradiations rely on measurement of tissue dose. While well-established approaches can be used to monitor, in real time, the dose delivered during CONV irradiations, monitoring FLASH doses is not so straightforward. Recently the use of non-intercepting beam current transformers (BCTs) has been proposed for FLASH work. Such BCTs have been used for decades in numerous accelerator installations to monitor temporal and intensity beam profiles. In order to serve as monitoring dosimeters, the BCT output current must be integrated, using electronic circuitry or using software integration following signal digitisation. While sensitive enough for FLASH irradiation, where few intense pulses deliver the requisite dose, the inherent insensitivity of BCTs and the need for a wide detection bandwidth makes them less suitable for use during CONV “reference” irradiations. The purpose of this article is to remind the FLASH community of a different mode of BCT operation: direct monitoring of charge, rather than current, achieved by loading the BCT capacitively rather than resistively. The resulting resonant operation achieves very high sensitivities, enabling straightforward monitoring of output during both CONV and FLASH regimes. Historically, such inductive charge monitors have been used for single pulse work; however, a straightforward circuit modification allows selective resonance damping when repetitive pulsing is used, as during FLASH and CONV irradiations. Practical means of achieving this are presented, as are construction and signal processing details. Finally, results are presented showing the beneficial behaviour of the BCT versus an (Advanced Markus) ionisation chamber for measurements over a dose rate range, from <0.1 Gys
−1
to >3 kGys
−1
. In recent years, FLASH irradiation has attracted significant interest in radiation research. Studies have shown that irradiation at ultra-high dose rates (FLASH) reduces the severity of toxicities in normal tissues compared to irradiation at conventional dose rates (CONV), as currently used in clinical practice. Most pre-clinical work is currently carried out using charged particle beams and the beam charge monitor described here is relevant to such beams. Any biological effect comparisons between FLASH and CONV irradiations rely on measurement of tissue dose. While well-established approaches can be used to monitor, in real time, the dose delivered during CONV irradiations, monitoring FLASH doses is not so straightforward. Recently the use of non-intercepting beam current transformers (BCTs) has been proposed for FLASH work. Such BCTs have been used for decades in numerous accelerator installations to monitor temporal and intensity beam profiles. In order to serve as monitoring dosimeters, the BCT output current must be integrated, using electronic circuitry or using software integration following signal digitisation. While sensitive enough for FLASH irradiation, where few intense pulses deliver the requisite dose, the inherent insensitivity of BCTs and the need for a wide detection bandwidth makes them less suitable for use during CONV “reference” irradiations. The purpose of this article is to remind the FLASH community of a different mode of BCT operation: direct monitoring of charge, rather than current, achieved by loading the BCT capacitively rather than resistively. The resulting resonant operation achieves very high sensitivities, enabling straightforward monitoring of output during both CONV and FLASH regimes. Historically, such inductive charge monitors have been used for single pulse work; however, a straightforward circuit modification allows selective resonance damping when repetitive pulsing is used, as during FLASH and CONV irradiations. Practical means of achieving this are presented, as are construction and signal processing details. Finally, results are presented showing the beneficial behaviour of the BCT versus an (Advanced Markus) ionisation chamber for measurements over a dose rate range, from <0.1 Gys−1 to >3 kGys−1. |
| Author | Vojnovic, Borivoj Tullis, Iain D. C. Petersson, Kristoffer Newman, Robert G. |
| Author_xml | – sequence: 1 givenname: Borivoj surname: Vojnovic fullname: Vojnovic, Borivoj – sequence: 2 givenname: Iain D. C. surname: Tullis fullname: Tullis, Iain D. C. – sequence: 3 givenname: Robert G. surname: Newman fullname: Newman, Robert G. – sequence: 4 givenname: Kristoffer surname: Petersson fullname: Petersson, Kristoffer |
| BookMark | eNp1kd1qGzEQhUVIIWmaB8idX8CuflfSZQhNE3DpRVvo3TArzdoKm5WR1pS8fWU7gbbQqxkOOt_RcN6z8ylPxNiN4CulnP847LYvK8mlWgnhjFT2jF1K6bullvrn-R_7Bbuu9YlzLqTxTupLxr_kKc25pGmz6AmfF2GLZUOLuD9K9-vbbw-LVArGhHPKU_3A3g04Vrp-nVfsx_2n73cPy_XXz493t-tl0FrPy46MVdoRV94FSabjwSsrjNRdL8k5Ze0QhSYnhyhd5IiCd73ynIxQQffqij2euDHjE-xKesbyAhkTHIVcNoBlTmEkEOR9O8j2LUwbNG6IjeYUDoKaIhsLT6z6i3b7_i_aLpcZRyhUCUvYwriHStBejSmcLgYbrZd2QOhi9NB4DlznZdON6iOPyinRMuwpI5Rca6EBQpqPgLlgGkFwOHQFh67g0BW8dtWc4h_n2__-7_kN756Yfw |
| CitedBy_id | crossref_primary_10_2478_pjmpe_2024_0038 crossref_primary_10_3389_fphy_2024_1511830 crossref_primary_10_1002_mp_17891 crossref_primary_10_1088_1361_6560_ad40f7 crossref_primary_10_1667_RADE_24_00139_1 crossref_primary_10_1038_s41419_025_07988_0 |
| Cites_doi | 10.1002/mp.14253 10.1002/mp.13685 10.1118/1.3678989 10.1016/j.ijrobp.2018.06.403 10.1118/1.4864244 10.37549/aro1280 10.1016/j.ijrobp.2017.02.101 10.1016/S0168-9002(99)00957-2 10.3390/cancers14051167 10.1109/TIM.2008.2006134 10.1002/mp.15442 10.1088/1361-6560/ac5ed6 10.1667/RADE-19-00012 10.1016/0029-554X(71)90206-0 10.1063/1.4902903 10.1016/0146-5724(84)90187-0 10.1016/j.ijrobp.2019.10.049 10.1109/TNS.2015.2504403 10.1016/j.rinp.2019.102377 10.3389/fphy.2020.00375 10.1016/j.ijrobp.2016.09.018 10.1016/j.net.2020.09.019 10.3390/app11052170 10.1667/RADE-19-00016 10.1016/j.ijrobp.2021.08.004 10.1063/1.1342580 10.1002/mp.14620 10.3389/fonc.2019.01563 10.1002/mp.12111 10.1016/0146-5724(78)90080-8 10.1158/1078-0432.CCR-17-3375 10.1002/mp.15184 10.1088/0031-9155/51/24/009 10.1016/0029-554X(75)90295-5 10.1088/1361-6560/aa8985 10.1118/1.3700400 10.1002/mp.14885 10.1109/TMAG.2004.826910 10.1259/bjr.20180008 10.1016/j.radonc.2019.01.031 10.1088/1361-6560/abd672 10.1088/0031-9155/41/5/005 10.1118/1.1940167 10.1259/0007-1285-53-629-471 10.1016/j.ejmp.2022.11.001 10.1016/0168-9002(84)90041-X 10.1002/mp.12713 10.1109/PAC.2001.986672 10.1016/j.nima.2007.03.002 10.1259/bjr.20190702 10.1038/s41598-021-95807-9 10.3389/fphy.2020.00328 10.1016/j.radonc.2019.05.004 10.1063/1.42124 10.1016/j.radonc.2017.05.003 10.1126/scitranslmed.3008973 10.1016/j.radonc.2019.04.008 10.1063/5.0062509 10.1259/0007-1285-23-274-601 10.1016/s0969-8043(00)00070-1 10.1088/1748-0221/12/03/P03003 10.1016/j.radonc.2019.06.019 10.1109/TCT.1957.1086360 10.1063/1.1685307 10.1088/1748-0221/17/08/P08018 10.1109/TNS.1969.4325406 10.1002/acm2.13433 10.1103/PhysRevAccelBeams.24.050102 10.1002/mp.15474 10.1016/1359-0197(87)90015-4 |
| ContentType | Journal Article |
| CorporateAuthor | Radiotherapy Physics Lunds universitet Naturvetenskapliga fakulteten Faculty of Science Lund University Medical Radiation Physics, Lund Medicinsk strålningsfysik, Lund |
| CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: Medicinsk strålningsfysik, Lund – name: Lund University – name: Radiotherapy Physics – name: Medical Radiation Physics, Lund – name: Faculty of Science – name: Lunds universitet |
| DBID | AAYXX CITATION ADTPV AGCHP AOWAS D8T D95 ZZAVC DOA |
| DOI | 10.3389/fphy.2023.1185237 |
| DatabaseName | CrossRef SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2296-424X |
| ExternalDocumentID | oai_doaj_org_article_1e991257b03945a58fda1083af1e3942 oai_portal_research_lu_se_publications_7d7927fa_6dd9_4238_8692_7d53bd0d3831 10_3389_fphy_2023_1185237 |
| GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV ADMLS AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 ADTPV AGCHP AOWAS ARCSS D8T D95 IPNFZ RIG ZZAVC |
| ID | FETCH-LOGICAL-c444t-6e57348e0398c2e560c93715246b2e88377fd14e82fd28d0aa106b390e513c4b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001070646300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2296-424X |
| IngestDate | Fri Oct 03 12:42:31 EDT 2025 Tue Nov 25 03:38:34 EST 2025 Tue Nov 18 20:44:44 EST 2025 Sat Nov 29 02:18:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c444t-6e57348e0398c2e560c93715246b2e88377fd14e82fd28d0aa106b390e513c4b3 |
| OpenAccessLink | https://doaj.org/article/1e991257b03945a58fda1083af1e3942 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1e991257b03945a58fda1083af1e3942 swepub_primary_oai_portal_research_lu_se_publications_7d7927fa_6dd9_4238_8692_7d53bd0d3831 crossref_citationtrail_10_3389_fphy_2023_1185237 crossref_primary_10_3389_fphy_2023_1185237 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-11 |
| PublicationDateYYYYMMDD | 2023-09-11 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in physics |
| PublicationYear | 2023 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Wardman (B8) 2020; 194 Petersson (B18) 2017; 44 Schüler (B29) 2017; 97 Gotz (B67) 2017; 62 Karsch (B28) 2012; 39 Simmons (B38) 2007; 575 Bourhis (B4) 2019; 139 Anderson (B44) 1971; 42 Unser (B52) 1969; 16 Leggieri (B46) 2016; 63 Schüller (B76) 2017; 12 Esplen (B74) 2022; 67 Vozenin (B7) 2019; 25 Adrian (B9) 2020; 93 Gibbons (B72) 2014; 41 Ashraf (B17) 2020; 8 Patriarca (B32) 2018; 102 Montay-Gruel (B6) 2019; 92 Wilson (B10) 2020; 9 Gonçalves Jorge (B36) 2022; 49 Berne (B62) 2021; 66 Favaudon (B1) 2014; 6 Vignati (B85) 2020; 8 Schuler (B16) 2022; 49 Patil (B42) 2011 Darafsheh (B83) 2020; 47 Okoro (B14) 2022; 14 WilsonRoss (B64) 2004; 40 Arai (B65) 1980; 11 Maxim (B11) 2019; 46 Fainstein (B25) 2000; 52 Oesterle (B35) 2021; 22 Vojnovic (B59) 1987; 29 Webber (B37) 2000; 546 Pruitt (B47) 1971; 92 (B39) 1985 Loo (B2) 2017; 98 Moeckli (B82) 2021; 48 Bourhis (B5) 2019; 139 Diffenderfer (B33) 2019; 106 Unser (B86) 1992; 252 Arai (B66) 1984; 15 Jaccard (B81) 2018; 45 (B78) 2007 Jaccard (B30) 2018; 45 B41 Hayes (B26) 2000; 440 (B34) 2020 Di Martino (B70) 2022; 103 Sharp (B53) 1962 Kranzer (B68) 2021; 48 Covo (B87) 2014; 85 Boag (B21) 1950; 23 Vojnovic (B50) 1984; 24 Larky (B61) 1957; 4 Friedl (B12) 2022; 49 Cardelli (B88) 2021; 92 Faillace (B80) 2021; 24 Klevenhagen (B40) 1985 Steiner (B48) 1975; 127 Boag (B22) 1980; 53 Konradsson (B20) 2020; 194 Zimek (B49) 1978; 11 Boriskin (B58) 2001; 2 Lempart (B31) 2019; 139 Podgorsak (B77) 2005 Dolbilkin (B51) 1984; 226 Ruan (B13) 2021; 111 B54 AguileraOdier (B55) 2013 B56 Montay-Gruel (B3) 2017; 124 Jeong (B43) 2021; 53 Arjomandy (B27) 2012; 39 Gonçalves Jorge (B19) 2019; 139 Boag (B69) 1996; 41 Nesteruk (B84) 2021; 11 Laitano (B71) 2006; 51 Sampayan (B73) 2021; 11 Williams (B79) 1998 Dewa (B60) 1994 Lahaye (B57) 2022; 17 Gotz (B23) 2017; 62 Di Martino (B24) 2005; 32 Kondrath (B45) 2009; 58 Wu (B15) 2021; 2 B63 Ticoş (B75) 2019; 14 |
| References_xml | – volume: 47 start-page: 4348 year: 2020 ident: B83 article-title: Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies publication-title: Med Phys doi: 10.1002/mp.14253 – volume-title: As defined by IEC 60601-2-1: Medical electrical equipment - Part 2-1: Particular requirements for the basic safety and essential performance of electron accelerators in the range 1 MeV to 50 MeV year: 2020 ident: B34 – volume: 46 start-page: 4287 year: 2019 ident: B11 article-title: FLASH radiotherapy: Newsflash or flash in the pan? publication-title: Med Phys doi: 10.1002/mp.13685 – volume: 39 start-page: 912 year: 2012 ident: B27 article-title: EBT2 film as a depth-dose measurement tool for radiotherapy beams over a wide range of energies and modalities publication-title: Med Phys doi: 10.1118/1.3678989 – volume: 102 start-page: 619 year: 2018 ident: B32 article-title: Experimental set-up for FLASH proton irradiation of small animals using a clinical system publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2018.06.403 – volume: 41 start-page: 031501 year: 2014 ident: B72 article-title: Monitor unit calculations for external photon and electron beams: Report of the AAPM therapy Physics committee task group No. 71 publication-title: Med Phys doi: 10.1118/1.4864244 – ident: B41 – volume: 2 start-page: 6 year: 2021 ident: B15 article-title: Technological basis for clinical trials in FLASH radiation therapy: A review publication-title: Appl Rad Oncol doi: 10.37549/aro1280 – volume: 98 start-page: E16 year: 2017 ident: B2 article-title: P003) Delivery of ultra-rapid flash radiation therapy and demonstration of normal tissue sparing after abdominal irradiation of mice publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2017.02.101 – volume: 440 start-page: 453 year: 2000 ident: B26 article-title: Assessment of an alanine EPR dosimetry technique with enhanced precision and accuracy publication-title: Nucl Instrum Methods Phys Res A doi: 10.1016/S0168-9002(99)00957-2 – year: 1998 ident: B79 article-title: A new beam current monitor for the NPL linear accelerator facility – volume: 14 start-page: 1167 year: 2022 ident: B14 article-title: The therapeutic potential of FLASH-RT for pancreatic cancer publication-title: Cancers (Basel) doi: 10.3390/cancers14051167 – volume: 58 start-page: 2008 year: 2009 ident: B45 article-title: Bandwidth of current transformers publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2008.2006134 – volume: 49 start-page: 2082 year: 2022 ident: B16 article-title: Ultra high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm publication-title: Med Phys doi: 10.1002/mp.15442 – volume: 67 start-page: 105003 year: 2022 ident: B74 article-title: Design optimization of an electron-to-photon conversion target for ultra-high dose rate x-ray (FLASH) experiments at TRIUMF publication-title: Phys Med Biol doi: 10.1088/1361-6560/ac5ed6 – volume: 194 start-page: 580 year: 2020 ident: B20 article-title: Correction for ion recombination in a built-in monitor chamber of a clinical linear accelerator at ultra-high dose rates publication-title: Radiat Res doi: 10.1667/RADE-19-00012 – volume: 92 start-page: 285 year: 1971 ident: B47 article-title: Electron beam current monitoring system publication-title: Nucl Instr Meth doi: 10.1016/0029-554X(71)90206-0 – volume: 85 start-page: 125106 year: 2014 ident: B87 article-title: Nondestructive synchronous beam current monitor publication-title: Rev Sci Instr doi: 10.1063/1.4902903 – ident: B54 – volume: 24 start-page: 517 year: 1984 ident: B50 article-title: A sensitive single-pulse beam charge monitor for use with charged particle accelerators publication-title: Radiat Phys Chem doi: 10.1016/0146-5724(84)90187-0 – volume: 106 start-page: 440 year: 2019 ident: B33 article-title: Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2019.10.049 – volume: 63 start-page: 869 year: 2016 ident: B46 article-title: Real-time beam monitor for charged particle medical accelerators publication-title: IEEE Trans Nucl Sci doi: 10.1109/TNS.2015.2504403 – volume-title: Radiation oncology Physics: a handbook for teachers and students year: 2005 ident: B77 – volume: 14 start-page: 102377 year: 2019 ident: B75 article-title: Complementary dosimetry for a 6 MeV electron beam publication-title: Results Phys doi: 10.1016/j.rinp.2019.102377 – volume: 8 start-page: 375 year: 2020 ident: B85 article-title: Beam monitors for tomorrow: The challenges of electron and photon FLASH RT publication-title: Front Phys doi: 10.3389/fphy.2020.00375 – volume-title: IEC 60976 Medical electrical equipment – Medical electron accelerators – functional performance characteristics, 2007 describes the tests to be performed year: 2007 ident: B78 – volume: 97 start-page: 195 year: 2017 ident: B29 article-title: Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator publication-title: Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2016.09.018 – year: 1994 ident: B60 article-title: Pulsed Beam Current monitor with a toroidal core – volume: 53 start-page: 1289 year: 2021 ident: B43 article-title: Electron beam scattering device for FLASH preclinical studies with 6-MeV LINAC publication-title: Nucl Eng Technol doi: 10.1016/j.net.2020.09.019 – volume: 11 start-page: 2170 year: 2021 ident: B84 article-title: FLASH irradiation with proton beams: Beam characteristics and their implications for beam diagnostics publication-title: Appl Sci doi: 10.3390/app11052170 – volume: 194 start-page: 607 year: 2020 ident: B8 article-title: Radiotherapy using high-intensity pulsed radiation beams (FLASH): a radiation-chemical perspective publication-title: Radiat Res doi: 10.1667/RADE-19-00016 – volume: 111 start-page: 1250 year: 2021 ident: B13 article-title: Irradiation at ultra-high (FLASH) dose rates reduces acute normal tissue toxicity in the mouse gastrointestinal system publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2021.08.004 – volume: 546 start-page: 83 year: 2000 ident: B37 article-title: Tutorial on beam current monitoring publication-title: AIP Conf Proc doi: 10.1063/1.1342580 – volume: 48 start-page: 819 year: 2021 ident: B68 article-title: Ion collection efficiency of ionization chambers in ultra-high dose-per-pulse electron beams publication-title: Med Phys doi: 10.1002/mp.14620 – volume: 9 start-page: 1563 year: 2020 ident: B10 article-title: Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold? publication-title: Front Oncol doi: 10.3389/fonc.2019.01563 – volume: 44 start-page: 1157 year: 2017 ident: B18 article-title: High dose-per-pulse electron beam dosimetry - a model to correct for the ion recombination in the advanced Markus ionization chamber publication-title: Med Phys doi: 10.1002/mp.12111 – volume: 11 start-page: 179 year: 1978 ident: B49 article-title: A single-pulse toroidal coil beam-charge monitor publication-title: Radiat Phys Chem doi: 10.1016/0146-5724(78)90080-8 – volume: 25 start-page: 35 year: 2019 ident: B7 article-title: The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-3375 – volume: 49 start-page: 1993 year: 2022 ident: B12 article-title: Radiobiology of the FLASH effect publication-title: Med Phys doi: 10.1002/mp.15184 – year: 2013 ident: B55 article-title: Magnetic materials for current transformers – year: 1962 ident: B53 article-title: The induction type beam monitor for the PS: Hereward transformer MPS-Int-CO-62-15 – volume: 51 start-page: 6419 year: 2006 ident: B71 article-title: Charge collection efficiency in ionization chambers exposed to electron beams with high dose per pulse publication-title: Phys Med Biol doi: 10.1088/0031-9155/51/24/009 – volume: 127 start-page: 11 year: 1975 ident: B48 article-title: A high-precision ferrite-induction beam-current monitoring system publication-title: Nucl Instr Meth doi: 10.1016/0029-554X(75)90295-5 – volume: 62 start-page: 8634 year: 2017 ident: B67 article-title: A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa8985 – volume: 39 start-page: 2447 year: 2012 ident: B28 article-title: Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors publication-title: Med Phys doi: 10.1118/1.3700400 – volume: 48 start-page: 3134 year: 2021 ident: B82 article-title: Commissioning of an ultra-high dose rate pulsed electron beam medical LINAC for FLASH RT preclinical animal experiments and future clinical human protocols publication-title: Med Phys doi: 10.1002/mp.14885 – volume: 40 start-page: 1537 year: 2004 ident: B64 article-title: Modeling frequency-dependent losses in ferrite cores publication-title: IEEE Trans Mag doi: 10.1109/TMAG.2004.826910 – volume: 92 start-page: 20180008 year: 2019 ident: B6 article-title: Expanding the therapeutic index of radiation therapy by normal tissue protection publication-title: Br J Radiol doi: 10.1259/bjr.20180008 – volume: 139 start-page: 40 year: 2019 ident: B31 article-title: Modifying a clinical linear accelerator for delivery of ultrahigh dose rate irradiation publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.01.031 – volume: 66 start-page: 045015 year: 2021 ident: B62 article-title: Monitoring electron energies during FLASH irradiations publication-title: Phys Med Biol doi: 10.1088/1361-6560/abd672 – volume: 41 start-page: 885 year: 1996 ident: B69 article-title: The effect of free-electron collection on the recombination correction to ionization measurements of pulsed radiation publication-title: Phys Med Biol doi: 10.1088/0031-9155/41/5/005 – volume: 32 start-page: 2204 year: 2005 ident: B24 article-title: Ion recombination correction for very high dose-per-pulse high-energy electron beams publication-title: Med Phys doi: 10.1118/1.1940167 – volume: 53 start-page: 471 year: 1980 ident: B22 article-title: Current collection and ionic recombination in small cylindrical ionization chambers exposed to pulsed radiation publication-title: Br J Radiol doi: 10.1259/0007-1285-53-629-471 – volume: 62 start-page: 8634 year: 2017 ident: B23 article-title: A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per pulse publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa8985 – volume: 103 start-page: 175 year: 2022 ident: B70 article-title: A new calculation method for the free electron fraction of an ionization chamber in the ultra-high-dose-per-pulse regimen publication-title: Phys Med doi: 10.1016/j.ejmp.2022.11.001 – volume: 226 start-page: 271 year: 1984 ident: B51 article-title: The choice of optimum parameters of a toroidal charge monitor for precision measurements publication-title: Nucl Instrum Meth.Physics Res doi: 10.1016/0168-9002(84)90041-X – volume: 45 start-page: 863 year: 2018 ident: B81 article-title: High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use publication-title: Med Phys doi: 10.1002/mp.12713 – start-page: 13 volume-title: Physics of electron beam therapy medical Physics handbook year: 1985 ident: B40 – volume: 45 start-page: 863 year: 2018 ident: B30 article-title: High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use publication-title: Med Phys doi: 10.1002/mp.12713 – volume: 2 start-page: 1336 year: 2001 ident: B58 article-title: Magnetic induction monitor measurements of beam spatial characteristics in technological electron linear accelerators publication-title: Proc 2001 Part. Accelerator Conf doi: 10.1109/PAC.2001.986672 – volume: 15 start-page: 99 year: 1984 ident: B66 article-title: Detuning effect in a travelling-wave accelerator structure due to beam loading publication-title: Part Accel – volume: 575 start-page: 334 year: 2007 ident: B38 article-title: A toroidal charge monitor for high-energy picosecond electron beams publication-title: Nucl Instr Meth Phys Res A doi: 10.1016/j.nima.2007.03.002 – volume: 93 start-page: 20190702 year: 2020 ident: B9 article-title: The FLASH effect depends on oxygen concentration publication-title: Br J Radiol doi: 10.1259/bjr.20190702 – ident: B56 – volume: 11 start-page: 17104 year: 2021 ident: B73 article-title: Megavolt bremsstrahlung measurements from linear induction accelerators demonstrate possible use as a FLASH radiotherapy source to reduce acute toxicity publication-title: Sci Rep doi: 10.1038/s41598-021-95807-9 – volume: 8 start-page: 328 year: 2020 ident: B17 article-title: Dosimetry for FLASH radiotherapy: A review of tools and the role of radioluminescence and cherenkov emission publication-title: Front Phys-lausanne doi: 10.3389/fphy.2020.00328 – volume: 139 start-page: 34 year: 2019 ident: B19 article-title: Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose rate publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.05.004 – volume: 252 start-page: 266 year: 1992 ident: B86 article-title: The parametric current transformer, a beam current monitor developed for LEP publication-title: AIP Conf.Proc. doi: 10.1063/1.42124 – volume: 124 start-page: 365 year: 2017 ident: B3 article-title: Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s publication-title: Radiother Oncol doi: 10.1016/j.radonc.2017.05.003 – volume: 6 start-page: 245ra93 year: 2014 ident: B1 article-title: Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3008973 – volume: 139 start-page: 11 year: 2019 ident: B4 article-title: Clinical translation of FLASH radiotherapy: Why and how? publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.04.008 – volume: 92 start-page: 113304 year: 2021 ident: B88 article-title: Design and test of a compact beam current monitor based on a passive RF cavity for a proton therapy linear accelerator publication-title: Rev Sci Instrum doi: 10.1063/5.0062509 – volume: 23 start-page: 601 year: 1950 ident: B21 article-title: Ionization measurements at very high intensities: I. Pulsed radiation beams publication-title: Br J Radiol doi: 10.1259/0007-1285-23-274-601 – volume: 52 start-page: 1195 year: 2000 ident: B25 article-title: ESR/Alanine gamma-dosimetry in the 10–30 Gy range publication-title: Appl Radiat Isot doi: 10.1016/s0969-8043(00)00070-1 – start-page: 2157 year: 2011 ident: B42 article-title: Optimization of dual scattering foil for 6-20 MeV electron beam radiotherapy – volume: 12 start-page: P03003 year: 2017 ident: B76 article-title: Traceable charge measurement of the pulses of a 27 MeV electron beam from a linear accelerator publication-title: J Instrum doi: 10.1088/1748-0221/12/03/P03003 – volume: 11 start-page: 103 year: 1980 ident: B65 article-title: Beam loading effects in a standing wave accelerator structure publication-title: Part Accel – volume: 139 start-page: 18 year: 2019 ident: B5 article-title: Treatment of a first patient with FLASH-radiotherapy publication-title: Radiother Oncol doi: 10.1016/j.radonc.2019.06.019 – ident: B63 – volume: 4 start-page: 124 year: 1957 ident: B61 article-title: Negative-impedance converters publication-title: IRE Trans Circuit Theor doi: 10.1109/TCT.1957.1086360 – volume: 42 start-page: 915 year: 1971 ident: B44 article-title: Wide frequency range current transformers publication-title: Rev Scientific Instr doi: 10.1063/1.1685307 – volume: 17 start-page: P08018 year: 2022 ident: B57 article-title: Low noise optimization of an electron beam current transformer for conventional radiotherapy up to ultra high dose rate irradiations publication-title: J Instrumentation doi: 10.1088/1748-0221/17/08/P08018 – volume: 16 start-page: 934 year: 1969 ident: B52 article-title: Beam current transformer with DC to 200 MHz range publication-title: IEEE Trans Nucl Sci doi: 10.1109/TNS.1969.4325406 – year: 1985 ident: B39 article-title: Radiation dosimetry: Electron beams with energy between 1 and 50 MeV) – volume: 22 start-page: 165 year: 2021 ident: B35 article-title: Implementation and validation of a beam current transformer on a medical pulsed electron beam LINAC for FLASH-RT beam monitoring publication-title: J Appl Clin Med Phys doi: 10.1002/acm2.13433 – volume: 24 start-page: 050102 year: 2021 ident: B80 article-title: Compact S-band linear accelerator system for ultrafast, ultrahigh dose-rate radiotherapy publication-title: Phys Rev Accel Beams doi: 10.1103/PhysRevAccelBeams.24.050102 – volume: 49 start-page: 1831 year: 2022 ident: B36 article-title: Technical note: Validation of an ultrahigh dose rate pulsed electron beam monitoring system using a current transformer for FLASH preclinical studies publication-title: Med Phys doi: 10.1002/mp.15474 – volume: 29 start-page: 409 year: 1987 ident: B59 article-title: Sensitive long pulse beam charge monitor for use with charged particle accelerators publication-title: Int J Radiat App Instrum C Radiat Phys.Chem doi: 10.1016/1359-0197(87)90015-4 |
| SSID | ssj0001259824 |
| Score | 2.272082 |
| Snippet | In recent years, FLASH irradiation has attracted significant interest in radiation research. Studies have shown that irradiation at ultra-high dose rates... |
| SourceID | doaj swepub crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| SubjectTerms | dosimetry electron beam charge FLASH Fysik LINAC Natural Sciences Naturvetenskap Physical Sciences pre-clinical irradiation radiobiology Subatomic Physics Subatomär fysik |
| Title | Monitoring beam charge during FLASH irradiations |
| URI | https://doaj.org/article/1e991257b03945a58fda1083af1e3942 |
| Volume | 11 |
| WOSCitedRecordID | wos001070646300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-424X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001259824 issn: 2296-424X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-424X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001259824 issn: 2296-424X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0iCm7EJ44vunAlVJs0bZOlisMsVAQfiJuQV3FAx6Ez49Jv996kDjMudOOmi9CG5Nw0OSdNzyXkiHJqKkvL1HiOKcx4nZqM6tRaSY1GChuM5x-vqpsb8fQkb2dSfeGZsGgPHIE7pR4YDIwrk-WSF7oQtdMUeIOuqYeSMPsC65kRU3F3BY3pePyMCSpMntbQ6hPMFQ6ThAD1Vc0tRMGv_4dbaFhhumtktaWGyVls0jpZ8IMNshyOaNrRJsni64f7cInx-i0JJkc-iT8aJt2rs7te0m8aNBsIg2mLPHQv7y96aZvvILWc83Fa-gK9Zjz0VFjmgYtYdKsrGC8N8wKkZFU7yr1gtWPCZRqAKE0uM1_Q3HKTb5PFwfvA75AEiBiH6krNbA4CTAsuTQ7kpYawFKw0HZJ9d17Z1gwcc1K8KhAFiJdCvBTipVq8OuR4-sgwOmH8dvM5Ijq9EU2sQwGEVrWhVX-FtkOeYzzmqomyRLVeSC_qdaJGXg1nNjlV5SrJqlqr0jmpgDAKJUrJoLzIjcscqHK6-x8t3CMr2Gs8P0LpPlkcNxN_QJbsx7g_ag7DkITr9eflFw4u4tQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+beam+charge+during+FLASH+irradiations&rft.jtitle=Frontiers+in+physics&rft.au=Borivoj+Vojnovic&rft.au=Iain+D.+C.+Tullis&rft.au=Robert+G.+Newman&rft.au=Kristoffer+Petersson&rft.date=2023-09-11&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-424X&rft.volume=11&rft_id=info:doi/10.3389%2Ffphy.2023.1185237&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1e991257b03945a58fda1083af1e3942 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon |