Opportunistic Large Array Propagation Models: A Comprehensive Survey

Enabled by the fifth-generation (5G) and beyond 5G communications, large-scale deployments of Internet-of-Things (IoT) networks are expected in various application fields to handle massive machine-type communication (mMTC) services. Device-to-device (D2D) communications can be an effective solution...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 21; číslo 12; s. 4206
Hlavní autori: Nawaz, Farhan, Kumar, Hemant, Hassan, Syed Ali, Jung, Haejoon
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 19.06.2021
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Enabled by the fifth-generation (5G) and beyond 5G communications, large-scale deployments of Internet-of-Things (IoT) networks are expected in various application fields to handle massive machine-type communication (mMTC) services. Device-to-device (D2D) communications can be an effective solution in massive IoT networks to overcome the inherent hardware limitations of small devices. In such D2D scenarios, given that a receiver can benefit from the signal-to-noise-ratio (SNR) advantage through diversity and array gains, cooperative transmission (CT) can be employed, so that multiple IoT nodes can create a virtual antenna array. In particular, Opportunistic Large Array (OLA), which is one type of CT technique, is known to provide fast, energy-efficient, and reliable broadcasting and unicasting without prior coordination, which can be exploited in future mMTC applications. However, OLA-based protocol design and operation are subject to network models to characterize the propagation behavior and evaluate the performance. Further, it has been shown through some experimental studies that the most widely-used model in prior studies on OLA is not accurate for networks with networks with low node density. Therefore, stochastic models using quasi-stationary Markov chain are introduced, which are more complex but more exact to estimate the key performance metrics of the OLA transmissions in practice. Considering the fact that such propagation models should be selected carefully depending on system parameters such as network topology and channel environments, we provide a comprehensive survey on the analytical models and framework of the OLA propagation in the literature, which is not available in the existing survey papers on OLA protocols. In addition, we introduce energy-efficient OLA techniques, which are of paramount importance in energy-limited IoT networks. Furthermore, we discuss future research directions to combine OLA with emerging technologies.
AbstractList Enabled by the fifth-generation (5G) and beyond 5G communications, large-scale deployments of Internet-of-Things (IoT) networks are expected in various application fields to handle massive machine-type communication (mMTC) services. Device-to-device (D2D) communications can be an effective solution in massive IoT networks to overcome the inherent hardware limitations of small devices. In such D2D scenarios, given that a receiver can benefit from the signal-to-noise-ratio (SNR) advantage through diversity and array gains, cooperative transmission (CT) can be employed, so that multiple IoT nodes can create a virtual antenna array. In particular, Opportunistic Large Array (OLA), which is one type of CT technique, is known to provide fast, energy-efficient, and reliable broadcasting and unicasting without prior coordination, which can be exploited in future mMTC applications. However, OLA-based protocol design and operation are subject to network models to characterize the propagation behavior and evaluate the performance. Further, it has been shown through some experimental studies that the most widely-used model in prior studies on OLA is not accurate for networks with networks with low node density. Therefore, stochastic models using quasi-stationary Markov chain are introduced, which are more complex but more exact to estimate the key performance metrics of the OLA transmissions in practice. Considering the fact that such propagation models should be selected carefully depending on system parameters such as network topology and channel environments, we provide a comprehensive survey on the analytical models and framework of the OLA propagation in the literature, which is not available in the existing survey papers on OLA protocols. In addition, we introduce energy-efficient OLA techniques, which are of paramount importance in energy-limited IoT networks. Furthermore, we discuss future research directions to combine OLA with emerging technologies.
Enabled by the fifth-generation (5G) and beyond 5G communications, large-scale deployments of Internet-of-Things (IoT) networks are expected in various application fields to handle massive machine-type communication (mMTC) services. Device-to-device (D2D) communications can be an effective solution in massive IoT networks to overcome the inherent hardware limitations of small devices. In such D2D scenarios, given that a receiver can benefit from the signal-to-noise-ratio (SNR) advantage through diversity and array gains, cooperative transmission (CT) can be employed, so that multiple IoT nodes can create a virtual antenna array. In particular, Opportunistic Large Array (OLA), which is one type of CT technique, is known to provide fast, energy-efficient, and reliable broadcasting and unicasting without prior coordination, which can be exploited in future mMTC applications. However, OLA-based protocol design and operation are subject to network models to characterize the propagation behavior and evaluate the performance. Further, it has been shown through some experimental studies that the most widely-used model in prior studies on OLA is not accurate for networks with networks with low node density. Therefore, stochastic models using quasi-stationary Markov chain are introduced, which are more complex but more exact to estimate the key performance metrics of the OLA transmissions in practice. Considering the fact that such propagation models should be selected carefully depending on system parameters such as network topology and channel environments, we provide a comprehensive survey on the analytical models and framework of the OLA propagation in the literature, which is not available in the existing survey papers on OLA protocols. In addition, we introduce energy-efficient OLA techniques, which are of paramount importance in energy-limited IoT networks. Furthermore, we discuss future research directions to combine OLA with emerging technologies.Enabled by the fifth-generation (5G) and beyond 5G communications, large-scale deployments of Internet-of-Things (IoT) networks are expected in various application fields to handle massive machine-type communication (mMTC) services. Device-to-device (D2D) communications can be an effective solution in massive IoT networks to overcome the inherent hardware limitations of small devices. In such D2D scenarios, given that a receiver can benefit from the signal-to-noise-ratio (SNR) advantage through diversity and array gains, cooperative transmission (CT) can be employed, so that multiple IoT nodes can create a virtual antenna array. In particular, Opportunistic Large Array (OLA), which is one type of CT technique, is known to provide fast, energy-efficient, and reliable broadcasting and unicasting without prior coordination, which can be exploited in future mMTC applications. However, OLA-based protocol design and operation are subject to network models to characterize the propagation behavior and evaluate the performance. Further, it has been shown through some experimental studies that the most widely-used model in prior studies on OLA is not accurate for networks with networks with low node density. Therefore, stochastic models using quasi-stationary Markov chain are introduced, which are more complex but more exact to estimate the key performance metrics of the OLA transmissions in practice. Considering the fact that such propagation models should be selected carefully depending on system parameters such as network topology and channel environments, we provide a comprehensive survey on the analytical models and framework of the OLA propagation in the literature, which is not available in the existing survey papers on OLA protocols. In addition, we introduce energy-efficient OLA techniques, which are of paramount importance in energy-limited IoT networks. Furthermore, we discuss future research directions to combine OLA with emerging technologies.
Enabled by the fifth-generation (5G) and beyond 5G communications, large-scale deploy-ments of Internet-of-Things (IoT) networks are expected in various application fields to handle massive machine-type communication (mMTC) services. Device-to-device (D2D) communications can be an effective solution in massive IoT networks to overcome the inherent hardware limitations of small devices. In such D2D scenarios, given that a receiver can benefit from the signal-to-noise-ratio (SNR) advantage through diversity and array gains, cooperative transmission (CT) can be employed, so that multiple IoT nodes can create a virtual antenna array. In particular, Opportunistic Large Array (OLA), which is one type of CT technique, is known to provide fast, energy-efficient, and reliable broadcasting and unicasting without prior coordination, which can be exploited in future mMTC applications. However, OLA-based protocol design and operation are subject to network models to characterize the propagation behavior and evaluate the performance. Further, it has been shown through some experimental studies that the most widely-used model in prior studies on OLA is not accurate for networks with networks with low node density . Therefore, stochastic models using quasi-stationary Markov chain are introduced, which are more complex but more exact to estimate the key performance metrics of the OLA transmissions in practice. Considering the fact that such propagation models should be selected carefully depending on system parameters such as network topology and channel environments, we provide a comprehensive survey on the analytical models and framework of the OLA propagation in the literature, which is not available in the existing survey papers on OLA protocols. In addition, we introduce energy-efficient OLA techniques, which are of paramount importance in energy-limited IoT networks. Furthermore, we discuss future research directions to combine OLA with emerging technologies. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Author Nawaz, Farhan
Jung, Haejoon
Hassan, Syed Ali
Kumar, Hemant
AuthorAffiliation 1 School of Electrical Engineering & Computer Science (SEECS), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; fnawaz.msee16seecs@seecs.edu.pk (F.N.); hkumar.msee16seecs@seecs.edu.pk (H.K.); ali.hassan@seecs.edu.pk (S.A.H.)
2 Department of Information and Telecommunication Engineering, Incheon National University, Incheon 22012, Korea
AuthorAffiliation_xml – name: 1 School of Electrical Engineering & Computer Science (SEECS), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; fnawaz.msee16seecs@seecs.edu.pk (F.N.); hkumar.msee16seecs@seecs.edu.pk (H.K.); ali.hassan@seecs.edu.pk (S.A.H.)
– name: 2 Department of Information and Telecommunication Engineering, Incheon National University, Incheon 22012, Korea
Author_xml – sequence: 1
  givenname: Farhan
  orcidid: 0000-0001-6006-918X
  surname: Nawaz
  fullname: Nawaz, Farhan
– sequence: 2
  givenname: Hemant
  surname: Kumar
  fullname: Kumar, Hemant
– sequence: 3
  givenname: Syed Ali
  orcidid: 0000-0002-8572-7377
  surname: Hassan
  fullname: Hassan, Syed Ali
– sequence: 4
  givenname: Haejoon
  orcidid: 0000-0003-1901-2784
  surname: Jung
  fullname: Jung, Haejoon
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-43684$$DView record from Swedish Publication Index (Mittuniversitetet)
BookMark eNpdkktvEzEQgC1URNvAgX-wEhc4LNieya6XA1KU8qgUVCQeV8trT9KNNvZi7wbl3-M2VUW4jEf2N59mrLlkZz54Yuyl4G8BGv4uSSEkSl49YRcCJZZKSn72T37OLlPaci4BQD1j55DhucT6gl3dDEOI4-S7NHa2WJm4oWIRozkU32IYzMaMXfDF1-CoT--LRbEMuyHSLfnU7an4PsU9HZ6zp2vTJ3rxcM7Yz08ffyy_lKubz9fLxaq0iDiWFTfgQFaEDqUjgbQG4qKRVTt3bY6KhCNr0QgBzrbQulo2dcUFN7UVBDN2ffS6YLZ6iN3OxIMOptP3FyFutIl5jJ60gHZd8aZpOQBS2yqO3Ckw3CrJEUV2lUdX-kPD1J7Yrrpfi3vbrpu8RqgUZv7Dkc_wjpwlP0bTn5SdvvjuVm_CXisJWOcwY68fBDH8niiN2Z4s9b3xFKak5RwV5Gllk9FX_6HbMEWfv_aOmgtVAVaZenOkbAwpRVo_NiO4vtsL_bgX8Beks6nN
Cites_doi 10.1109/ICC.2013.6655438
10.1109/TVT.2020.3017249
10.1109/TVT.2020.3045751
10.1109/TWC.2013.112613.130093
10.1109/ICCOMM.2010.5509024
10.1109/UIC-ATC-ScalCom.2014.92
10.1007/978-3-540-79549-0_7
10.1109/LCOMM.2016.2642102
10.1109/TGCN.2019.2936544
10.1109/ACCESS.2020.2999450
10.1109/WCNC.2019.8885856
10.1109/TWC.2013.093013.121912
10.1109/TIT.2004.838089
10.1145/1978642.1978657
10.1109/MILCOM.2012.6415736
10.1109/TSP.2003.814519
10.1109/CIMCA.2014.7057826
10.1109/GLOCOM.2008.ECP.41
10.1145/1410107.1410121
10.1109/GLOCOM.2010.5684046
10.1109/TWC.2011.041311.101594
10.1109/ICC.2012.6363675
10.1109/ACCESS.2019.2941992
10.1109/VTCFall.2018.8690997
10.1109/TVT.2019.2891648
10.1109/PIMRC.2010.5672062
10.1109/ICWS.2016.69
10.1109/MVT.2018.2866884
10.1109/GLOCOM.2007.200
10.36227/techrxiv.13724029
10.1109/MCOMSTD.2017.1700031
10.36227/techrxiv.12409457
10.1109/ACCESS.2016.2584178
10.1109/VTC2020-Spring48590.2020.9129077
10.1007/s11277-013-1291-9
10.1109/TII.2018.2821160
10.1109/TWC.2006.04608
10.1109/YAC.2019.8787694
10.1109/SENSORCOMM.2007.4394976
10.1109/NSITNSW.2015.7176430
10.1109/JIOT.2020.3027101
10.1109/ICCCN.2007.4317967
10.1109/GLOCOM.2010.5683832
10.1109/LCOMM.2011.112311.112058
10.1109/MilCIS49828.2020.9282377
10.1109/VTCSpring.2015.7145700
10.1002/ett.4005
10.1155/2014/650236
10.1109/ISED.2016.7977082
10.1109/ICCW.2009.5208049
10.1109/TWC.2009.080729
10.1109/LWC.2018.2890642
10.1109/CCNC49032.2021.9369596
10.1109/TWC.2010.062910.091175
10.1109/SMART50582.2020.9337097
10.1016/j.adhoc.2015.01.018
10.1109/WIRELESSVITAE.2011.5940920
10.1109/MSP.2006.1708409
10.1109/BWCCA.2014.45
10.1109/TIFS.2007.897242
10.1109/JCN.2008.6389841
10.1109/CISS.2010.5464732
10.1109/OJCOMS.2020.2982513
10.1109/JIOT.2021.3063686
10.1109/MELCON.2018.8379081
10.1109/ACCESS.2019.2927082
10.1109/TWC.2014.2318048
10.1109/IWCMC.2015.7289124
10.1109/MILCOM.2009.5379990
10.1109/IWCMC.2019.8766457
10.1109/TWC.2020.3010544
10.1109/SARNOF.2008.4520069
10.1109/COMST.2017.2694469
10.1109/MILCOM.2014.96
10.1016/j.adhoc.2018.08.022
10.1109/ACCESS.2016.2635718
10.1109/MILCOM.2008.4753655
10.1109/WD.2014.7020823
10.1109/JSAC.2007.070223
10.1155/2015/891410
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTPV
AOWAS
DG5
DOA
DOI 10.3390/s21124206
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Mittuniversitetet
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_13bf6099b0334ebb8040d83a0c820441
oai_DiVA_org_miun_43684
PMC8234782
10_3390_s21124206
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTPV
AOWAS
DG5
IPNFZ
RIG
ID FETCH-LOGICAL-c444t-60a3d326e4d42de14ef3e01926b5db26b8e1decc4a113dcb3bd72976010a7c1e3
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000666365300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:32:10 EST 2025
Tue Nov 04 17:01:39 EST 2025
Tue Nov 04 01:50:00 EST 2025
Wed Oct 01 15:09:03 EDT 2025
Tue Oct 07 07:11:10 EDT 2025
Sat Nov 29 07:19:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-60a3d326e4d42de14ef3e01926b5db26b8e1decc4a113dcb3bd72976010a7c1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1901-2784
0000-0001-6006-918X
0000-0002-8572-7377
OpenAccessLink https://www.proquest.com/docview/2545186346?pq-origsite=%requestingapplication%
PMID 34205247
PQID 2545186346
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_13bf6099b0334ebb8040d83a0c820441
swepub_primary_oai_DiVA_org_miun_43684
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8234782
proquest_miscellaneous_2548397629
proquest_journals_2545186346
crossref_primary_10_3390_s21124206
PublicationCentury 2000
PublicationDate 20210619
PublicationDateYYYYMMDD 2021-06-19
PublicationDate_xml – month: 6
  year: 2021
  text: 20210619
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Verma (ref_4) 2017; 19
Lin (ref_38) 2015; 29
ref_50
Jung (ref_19) 2013; 12
Jung (ref_10) 2021; 70
ref_58
ref_57
ref_12
ref_56
ref_55
Jung (ref_34) 2014; 13
ref_52
Mao (ref_88) 2007; 2
ref_51
Hassan (ref_42) 2014; 74
ref_16
ref_59
Akhta (ref_3) 2020; 10
ref_61
Jeong (ref_82) 2021; 8
Lu (ref_87) 2019; 3
ref_60
Lianghai (ref_6) 2017; 1
Kailas (ref_20) 2010; 9
Ahmed (ref_74) 2015; 11
Hussain (ref_47) 2017; 21
Afzal (ref_43) 2014; 13
Kailas (ref_21) 2009; 8
ref_25
ref_24
ref_68
ref_23
ref_67
ref_22
Ahsen (ref_45) 2016; 4
ref_65
ref_64
Hong (ref_29) 2006; 5
ref_63
Jamal (ref_13) 2018; 13
ref_62
ref_27
Kailas (ref_33) 2012; 4
Scaglione (ref_17) 2007; 25
Laneman (ref_15) 2004; 50
Kim (ref_84) 2020; 19
ref_72
ref_71
ref_70
Jiang (ref_79) 2020; 1
Almogren (ref_26) 2019; 7
ElHalawany (ref_8) 2019; 68
ref_36
Hassan (ref_40) 2012; 16
ref_35
Gopi (ref_53) 2020; 31
ref_78
ref_77
ref_32
ref_76
ref_31
Thanayankizil (ref_69) 2011; 8
ref_75
ref_30
Kailas (ref_66) 2008; 10
ref_73
Nawaz (ref_9) 2019; 7
Ijaz (ref_1) 2016; 4
Hassan (ref_39) 2011; 10
ref_37
Thanayankizil (ref_18) 2009; 8
Scaglione (ref_28) 2006; 23
Lyu (ref_85) 2019; 8
Zhang (ref_81) 2020; 8
ref_80
Scaglione (ref_14) 2003; 51
ref_46
ref_89
ref_44
ref_86
ref_41
ref_2
ref_49
ref_48
Shan (ref_83) 2018; 14
Akhtar (ref_11) 2020; 69
Moballegh (ref_54) 2019; 83
ref_5
ref_7
References_xml – ident: ref_57
  doi: 10.1109/ICC.2013.6655438
– volume: 69
  start-page: 11712
  year: 2020
  ident: ref_11
  article-title: STBC-Aided Cooperative NOMA with Timing Offsets, Imperfect Successive Interference Cancellation, and Imperfect Channel State Information
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3017249
– volume: 70
  start-page: 474
  year: 2021
  ident: ref_10
  article-title: Secure Transmission Using Linearly Distributed Virtual Antenna Array with Element Position Perturbations
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3045751
– ident: ref_55
– volume: 13
  start-page: 144
  year: 2014
  ident: ref_34
  article-title: Multi-Packet Opportunistic Large Array Transmission on Strip-Shaped Cooperative Routes or Networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2013.112613.130093
– ident: ref_22
  doi: 10.1109/ICCOMM.2010.5509024
– ident: ref_61
  doi: 10.1109/UIC-ATC-ScalCom.2014.92
– ident: ref_71
  doi: 10.1007/978-3-540-79549-0_7
– volume: 21
  start-page: 869
  year: 2017
  ident: ref_47
  article-title: Impact of Intra-Flow Interference on the Performance of 2-D Multi-Hop Cooperative Network
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2016.2642102
– volume: 3
  start-page: 1087
  year: 2019
  ident: ref_87
  article-title: Ambient Backscatter-Assisted Wireless-Powered Relaying
  publication-title: IEEE Trans. Green Commun. Netw.
  doi: 10.1109/TGCN.2019.2936544
– volume: 8
  start-page: 104386
  year: 2020
  ident: ref_81
  article-title: Outage Analysis and Learning-Based Relay Selection for Opportunistic Lossy Forwarding Relaying Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2999450
– ident: ref_86
  doi: 10.1109/WCNC.2019.8885856
– volume: 12
  start-page: 5631
  year: 2013
  ident: ref_19
  article-title: Multi-packet Interference in Opportunistic Large Array Broadcasts over Disk Networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2013.093013.121912
– ident: ref_35
– volume: 50
  start-page: 3062
  year: 2004
  ident: ref_15
  article-title: Cooperative diversity in wireless networks: Efficient protocols and outage behavior
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2004.838089
– ident: ref_36
  doi: 10.1145/1978642.1978657
– ident: ref_60
  doi: 10.1109/MILCOM.2012.6415736
– volume: 51
  start-page: 2082
  year: 2003
  ident: ref_14
  article-title: Opportunistic large arrays: Cooperative transmission in wireless multihop ad hoc networks to reach far distances
  publication-title: IEEE Trans. Signal Proc.
  doi: 10.1109/TSP.2003.814519
– ident: ref_23
  doi: 10.1109/CIMCA.2014.7057826
– ident: ref_67
  doi: 10.1109/GLOCOM.2008.ECP.41
– ident: ref_73
  doi: 10.1145/1410107.1410121
– ident: ref_16
  doi: 10.1109/GLOCOM.2010.5684046
– ident: ref_31
– volume: 10
  start-page: 2306
  year: 2011
  ident: ref_39
  article-title: A Quasi-Stationary Markov Chain Model of a Cooperative Multi-Hop Linear Network
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2011.041311.101594
– ident: ref_41
  doi: 10.1109/ICC.2012.6363675
– volume: 7
  start-page: 134338
  year: 2019
  ident: ref_9
  article-title: A Physical-Layer Scheduling Approach in Large-Scale Cooperative Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941992
– ident: ref_64
  doi: 10.1109/VTCFall.2018.8690997
– volume: 68
  start-page: 2332
  year: 2019
  ident: ref_8
  article-title: D2D Communication for Enabling Internet-of-Things: Outage Probability Analysis
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2891648
– ident: ref_63
  doi: 10.1109/PIMRC.2010.5672062
– ident: ref_5
  doi: 10.1109/ICWS.2016.69
– volume: 13
  start-page: 70
  year: 2018
  ident: ref_13
  article-title: Efficient Nonorthogonal Multiple Access: Cooperative Use of Distributed Space-Time Block Coding
  publication-title: IEEE Veh. Technol. Mag.
  doi: 10.1109/MVT.2018.2866884
– ident: ref_65
  doi: 10.1109/GLOCOM.2007.200
– ident: ref_77
  doi: 10.36227/techrxiv.13724029
– volume: 1
  start-page: 85
  year: 2017
  ident: ref_6
  article-title: Applying Device-to-Device Communication to Enhance IoT Services
  publication-title: IEEE Commun. Stand. Mag.
  doi: 10.1109/MCOMSTD.2017.1700031
– ident: ref_80
  doi: 10.36227/techrxiv.12409457
– volume: 4
  start-page: 3322
  year: 2016
  ident: ref_1
  article-title: Enabling Massive IoT in 5G and Beyond Systems: PHY Radio Frame Design Considerations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2584178
– ident: ref_78
  doi: 10.1109/VTC2020-Spring48590.2020.9129077
– ident: ref_72
– volume: 8
  start-page: 79
  year: 2009
  ident: ref_18
  article-title: Routing for Wireless Sensor Networks with an Opportunistic Large Array (OLA) Physical Layer
  publication-title: Ad Hoc Sens. Wirel. Netw.
– volume: 74
  start-page: 391
  year: 2014
  ident: ref_42
  article-title: Performance Analysis of Cooperative Multi-hop Strip Networks
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-013-1291-9
– volume: 14
  start-page: 2560
  year: 2018
  ident: ref_83
  article-title: Throughput Maximization for the Wireless Powered Communication in Green Cities
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2821160
– volume: 5
  start-page: 2844
  year: 2006
  ident: ref_29
  article-title: Energy-efficient broadcasting with cooperative transmissions in wireless sensor networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2006.04608
– ident: ref_59
  doi: 10.1109/YAC.2019.8787694
– ident: ref_70
  doi: 10.1109/SENSORCOMM.2007.4394976
– ident: ref_76
  doi: 10.1109/NSITNSW.2015.7176430
– volume: 8
  start-page: 3972
  year: 2021
  ident: ref_82
  article-title: Cooperative Transmission of Energy-Constrained IoT Devices in Wireless-Powered Communication Networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3027101
– ident: ref_27
  doi: 10.1109/ICCCN.2007.4317967
– ident: ref_37
  doi: 10.1109/GLOCOM.2010.5683832
– volume: 16
  start-page: 234
  year: 2012
  ident: ref_40
  article-title: The Benefit of Co-Locating Groups of Nodes in Cooperative Line Networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2011.112311.112058
– ident: ref_50
  doi: 10.1109/MilCIS49828.2020.9282377
– ident: ref_48
  doi: 10.1109/VTCSpring.2015.7145700
– volume: 31
  start-page: e4005
  year: 2020
  ident: ref_53
  article-title: A guaranteed data transmission system for wireless ad hoc networks
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.4005
– ident: ref_56
  doi: 10.1155/2014/650236
– ident: ref_24
  doi: 10.1109/ISED.2016.7977082
– ident: ref_32
  doi: 10.1109/ICCW.2009.5208049
– volume: 8
  start-page: 2831
  year: 2009
  ident: ref_21
  article-title: Alternating opportunistic large arrays in broadcasting for network lifetime extension
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2009.080729
– volume: 8
  start-page: 632
  year: 2019
  ident: ref_85
  article-title: User Cooperation in Wireless-Powered Backscatter Communication Networks
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2018.2890642
– ident: ref_49
  doi: 10.1109/CCNC49032.2021.9369596
– volume: 9
  start-page: 2415
  year: 2010
  ident: ref_20
  article-title: Analysis of a Simple Recruiting Method for Cooperative Routes and Strip Networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2010.062910.091175
– ident: ref_51
  doi: 10.1109/SMART50582.2020.9337097
– volume: 29
  start-page: 117
  year: 2015
  ident: ref_38
  article-title: On cooperative transmission range extension in multi-hop wireless ad hoc and sensor networks: A review
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2015.01.018
– ident: ref_25
  doi: 10.1109/WIRELESSVITAE.2011.5940920
– volume: 23
  start-page: 18
  year: 2006
  ident: ref_28
  article-title: Cooperative communications in mobile ad hoc networks
  publication-title: IEEE Signal Proc. Mag.
  doi: 10.1109/MSP.2006.1708409
– ident: ref_75
  doi: 10.1109/BWCCA.2014.45
– volume: 2
  start-page: 198
  year: 2007
  ident: ref_88
  article-title: Tracing Malicious Relays in Cooperative Wireless Communications
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2007.897242
– volume: 10
  start-page: 213
  year: 2008
  ident: ref_66
  article-title: A simple cooperative transmission protocol for energy-efficient broadcasting over multi-hop wireless networks
  publication-title: J. Commun. Netw.
  doi: 10.1109/JCN.2008.6389841
– ident: ref_12
– ident: ref_68
  doi: 10.1109/CISS.2010.5464732
– volume: 1
  start-page: 320
  year: 2020
  ident: ref_79
  article-title: Deep Learning for Fading Channel Prediction
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2020.2982513
– ident: ref_2
  doi: 10.1109/JIOT.2021.3063686
– ident: ref_7
  doi: 10.1109/MELCON.2018.8379081
– volume: 7
  start-page: 89967
  year: 2019
  ident: ref_26
  article-title: A Decade of Internet of Things: Analysis in the Light of Healthcare Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927082
– volume: 4
  start-page: 68
  year: 2012
  ident: ref_33
  article-title: On the Performance of Alternating Concurrent Cooperative Transmissions in the High Path-Loss Attenuation Regime
  publication-title: Int. J. Netw. Protoc. Algorithms
– volume: 13
  start-page: 4146
  year: 2014
  ident: ref_43
  article-title: Stochastic Modeling of Cooperative Multi-Hop Strip Networks with Fixed Hop Boundaries
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2014.2318048
– ident: ref_44
  doi: 10.1109/IWCMC.2015.7289124
– ident: ref_30
  doi: 10.1109/MILCOM.2009.5379990
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_3
  article-title: The shift to 6G communications: Vision and requirements
  publication-title: Hum. Centric Comput. Inf. Sci.
– ident: ref_52
  doi: 10.1109/IWCMC.2019.8766457
– volume: 19
  start-page: 7309
  year: 2020
  ident: ref_84
  article-title: Backscatter-Aided Cooperative Transmission in Wireless-Powered Heterogeneous Networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.3010544
– ident: ref_89
  doi: 10.1109/SARNOF.2008.4520069
– volume: 19
  start-page: 1457
  year: 2017
  ident: ref_4
  article-title: A Survey on Network Methodologies for Real-Time Analytics of Massive IoT Data and Open Research Issues
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2694469
– ident: ref_58
  doi: 10.1109/MILCOM.2014.96
– volume: 8
  start-page: 79
  year: 2011
  ident: ref_69
  article-title: Opportunistic Large Array Concentric Routing Algorithm (OLACRA) for Upstream Routing in Wireless Sensor Networks
  publication-title: Ad Hoc Netw.
– volume: 83
  start-page: 182
  year: 2019
  ident: ref_54
  article-title: Broadcasting in dense linear networks: To cooperate or not to cooperate?
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2018.08.022
– volume: 4
  start-page: 8925
  year: 2016
  ident: ref_45
  article-title: Propagation Modeling in Large-Scale Cooperative Multi-Hop Ad Hoc Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2635718
– ident: ref_62
  doi: 10.1109/MILCOM.2008.4753655
– ident: ref_46
  doi: 10.1109/WD.2014.7020823
– volume: 25
  start-page: 497
  year: 2007
  ident: ref_17
  article-title: On the power efficiency of cooperative broadcast in dense wireless networks
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2007.070223
– volume: 11
  start-page: 891410
  year: 2015
  ident: ref_74
  article-title: Co-UWSN: Cooperative energy-efficient protocol for underwater WSNs
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1155/2015/891410
SSID ssj0023338
Score 2.332658
SecondaryResourceType review_article
Snippet Enabled by the fifth-generation (5G) and beyond 5G communications, large-scale deployments of Internet-of-Things (IoT) networks are expected in various...
Enabled by the fifth-generation (5G) and beyond 5G communications, large-scale deploy-ments of Internet-of-Things (IoT) networks are expected in various...
SourceID doaj
swepub
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 4206
SubjectTerms 5G mobile communication systems
Access control
Antenna arrays
B5G
Communication
Cooperation
Cooperative transmission
Cooperative transmission (CT)
Deviceto-device (D2D) communication
Emerging technologies
Energy efficiency
Equipment testing
Future research directions
Internet of Things
Internet of Things (IOT)
Internet protocols
L n 5G
Machine type communications
Markov chains
massive Internet-of-Things (IoT)
Massive machine-type communications (mMTC)
Node density
Opportunistic Large Array (OLA)
Propagation
Propagation behavior
Propagation modeling
Review
Signal receivers
Signal to noise ratio
Stochastic models
Stochastic systems
Surveys
Virtual antenna arrays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPOhBfGJ9UUW8FZsmpqm39YUHUcEH3krSpLqgVbq7gv_embS7bL148dJDk9BkJmG-j0y_ATgw1maqkCbKNJORcKWOlMPjrmJpJUboJC69zux1enOjnp-zu6lSX5QT1sgDN4Y7YtyUEmGMiTkXzhiFu84qruMCY5fwv6wniHrGZKqlWhyZV6MjxJHUHw2Q5mAsorJGU9HHi_R3kOXvvMiOeqiPOJdLsNhCxbDXTHEZZly1AgtTAoKrcH77SfiZrqSxU3hNad04oNbf4V2NdPjF2z2kgmdvg5OwF9Lxr91rk7Ue3o_qL_e9Bo-XFw9nV1FbFyEqhBDDSMaaW4RdTliRWMfQwtwRVJPm2Bp8orUtukZoxrgtDDcWITQlv8Q6LZjj6zBbfVRuA8JS6LgspWLcOWGcQTyWmpRlxuhYZyYJYH9sr_yzkb_IkTaQUfOJUQM4JUtOOpBitX-BfsxbP-Z_-TGA7bEf8vYYDXJkr8dMSS7wG3uTZjwAdKuhK_cx8n0UgaokCyDt-K8zoW5L1X_1Utoq4QIxUgCHjac7Q877Tz2_hvf-qMpJql9s_sdSt2A-ocwYqoCUbcPssB65HZgrvob9Qb3rN_IPeBv6Fw
  priority: 102
  providerName: Directory of Open Access Journals
Title Opportunistic Large Array Propagation Models: A Comprehensive Survey
URI https://www.proquest.com/docview/2545186346
https://www.proquest.com/docview/2548397629
https://pubmed.ncbi.nlm.nih.gov/PMC8234782
https://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-43684
https://doaj.org/article/13bf6099b0334ebb8040d83a0c820441
Volume 21
WOSCitedRecordID wos000666365300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLQc4UF4VgbIKCHGLmsSu43Cptu1WILVLxEvLKbJjp10JskuyW6kXfntnnOzScODCxQd7LDn5_PjGHn0D8EYbk8pC6CBVkQi4LVUgLS53GQoj8ISOw9LpzJ4lk4mcTtOsu3BrurDK9Z7oNmozL-iOfB8dmYNICsbF4eJXQFmj6HW1S6GxBdukVMYHsH00nmSfNi4XQw-s1RNi6NzvN2iFZxKlN7p1Cjmx_h7D_Ds-sqci6k6e053_HfNDeNBxTn_UTpJHcMdWj-H-LSXCJ3DycUFEnN620cg_o_hw7FCraz-r0a--cAD6lDntR_POH_m0j9T2sg1_9z-v6it7_RS-no6_HL8PugQLQcE5XwYiVMwgf7Pc8NjYCKFiljif0AdGY4mwGcSYqyhiptBMG-TiFEUTqqSILNuFQTWv7DPwS67CshQyYtZybTUSu0QnUaq1ClWqYw9er394vmh1NHL0PwiVfIOKB0cExcaApK9dxby-yLuVlEdMlwJ5rQ4Z41ZriduQkUyFBZIZJHce7K3ByLv12OR_kPDg1aYZVxI9j6jKzlfORhI7i1MPkt4E6A2o31LNLp0mt4wZR7Llwdt2qvS6nMy-jdw3_Jytqpw0__nzf4_yBdyLKXiGkiSlezBY1iv7Eu4WV8tZUw9hK5kmrpTDbsYP3WUClue_x1iXfTjPvt8AYEoQcQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlwBsRKBAQcIuaxK7XQUJoYam66nZZiVKVU7Bjp10JkiXZLdo_xW9kJo-l4cCtBy45xHZkZ8bffBNPZgBeaGMimQjtRSoQHrep8qTF7S59YQRa6NBPqzyz4_5kIk9OoukG_Gr_haGwyhYTK6A2eULfyHfQkdkNpGBcvJ3_8KhqFJ2utiU0arU4sKuf6LKVb0ZDlO_LMNz7cPR-32uqCngJ53zhCV8xg6TFcsNDYwOcH7NEdITeNRqvOFeDC-MqCJhJNNMGCSiFjviqnwSW4XOvwCZHZZc92JyODqdf1i4eQ4-vzl_EWOTvlOheoQ2kckoXrF5VHKDDaP-Ox-xkLa0s3d7N_-0d3YIbDad2B_UmuA0bNrsD1y9kWrwLw49zcjTo7B47uWOKf8cBhVq50yJHUK0U1KXKcN_K1-7AJZws7Fkd3u9-WhbndnUPPl_KMu5DL8sz-wDclCs_TYUMmLVcW43Eta_7QaS18lWkQweetwKO53WekBj9K9KCeK0FDrwj0a87UGrv6kZenMYNUsQB06lA3q59xrjVWiLMGsmUnyBZQ_LqwHYr_LjBmzL-I3kHnq2bESno-EdlNl9WfSSxzzByoN9RuM6Eui3Z7KzKOS5DxpFMOvCqVs3OkOHseFCt4ftsmcVU04A__Pcsn8K1_aPDcTweTQ4ewVZIgUJUECraht6iWNrHcDU5X8zK4kmzw1z4etkK-xuzoGja
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tuwjBgTcisEBAwC1qEnsdBwmhQqmotpRKPLScgh07bCVIStIu6l_j1zGTR9lw4LYHLjnEdmTH38x8E09mAB5rY2KZCu3FKhAet5nypEVxl74wAi106Gd1ntlpNJvJo6N4vgO_un9hKKyy04m1ojZFSt_IB-jIHARSMC4GWRsWMR-NXyx_eFRBik5au3IaDUQO7eYnum_V88kI9_pJGI5ff3j1xmsrDHgp53zlCV8xgwTGcsNDYwOcK7NEeoQ-MBqvOG-Di-QqCJhJNdMGySiFkfgqSgPL8LnnYA8pOUcZ25tP3s4_b909ht5fk8uIsdgfVOhqoT2k0kqnLGBdKKDHbv-OzexlMK2t3vjK__y-rsLllmu7w0Y4rsGOza_DpVMZGG_A6N2SHBA608dO7pTi4nFAqTbuvCxQ2dbAdali3LfqmTt0SX-W9rgJ-3ffr8sTu7kJH89kGbdgNy9yexvcjCs_y4QMmLVcW42ENtJREGutfBXr0IFH3WYnyyZ_SIJ-FyEi2SLCgZcEg20HSvld3yjKr0mrQZKA6Uwgn9c-Y9xqLVH9GsmUnyKJQ1LrwH4HhKTVQ1XyBwUOPNw2owahYyGV22Jd95HESsPYgagHvt6E-i354rjORS5DxpFkOvC0gWlvyGjxaViv4ftinSdU64Df-fcsH8AFRGkyncwO78LFkOKHqE5UvA-7q3Jt78H59GS1qMr7rbC58OWs8fobfq5xmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opportunistic+Large+Array+Propagation+Models%3A+A+Comprehensive+Survey&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nawaz%2C+Farhan&rft.au=Kumar%2C+Hemant&rft.au=Syed+Ali+Hassan&rft.au=Jung%2C+Haejoon&rft.date=2021-06-19&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=12&rft.spage=4206&rft_id=info:doi/10.3390%2Fs21124206&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon