Monitoring beam charge during FLASH irradiations

In recent years, FLASH irradiation has attracted significant interest in radiation research. Studies have shown that irradiation at ultra-high dose rates (FLASH) reduces the severity of toxicities in normal tissues compared to irradiation at conventional dose rates (CONV), as currently used in clini...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in physics Ročník 11
Hlavní autori: Vojnovic, Borivoj, Tullis, Iain D. C., Newman, Robert G., Petersson, Kristoffer
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Frontiers Media S.A 11.09.2023
Predmet:
ISSN:2296-424X, 2296-424X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, FLASH irradiation has attracted significant interest in radiation research. Studies have shown that irradiation at ultra-high dose rates (FLASH) reduces the severity of toxicities in normal tissues compared to irradiation at conventional dose rates (CONV), as currently used in clinical practice. Most pre-clinical work is currently carried out using charged particle beams and the beam charge monitor described here is relevant to such beams. Any biological effect comparisons between FLASH and CONV irradiations rely on measurement of tissue dose. While well-established approaches can be used to monitor, in real time, the dose delivered during CONV irradiations, monitoring FLASH doses is not so straightforward. Recently the use of non-intercepting beam current transformers (BCTs) has been proposed for FLASH work. Such BCTs have been used for decades in numerous accelerator installations to monitor temporal and intensity beam profiles. In order to serve as monitoring dosimeters, the BCT output current must be integrated, using electronic circuitry or using software integration following signal digitisation. While sensitive enough for FLASH irradiation, where few intense pulses deliver the requisite dose, the inherent insensitivity of BCTs and the need for a wide detection bandwidth makes them less suitable for use during CONV “reference” irradiations. The purpose of this article is to remind the FLASH community of a different mode of BCT operation: direct monitoring of charge, rather than current, achieved by loading the BCT capacitively rather than resistively. The resulting resonant operation achieves very high sensitivities, enabling straightforward monitoring of output during both CONV and FLASH regimes. Historically, such inductive charge monitors have been used for single pulse work; however, a straightforward circuit modification allows selective resonance damping when repetitive pulsing is used, as during FLASH and CONV irradiations. Practical means of achieving this are presented, as are construction and signal processing details. Finally, results are presented showing the beneficial behaviour of the BCT versus an (Advanced Markus) ionisation chamber for measurements over a dose rate range, from <0.1 Gys −1 to >3 kGys −1 .
AbstractList In recent years, FLASH irradiation has attracted significant interest in radiation research. Studies have shown that irradiation at ultra-high dose rates (FLASH) reduces the severity of toxicities in normal tissues compared to irradiation at conventional dose rates (CONV), as currently used in clinical practice. Most pre-clinical work is currently carried out using charged particle beams and the beam charge monitor described here is relevant to such beams. Any biological effect comparisons between FLASH and CONV irradiations rely on measurement of tissue dose. While well-established approaches can be used to monitor, in real time, the dose delivered during CONV irradiations, monitoring FLASH doses is not so straightforward. Recently the use of non-intercepting beam current transformers (BCTs) has been proposed for FLASH work. Such BCTs have been used for decades in numerous accelerator installations to monitor temporal and intensity beam profiles. In order to serve as monitoring dosimeters, the BCT output current must be integrated, using electronic circuitry or using software integration following signal digitisation. While sensitive enough for FLASH irradiation, where few intense pulses deliver the requisite dose, the inherent insensitivity of BCTs and the need for a wide detection bandwidth makes them less suitable for use during CONV “reference” irradiations. The purpose of this article is to remind the FLASH community of a different mode of BCT operation: direct monitoring of charge, rather than current, achieved by loading the BCT capacitively rather than resistively. The resulting resonant operation achieves very high sensitivities, enabling straightforward monitoring of output during both CONV and FLASH regimes. Historically, such inductive charge monitors have been used for single pulse work; however, a straightforward circuit modification allows selective resonance damping when repetitive pulsing is used, as during FLASH and CONV irradiations. Practical means of achieving this are presented, as are construction and signal processing details. Finally, results are presented showing the beneficial behaviour of the BCT versus an (Advanced Markus) ionisation chamber for measurements over a dose rate range, from <0.1 Gys −1 to >3 kGys −1 .
In recent years, FLASH irradiation has attracted significant interest in radiation research. Studies have shown that irradiation at ultra-high dose rates (FLASH) reduces the severity of toxicities in normal tissues compared to irradiation at conventional dose rates (CONV), as currently used in clinical practice. Most pre-clinical work is currently carried out using charged particle beams and the beam charge monitor described here is relevant to such beams. Any biological effect comparisons between FLASH and CONV irradiations rely on measurement of tissue dose. While well-established approaches can be used to monitor, in real time, the dose delivered during CONV irradiations, monitoring FLASH doses is not so straightforward. Recently the use of non-intercepting beam current transformers (BCTs) has been proposed for FLASH work. Such BCTs have been used for decades in numerous accelerator installations to monitor temporal and intensity beam profiles. In order to serve as monitoring dosimeters, the BCT output current must be integrated, using electronic circuitry or using software integration following signal digitisation. While sensitive enough for FLASH irradiation, where few intense pulses deliver the requisite dose, the inherent insensitivity of BCTs and the need for a wide detection bandwidth makes them less suitable for use during CONV “reference” irradiations. The purpose of this article is to remind the FLASH community of a different mode of BCT operation: direct monitoring of charge, rather than current, achieved by loading the BCT capacitively rather than resistively. The resulting resonant operation achieves very high sensitivities, enabling straightforward monitoring of output during both CONV and FLASH regimes. Historically, such inductive charge monitors have been used for single pulse work; however, a straightforward circuit modification allows selective resonance damping when repetitive pulsing is used, as during FLASH and CONV irradiations. Practical means of achieving this are presented, as are construction and signal processing details. Finally, results are presented showing the beneficial behaviour of the BCT versus an (Advanced Markus) ionisation chamber for measurements over a dose rate range, from <0.1 Gys−1 to >3 kGys−1.
Author Vojnovic, Borivoj
Tullis, Iain D. C.
Petersson, Kristoffer
Newman, Robert G.
Author_xml – sequence: 1
  givenname: Borivoj
  surname: Vojnovic
  fullname: Vojnovic, Borivoj
– sequence: 2
  givenname: Iain D. C.
  surname: Tullis
  fullname: Tullis, Iain D. C.
– sequence: 3
  givenname: Robert G.
  surname: Newman
  fullname: Newman, Robert G.
– sequence: 4
  givenname: Kristoffer
  surname: Petersson
  fullname: Petersson, Kristoffer
BookMark eNp1kd1qGzEQhUVIIWmaB8idX8CuflfSZQhNE3DpRVvo3TArzdoKm5WR1pS8fWU7gbbQqxkOOt_RcN6z8ylPxNiN4CulnP847LYvK8mlWgnhjFT2jF1K6bullvrn-R_7Bbuu9YlzLqTxTupLxr_kKc25pGmz6AmfF2GLZUOLuD9K9-vbbw-LVArGhHPKU_3A3g04Vrp-nVfsx_2n73cPy_XXz493t-tl0FrPy46MVdoRV94FSabjwSsrjNRdL8k5Ze0QhSYnhyhd5IiCd73ynIxQQffqij2euDHjE-xKesbyAhkTHIVcNoBlTmEkEOR9O8j2LUwbNG6IjeYUDoKaIhsLT6z6i3b7_i_aLpcZRyhUCUvYwriHStBejSmcLgYbrZd2QOhi9NB4DlznZdON6iOPyinRMuwpI5Rca6EBQpqPgLlgGkFwOHQFh67g0BW8dtWc4h_n2__-7_kN756Yfw
CitedBy_id crossref_primary_10_2478_pjmpe_2024_0038
crossref_primary_10_3389_fphy_2024_1511830
crossref_primary_10_1002_mp_17891
crossref_primary_10_1088_1361_6560_ad40f7
crossref_primary_10_1667_RADE_24_00139_1
crossref_primary_10_1038_s41419_025_07988_0
Cites_doi 10.1002/mp.14253
10.1002/mp.13685
10.1118/1.3678989
10.1016/j.ijrobp.2018.06.403
10.1118/1.4864244
10.37549/aro1280
10.1016/j.ijrobp.2017.02.101
10.1016/S0168-9002(99)00957-2
10.3390/cancers14051167
10.1109/TIM.2008.2006134
10.1002/mp.15442
10.1088/1361-6560/ac5ed6
10.1667/RADE-19-00012
10.1016/0029-554X(71)90206-0
10.1063/1.4902903
10.1016/0146-5724(84)90187-0
10.1016/j.ijrobp.2019.10.049
10.1109/TNS.2015.2504403
10.1016/j.rinp.2019.102377
10.3389/fphy.2020.00375
10.1016/j.ijrobp.2016.09.018
10.1016/j.net.2020.09.019
10.3390/app11052170
10.1667/RADE-19-00016
10.1016/j.ijrobp.2021.08.004
10.1063/1.1342580
10.1002/mp.14620
10.3389/fonc.2019.01563
10.1002/mp.12111
10.1016/0146-5724(78)90080-8
10.1158/1078-0432.CCR-17-3375
10.1002/mp.15184
10.1088/0031-9155/51/24/009
10.1016/0029-554X(75)90295-5
10.1088/1361-6560/aa8985
10.1118/1.3700400
10.1002/mp.14885
10.1109/TMAG.2004.826910
10.1259/bjr.20180008
10.1016/j.radonc.2019.01.031
10.1088/1361-6560/abd672
10.1088/0031-9155/41/5/005
10.1118/1.1940167
10.1259/0007-1285-53-629-471
10.1016/j.ejmp.2022.11.001
10.1016/0168-9002(84)90041-X
10.1002/mp.12713
10.1109/PAC.2001.986672
10.1016/j.nima.2007.03.002
10.1259/bjr.20190702
10.1038/s41598-021-95807-9
10.3389/fphy.2020.00328
10.1016/j.radonc.2019.05.004
10.1063/1.42124
10.1016/j.radonc.2017.05.003
10.1126/scitranslmed.3008973
10.1016/j.radonc.2019.04.008
10.1063/5.0062509
10.1259/0007-1285-23-274-601
10.1016/s0969-8043(00)00070-1
10.1088/1748-0221/12/03/P03003
10.1016/j.radonc.2019.06.019
10.1109/TCT.1957.1086360
10.1063/1.1685307
10.1088/1748-0221/17/08/P08018
10.1109/TNS.1969.4325406
10.1002/acm2.13433
10.1103/PhysRevAccelBeams.24.050102
10.1002/mp.15474
10.1016/1359-0197(87)90015-4
ContentType Journal Article
CorporateAuthor Radiotherapy Physics
Lunds universitet
Naturvetenskapliga fakulteten
Faculty of Science
Lund University
Medical Radiation Physics, Lund
Medicinsk strålningsfysik, Lund
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Medicinsk strålningsfysik, Lund
– name: Lund University
– name: Radiotherapy Physics
– name: Medical Radiation Physics, Lund
– name: Faculty of Science
– name: Lunds universitet
DBID AAYXX
CITATION
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOA
DOI 10.3389/fphy.2023.1185237
DatabaseName CrossRef
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2296-424X
ExternalDocumentID oai_doaj_org_article_1e991257b03945a58fda1083af1e3942
oai_portal_research_lu_se_publications_7d7927fa_6dd9_4238_8692_7d53bd0d3831
10_3389_fphy_2023_1185237
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ADTPV
AGCHP
AOWAS
ARCSS
D8T
D95
IPNFZ
RIG
ZZAVC
ID FETCH-LOGICAL-c444t-6e57348e0398c2e560c93715246b2e88377fd14e82fd28d0aa106b390e513c4b3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001070646300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-424X
IngestDate Fri Oct 03 12:42:31 EDT 2025
Tue Nov 25 03:38:34 EST 2025
Tue Nov 18 20:44:44 EST 2025
Sat Nov 29 02:18:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-6e57348e0398c2e560c93715246b2e88377fd14e82fd28d0aa106b390e513c4b3
OpenAccessLink https://doaj.org/article/1e991257b03945a58fda1083af1e3942
ParticipantIDs doaj_primary_oai_doaj_org_article_1e991257b03945a58fda1083af1e3942
swepub_primary_oai_portal_research_lu_se_publications_7d7927fa_6dd9_4238_8692_7d53bd0d3831
crossref_citationtrail_10_3389_fphy_2023_1185237
crossref_primary_10_3389_fphy_2023_1185237
PublicationCentury 2000
PublicationDate 2023-09-11
PublicationDateYYYYMMDD 2023-09-11
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-11
  day: 11
PublicationDecade 2020
PublicationTitle Frontiers in physics
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Wardman (B8) 2020; 194
Petersson (B18) 2017; 44
Schüler (B29) 2017; 97
Gotz (B67) 2017; 62
Karsch (B28) 2012; 39
Simmons (B38) 2007; 575
Bourhis (B4) 2019; 139
Anderson (B44) 1971; 42
Unser (B52) 1969; 16
Leggieri (B46) 2016; 63
Schüller (B76) 2017; 12
Esplen (B74) 2022; 67
Vozenin (B7) 2019; 25
Adrian (B9) 2020; 93
Gibbons (B72) 2014; 41
Ashraf (B17) 2020; 8
Patriarca (B32) 2018; 102
Montay-Gruel (B6) 2019; 92
Wilson (B10) 2020; 9
Gonçalves Jorge (B36) 2022; 49
Berne (B62) 2021; 66
Favaudon (B1) 2014; 6
Vignati (B85) 2020; 8
Schuler (B16) 2022; 49
Patil (B42) 2011
Darafsheh (B83) 2020; 47
Okoro (B14) 2022; 14
WilsonRoss (B64) 2004; 40
Arai (B65) 1980; 11
Maxim (B11) 2019; 46
Fainstein (B25) 2000; 52
Oesterle (B35) 2021; 22
Vojnovic (B59) 1987; 29
Webber (B37) 2000; 546
Pruitt (B47) 1971; 92
(B39) 1985
Loo (B2) 2017; 98
Moeckli (B82) 2021; 48
Bourhis (B5) 2019; 139
Diffenderfer (B33) 2019; 106
Unser (B86) 1992; 252
Arai (B66) 1984; 15
Jaccard (B81) 2018; 45
(B78) 2007
Jaccard (B30) 2018; 45
B41
Hayes (B26) 2000; 440
(B34) 2020
Di Martino (B70) 2022; 103
Sharp (B53) 1962
Kranzer (B68) 2021; 48
Covo (B87) 2014; 85
Boag (B21) 1950; 23
Vojnovic (B50) 1984; 24
Larky (B61) 1957; 4
Friedl (B12) 2022; 49
Cardelli (B88) 2021; 92
Faillace (B80) 2021; 24
Klevenhagen (B40) 1985
Steiner (B48) 1975; 127
Boag (B22) 1980; 53
Konradsson (B20) 2020; 194
Zimek (B49) 1978; 11
Boriskin (B58) 2001; 2
Lempart (B31) 2019; 139
Podgorsak (B77) 2005
Dolbilkin (B51) 1984; 226
Ruan (B13) 2021; 111
B54
AguileraOdier (B55) 2013
B56
Montay-Gruel (B3) 2017; 124
Jeong (B43) 2021; 53
Arjomandy (B27) 2012; 39
Gonçalves Jorge (B19) 2019; 139
Boag (B69) 1996; 41
Nesteruk (B84) 2021; 11
Laitano (B71) 2006; 51
Sampayan (B73) 2021; 11
Williams (B79) 1998
Dewa (B60) 1994
Lahaye (B57) 2022; 17
Gotz (B23) 2017; 62
Di Martino (B24) 2005; 32
Kondrath (B45) 2009; 58
Wu (B15) 2021; 2
B63
Ticoş (B75) 2019; 14
References_xml – volume: 47
  start-page: 4348
  year: 2020
  ident: B83
  article-title: Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies
  publication-title: Med Phys
  doi: 10.1002/mp.14253
– volume-title: As defined by IEC 60601-2-1: Medical electrical equipment - Part 2-1: Particular requirements for the basic safety and essential performance of electron accelerators in the range 1 MeV to 50 MeV
  year: 2020
  ident: B34
– volume: 46
  start-page: 4287
  year: 2019
  ident: B11
  article-title: FLASH radiotherapy: Newsflash or flash in the pan?
  publication-title: Med Phys
  doi: 10.1002/mp.13685
– volume: 39
  start-page: 912
  year: 2012
  ident: B27
  article-title: EBT2 film as a depth-dose measurement tool for radiotherapy beams over a wide range of energies and modalities
  publication-title: Med Phys
  doi: 10.1118/1.3678989
– volume: 102
  start-page: 619
  year: 2018
  ident: B32
  article-title: Experimental set-up for FLASH proton irradiation of small animals using a clinical system
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2018.06.403
– volume: 41
  start-page: 031501
  year: 2014
  ident: B72
  article-title: Monitor unit calculations for external photon and electron beams: Report of the AAPM therapy Physics committee task group No. 71
  publication-title: Med Phys
  doi: 10.1118/1.4864244
– ident: B41
– volume: 2
  start-page: 6
  year: 2021
  ident: B15
  article-title: Technological basis for clinical trials in FLASH radiation therapy: A review
  publication-title: Appl Rad Oncol
  doi: 10.37549/aro1280
– volume: 98
  start-page: E16
  year: 2017
  ident: B2
  article-title: P003) Delivery of ultra-rapid flash radiation therapy and demonstration of normal tissue sparing after abdominal irradiation of mice
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2017.02.101
– volume: 440
  start-page: 453
  year: 2000
  ident: B26
  article-title: Assessment of an alanine EPR dosimetry technique with enhanced precision and accuracy
  publication-title: Nucl Instrum Methods Phys Res A
  doi: 10.1016/S0168-9002(99)00957-2
– year: 1998
  ident: B79
  article-title: A new beam current monitor for the NPL linear accelerator facility
– volume: 14
  start-page: 1167
  year: 2022
  ident: B14
  article-title: The therapeutic potential of FLASH-RT for pancreatic cancer
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14051167
– volume: 58
  start-page: 2008
  year: 2009
  ident: B45
  article-title: Bandwidth of current transformers
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2008.2006134
– volume: 49
  start-page: 2082
  year: 2022
  ident: B16
  article-title: Ultra high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm
  publication-title: Med Phys
  doi: 10.1002/mp.15442
– volume: 67
  start-page: 105003
  year: 2022
  ident: B74
  article-title: Design optimization of an electron-to-photon conversion target for ultra-high dose rate x-ray (FLASH) experiments at TRIUMF
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ac5ed6
– volume: 194
  start-page: 580
  year: 2020
  ident: B20
  article-title: Correction for ion recombination in a built-in monitor chamber of a clinical linear accelerator at ultra-high dose rates
  publication-title: Radiat Res
  doi: 10.1667/RADE-19-00012
– volume: 92
  start-page: 285
  year: 1971
  ident: B47
  article-title: Electron beam current monitoring system
  publication-title: Nucl Instr Meth
  doi: 10.1016/0029-554X(71)90206-0
– volume: 85
  start-page: 125106
  year: 2014
  ident: B87
  article-title: Nondestructive synchronous beam current monitor
  publication-title: Rev Sci Instr
  doi: 10.1063/1.4902903
– ident: B54
– volume: 24
  start-page: 517
  year: 1984
  ident: B50
  article-title: A sensitive single-pulse beam charge monitor for use with charged particle accelerators
  publication-title: Radiat Phys Chem
  doi: 10.1016/0146-5724(84)90187-0
– volume: 106
  start-page: 440
  year: 2019
  ident: B33
  article-title: Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2019.10.049
– volume: 63
  start-page: 869
  year: 2016
  ident: B46
  article-title: Real-time beam monitor for charged particle medical accelerators
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/TNS.2015.2504403
– volume-title: Radiation oncology Physics: a handbook for teachers and students
  year: 2005
  ident: B77
– volume: 14
  start-page: 102377
  year: 2019
  ident: B75
  article-title: Complementary dosimetry for a 6 MeV electron beam
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2019.102377
– volume: 8
  start-page: 375
  year: 2020
  ident: B85
  article-title: Beam monitors for tomorrow: The challenges of electron and photon FLASH RT
  publication-title: Front Phys
  doi: 10.3389/fphy.2020.00375
– volume-title: IEC 60976 Medical electrical equipment – Medical electron accelerators – functional performance characteristics, 2007 describes the tests to be performed
  year: 2007
  ident: B78
– volume: 97
  start-page: 195
  year: 2017
  ident: B29
  article-title: Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator
  publication-title: Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2016.09.018
– year: 1994
  ident: B60
  article-title: Pulsed Beam Current monitor with a toroidal core
– volume: 53
  start-page: 1289
  year: 2021
  ident: B43
  article-title: Electron beam scattering device for FLASH preclinical studies with 6-MeV LINAC
  publication-title: Nucl Eng Technol
  doi: 10.1016/j.net.2020.09.019
– volume: 11
  start-page: 2170
  year: 2021
  ident: B84
  article-title: FLASH irradiation with proton beams: Beam characteristics and their implications for beam diagnostics
  publication-title: Appl Sci
  doi: 10.3390/app11052170
– volume: 194
  start-page: 607
  year: 2020
  ident: B8
  article-title: Radiotherapy using high-intensity pulsed radiation beams (FLASH): a radiation-chemical perspective
  publication-title: Radiat Res
  doi: 10.1667/RADE-19-00016
– volume: 111
  start-page: 1250
  year: 2021
  ident: B13
  article-title: Irradiation at ultra-high (FLASH) dose rates reduces acute normal tissue toxicity in the mouse gastrointestinal system
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2021.08.004
– volume: 546
  start-page: 83
  year: 2000
  ident: B37
  article-title: Tutorial on beam current monitoring
  publication-title: AIP Conf Proc
  doi: 10.1063/1.1342580
– volume: 48
  start-page: 819
  year: 2021
  ident: B68
  article-title: Ion collection efficiency of ionization chambers in ultra-high dose-per-pulse electron beams
  publication-title: Med Phys
  doi: 10.1002/mp.14620
– volume: 9
  start-page: 1563
  year: 2020
  ident: B10
  article-title: Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold?
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.01563
– volume: 44
  start-page: 1157
  year: 2017
  ident: B18
  article-title: High dose-per-pulse electron beam dosimetry - a model to correct for the ion recombination in the advanced Markus ionization chamber
  publication-title: Med Phys
  doi: 10.1002/mp.12111
– volume: 11
  start-page: 179
  year: 1978
  ident: B49
  article-title: A single-pulse toroidal coil beam-charge monitor
  publication-title: Radiat Phys Chem
  doi: 10.1016/0146-5724(78)90080-8
– volume: 25
  start-page: 35
  year: 2019
  ident: B7
  article-title: The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-3375
– volume: 49
  start-page: 1993
  year: 2022
  ident: B12
  article-title: Radiobiology of the FLASH effect
  publication-title: Med Phys
  doi: 10.1002/mp.15184
– year: 2013
  ident: B55
  article-title: Magnetic materials for current transformers
– year: 1962
  ident: B53
  article-title: The induction type beam monitor for the PS: Hereward transformer MPS-Int-CO-62-15
– volume: 51
  start-page: 6419
  year: 2006
  ident: B71
  article-title: Charge collection efficiency in ionization chambers exposed to electron beams with high dose per pulse
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/51/24/009
– volume: 127
  start-page: 11
  year: 1975
  ident: B48
  article-title: A high-precision ferrite-induction beam-current monitoring system
  publication-title: Nucl Instr Meth
  doi: 10.1016/0029-554X(75)90295-5
– volume: 62
  start-page: 8634
  year: 2017
  ident: B67
  article-title: A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa8985
– volume: 39
  start-page: 2447
  year: 2012
  ident: B28
  article-title: Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors
  publication-title: Med Phys
  doi: 10.1118/1.3700400
– volume: 48
  start-page: 3134
  year: 2021
  ident: B82
  article-title: Commissioning of an ultra-high dose rate pulsed electron beam medical LINAC for FLASH RT preclinical animal experiments and future clinical human protocols
  publication-title: Med Phys
  doi: 10.1002/mp.14885
– volume: 40
  start-page: 1537
  year: 2004
  ident: B64
  article-title: Modeling frequency-dependent losses in ferrite cores
  publication-title: IEEE Trans Mag
  doi: 10.1109/TMAG.2004.826910
– volume: 92
  start-page: 20180008
  year: 2019
  ident: B6
  article-title: Expanding the therapeutic index of radiation therapy by normal tissue protection
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20180008
– volume: 139
  start-page: 40
  year: 2019
  ident: B31
  article-title: Modifying a clinical linear accelerator for delivery of ultrahigh dose rate irradiation
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.01.031
– volume: 66
  start-page: 045015
  year: 2021
  ident: B62
  article-title: Monitoring electron energies during FLASH irradiations
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/abd672
– volume: 41
  start-page: 885
  year: 1996
  ident: B69
  article-title: The effect of free-electron collection on the recombination correction to ionization measurements of pulsed radiation
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/41/5/005
– volume: 32
  start-page: 2204
  year: 2005
  ident: B24
  article-title: Ion recombination correction for very high dose-per-pulse high-energy electron beams
  publication-title: Med Phys
  doi: 10.1118/1.1940167
– volume: 53
  start-page: 471
  year: 1980
  ident: B22
  article-title: Current collection and ionic recombination in small cylindrical ionization chambers exposed to pulsed radiation
  publication-title: Br J Radiol
  doi: 10.1259/0007-1285-53-629-471
– volume: 62
  start-page: 8634
  year: 2017
  ident: B23
  article-title: A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per pulse
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa8985
– volume: 103
  start-page: 175
  year: 2022
  ident: B70
  article-title: A new calculation method for the free electron fraction of an ionization chamber in the ultra-high-dose-per-pulse regimen
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2022.11.001
– volume: 226
  start-page: 271
  year: 1984
  ident: B51
  article-title: The choice of optimum parameters of a toroidal charge monitor for precision measurements
  publication-title: Nucl Instrum Meth.Physics Res
  doi: 10.1016/0168-9002(84)90041-X
– volume: 45
  start-page: 863
  year: 2018
  ident: B81
  article-title: High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use
  publication-title: Med Phys
  doi: 10.1002/mp.12713
– start-page: 13
  volume-title: Physics of electron beam therapy medical Physics handbook
  year: 1985
  ident: B40
– volume: 45
  start-page: 863
  year: 2018
  ident: B30
  article-title: High dose-per-pulse electron beam dosimetry: Commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use
  publication-title: Med Phys
  doi: 10.1002/mp.12713
– volume: 2
  start-page: 1336
  year: 2001
  ident: B58
  article-title: Magnetic induction monitor measurements of beam spatial characteristics in technological electron linear accelerators
  publication-title: Proc 2001 Part. Accelerator Conf
  doi: 10.1109/PAC.2001.986672
– volume: 15
  start-page: 99
  year: 1984
  ident: B66
  article-title: Detuning effect in a travelling-wave accelerator structure due to beam loading
  publication-title: Part Accel
– volume: 575
  start-page: 334
  year: 2007
  ident: B38
  article-title: A toroidal charge monitor for high-energy picosecond electron beams
  publication-title: Nucl Instr Meth Phys Res A
  doi: 10.1016/j.nima.2007.03.002
– volume: 93
  start-page: 20190702
  year: 2020
  ident: B9
  article-title: The FLASH effect depends on oxygen concentration
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20190702
– ident: B56
– volume: 11
  start-page: 17104
  year: 2021
  ident: B73
  article-title: Megavolt bremsstrahlung measurements from linear induction accelerators demonstrate possible use as a FLASH radiotherapy source to reduce acute toxicity
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-95807-9
– volume: 8
  start-page: 328
  year: 2020
  ident: B17
  article-title: Dosimetry for FLASH radiotherapy: A review of tools and the role of radioluminescence and cherenkov emission
  publication-title: Front Phys-lausanne
  doi: 10.3389/fphy.2020.00328
– volume: 139
  start-page: 34
  year: 2019
  ident: B19
  article-title: Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose rate
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.05.004
– volume: 252
  start-page: 266
  year: 1992
  ident: B86
  article-title: The parametric current transformer, a beam current monitor developed for LEP
  publication-title: AIP Conf.Proc.
  doi: 10.1063/1.42124
– volume: 124
  start-page: 365
  year: 2017
  ident: B3
  article-title: Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2017.05.003
– volume: 6
  start-page: 245ra93
  year: 2014
  ident: B1
  article-title: Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3008973
– volume: 139
  start-page: 11
  year: 2019
  ident: B4
  article-title: Clinical translation of FLASH radiotherapy: Why and how?
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.04.008
– volume: 92
  start-page: 113304
  year: 2021
  ident: B88
  article-title: Design and test of a compact beam current monitor based on a passive RF cavity for a proton therapy linear accelerator
  publication-title: Rev Sci Instrum
  doi: 10.1063/5.0062509
– volume: 23
  start-page: 601
  year: 1950
  ident: B21
  article-title: Ionization measurements at very high intensities: I. Pulsed radiation beams
  publication-title: Br J Radiol
  doi: 10.1259/0007-1285-23-274-601
– volume: 52
  start-page: 1195
  year: 2000
  ident: B25
  article-title: ESR/Alanine gamma-dosimetry in the 10–30 Gy range
  publication-title: Appl Radiat Isot
  doi: 10.1016/s0969-8043(00)00070-1
– start-page: 2157
  year: 2011
  ident: B42
  article-title: Optimization of dual scattering foil for 6-20 MeV electron beam radiotherapy
– volume: 12
  start-page: P03003
  year: 2017
  ident: B76
  article-title: Traceable charge measurement of the pulses of a 27 MeV electron beam from a linear accelerator
  publication-title: J Instrum
  doi: 10.1088/1748-0221/12/03/P03003
– volume: 11
  start-page: 103
  year: 1980
  ident: B65
  article-title: Beam loading effects in a standing wave accelerator structure
  publication-title: Part Accel
– volume: 139
  start-page: 18
  year: 2019
  ident: B5
  article-title: Treatment of a first patient with FLASH-radiotherapy
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.06.019
– ident: B63
– volume: 4
  start-page: 124
  year: 1957
  ident: B61
  article-title: Negative-impedance converters
  publication-title: IRE Trans Circuit Theor
  doi: 10.1109/TCT.1957.1086360
– volume: 42
  start-page: 915
  year: 1971
  ident: B44
  article-title: Wide frequency range current transformers
  publication-title: Rev Scientific Instr
  doi: 10.1063/1.1685307
– volume: 17
  start-page: P08018
  year: 2022
  ident: B57
  article-title: Low noise optimization of an electron beam current transformer for conventional radiotherapy up to ultra high dose rate irradiations
  publication-title: J Instrumentation
  doi: 10.1088/1748-0221/17/08/P08018
– volume: 16
  start-page: 934
  year: 1969
  ident: B52
  article-title: Beam current transformer with DC to 200 MHz range
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/TNS.1969.4325406
– year: 1985
  ident: B39
  article-title: Radiation dosimetry: Electron beams with energy between 1 and 50 MeV)
– volume: 22
  start-page: 165
  year: 2021
  ident: B35
  article-title: Implementation and validation of a beam current transformer on a medical pulsed electron beam LINAC for FLASH-RT beam monitoring
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.13433
– volume: 24
  start-page: 050102
  year: 2021
  ident: B80
  article-title: Compact S-band linear accelerator system for ultrafast, ultrahigh dose-rate radiotherapy
  publication-title: Phys Rev Accel Beams
  doi: 10.1103/PhysRevAccelBeams.24.050102
– volume: 49
  start-page: 1831
  year: 2022
  ident: B36
  article-title: Technical note: Validation of an ultrahigh dose rate pulsed electron beam monitoring system using a current transformer for FLASH preclinical studies
  publication-title: Med Phys
  doi: 10.1002/mp.15474
– volume: 29
  start-page: 409
  year: 1987
  ident: B59
  article-title: Sensitive long pulse beam charge monitor for use with charged particle accelerators
  publication-title: Int J Radiat App Instrum C Radiat Phys.Chem
  doi: 10.1016/1359-0197(87)90015-4
SSID ssj0001259824
Score 2.272082
Snippet In recent years, FLASH irradiation has attracted significant interest in radiation research. Studies have shown that irradiation at ultra-high dose rates...
SourceID doaj
swepub
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms dosimetry
electron beam charge
FLASH
Fysik
LINAC
Natural Sciences
Naturvetenskap
Physical Sciences
pre-clinical irradiation
radiobiology
Subatomic Physics
Subatomär fysik
Title Monitoring beam charge during FLASH irradiations
URI https://doaj.org/article/1e991257b03945a58fda1083af1e3942
Volume 11
WOSCitedRecordID wos001070646300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-424X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001259824
  issn: 2296-424X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-424X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001259824
  issn: 2296-424X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCl7EJ64vevAkVJs0bZOjiosHFUEF8RLymKCg67K7evS3O9NUWT3oxUsPIS3JN2ky3yT5hrE97m1TcKDbODbkMoLNleMRDaLqygXhVcpact5cXqq7O301leqLzoQleeAE3CEH9GBwXLmi1LKylYrBcvQbbOSAJe3si17PFJlK0RUSppNpGxNZmD6M2OoDyhWOk4RC9tV8W4havf4faqHtCtNfYouda5gdpSYtsxkYrLD59oimH6-yIv1-FIfLHNjnrBU5gixdNMz650fXZ9njaERiA-1gWmO3_dObk7O8y3eQeynlJK-hIq0ZwJ4qLwB9EU9qdZWQtROgkEo2MXAJSsQgVCgsAlG7UhdQ8dJLV66z2cHLADZYFry2JQTpQhDSQ2kBoJSaNuWiqpTuseKz88Z3YuCUk-LJICkgvAzhZQgv0-HVY_tfrwyTEsZvlY8J0a-KJGLdFqBpTWda85dpe-w-2ePbZxItMZ0W0oN5ejVjMMOpIKdpQqNFE62pQ9AGHUZlVK0FllelC0VAVs43_6OFW2yBek3nRzjfZrOT0SvssDn_Nnkcj3bbIYnPi_fTDzRH5I4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+beam+charge+during+FLASH+irradiations&rft.jtitle=Frontiers+in+physics&rft.au=Vojnovic%2C+Borivoj&rft.au=Tullis%2C+Iain+D.+C.&rft.au=Newman%2C+Robert+G.&rft.au=Petersson%2C+Kristoffer&rft.date=2023-09-11&rft.issn=2296-424X&rft.eissn=2296-424X&rft.volume=11&rft_id=info:doi/10.3389%2Ffphy.2023.1185237&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fphy_2023_1185237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon