Covariant color-kinematics duality
A bstract We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the...
Uložené v:
| Vydané v: | The journal of high energy physics Ročník 2021; číslo 11; s. 1 - 46 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
10.11.2021
Springer Nature B.V Springer Nature SpringerOpen |
| Predmet: | |
| ISSN: | 1029-8479, 1029-8479 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A
bstract
We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the kinematic algebra and associated kinematic current. As a byproduct, we also derive new formulations of the special Galileon (SG) and Born-Infeld (BI) theory.
For Yang-Mills (YM) theory, this same approach reveals a novel structure — covariant color-kinematics duality — whose only difference from the conventional duality is that 1
/
□ is replaced with covariant 1
/D
2
. Remarkably, this structure implies that YM theory is itself the covariant double copy of gauged biadjoint scalar (GBAS) theory and an
F
3
theory of field strengths encoding a corresponding kinematic algebra and current. Directly applying the double copy to equations of motion, we derive general relativity (GR) from the product of Einstein-YM and
F
3
theory. This exercise reveals a trivial variant of the classical double copy that recasts any solution of GR as a solution of YM theory in a curved background.
Covariant color-kinematics duality also implies a new decomposition of tree-level amplitudes in YM theory into those of GBAS theory. Using this representation we derive a closed-form, analytic expression for all BCJ numerators in YM theory and the NLSM for any number of particles in any spacetime dimension. By virtue of the double copy, this constitutes an explicit formula for all tree-level scattering amplitudes in YM, GR, NLSM, SG, and BI. |
|---|---|
| AbstractList | We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the kinematic algebra and associated kinematic current. As a byproduct, we also derive new formulations of the special Galileon (SG) and Born-Infeld (BI) theory. For Yang-Mills (YM) theory, this same approach reveals a novel structure — covariant color-kinematics duality — whose only difference from the conventional duality is that 1/$\square$ is replaced with covariant 1/D2. Remarkably, this structure implies that YM theory is itself the covariant double copy of gauged biadjoint scalar (GBAS) theory and an F3 theory of field strengths encoding a corresponding kinematic algebra and current. Directly applying the double copy to equations of motion, we derive general relativity (GR) from the product of Einstein-YM and F3 theory. This exercise reveals a trivial variant of the classical double copy that recasts any solution of GR as a solution of YM theory in a curved background. Covariant color-kinematics duality also implies a new decomposition of tree-level amplitudes in YM theory into those of GBAS theory. Using this representation we derive a closed-form, analytic expression for all BCJ numerators in YM theory and the NLSM for any number of particles in any spacetime dimension. By virtue of the double copy, this constitutes an explicit formula for all tree-level scattering amplitudes in YM, GR, NLSM, SG, and BI. Abstract We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the kinematic algebra and associated kinematic current. As a byproduct, we also derive new formulations of the special Galileon (SG) and Born-Infeld (BI) theory. For Yang-Mills (YM) theory, this same approach reveals a novel structure — covariant color-kinematics duality — whose only difference from the conventional duality is that 1/□ is replaced with covariant 1/D 2. Remarkably, this structure implies that YM theory is itself the covariant double copy of gauged biadjoint scalar (GBAS) theory and an F 3 theory of field strengths encoding a corresponding kinematic algebra and current. Directly applying the double copy to equations of motion, we derive general relativity (GR) from the product of Einstein-YM and F 3 theory. This exercise reveals a trivial variant of the classical double copy that recasts any solution of GR as a solution of YM theory in a curved background. Covariant color-kinematics duality also implies a new decomposition of tree-level amplitudes in YM theory into those of GBAS theory. Using this representation we derive a closed-form, analytic expression for all BCJ numerators in YM theory and the NLSM for any number of particles in any spacetime dimension. By virtue of the double copy, this constitutes an explicit formula for all tree-level scattering amplitudes in YM, GR, NLSM, SG, and BI. We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the kinematic algebra and associated kinematic current. As a byproduct, we also derive new formulations of the special Galileon (SG) and Born-Infeld (BI) theory.For Yang-Mills (YM) theory, this same approach reveals a novel structure — covariant color-kinematics duality — whose only difference from the conventional duality is that 1/□ is replaced with covariant 1/D2. Remarkably, this structure implies that YM theory is itself the covariant double copy of gauged biadjoint scalar (GBAS) theory and an F3 theory of field strengths encoding a corresponding kinematic algebra and current. Directly applying the double copy to equations of motion, we derive general relativity (GR) from the product of Einstein-YM and F3 theory. This exercise reveals a trivial variant of the classical double copy that recasts any solution of GR as a solution of YM theory in a curved background.Covariant color-kinematics duality also implies a new decomposition of tree-level amplitudes in YM theory into those of GBAS theory. Using this representation we derive a closed-form, analytic expression for all BCJ numerators in YM theory and the NLSM for any number of particles in any spacetime dimension. By virtue of the double copy, this constitutes an explicit formula for all tree-level scattering amplitudes in YM, GR, NLSM, SG, and BI. A bstract We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the kinematic algebra and associated kinematic current. As a byproduct, we also derive new formulations of the special Galileon (SG) and Born-Infeld (BI) theory. For Yang-Mills (YM) theory, this same approach reveals a novel structure — covariant color-kinematics duality — whose only difference from the conventional duality is that 1 / □ is replaced with covariant 1 /D 2 . Remarkably, this structure implies that YM theory is itself the covariant double copy of gauged biadjoint scalar (GBAS) theory and an F 3 theory of field strengths encoding a corresponding kinematic algebra and current. Directly applying the double copy to equations of motion, we derive general relativity (GR) from the product of Einstein-YM and F 3 theory. This exercise reveals a trivial variant of the classical double copy that recasts any solution of GR as a solution of YM theory in a curved background. Covariant color-kinematics duality also implies a new decomposition of tree-level amplitudes in YM theory into those of GBAS theory. Using this representation we derive a closed-form, analytic expression for all BCJ numerators in YM theory and the NLSM for any number of particles in any spacetime dimension. By virtue of the double copy, this constitutes an explicit formula for all tree-level scattering amplitudes in YM, GR, NLSM, SG, and BI. We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the kinematic algebra and associated kinematic current. As a byproduct, we also derive new formulations of the special Galileon (SG) and Born-Infeld (BI) theory. For Yang-Mills (YM) theory, this same approach reveals a novel structure — covariant color-kinematics duality — whose only difference from the conventional duality is that 1 / □ is replaced with covariant 1 /D 2 . Remarkably, this structure implies that YM theory is itself the covariant double copy of gauged biadjoint scalar (GBAS) theory and an F 3 theory of field strengths encoding a corresponding kinematic algebra and current. Directly applying the double copy to equations of motion, we derive general relativity (GR) from the product of Einstein-YM and F 3 theory. This exercise reveals a trivial variant of the classical double copy that recasts any solution of GR as a solution of YM theory in a curved background. Covariant color-kinematics duality also implies a new decomposition of tree-level amplitudes in YM theory into those of GBAS theory. Using this representation we derive a closed-form, analytic expression for all BCJ numerators in YM theory and the NLSM for any number of particles in any spacetime dimension. By virtue of the double copy, this constitutes an explicit formula for all tree-level scattering amplitudes in YM, GR, NLSM, SG, and BI. |
| ArticleNumber | 69 |
| Author | Cheung, Clifford Mangan, James |
| Author_xml | – sequence: 1 givenname: Clifford surname: Cheung fullname: Cheung, Clifford organization: Walter Burke Institute for Theoretical Physics, Division of Physics, Mathematics and Astronomy, California Institute of Technology – sequence: 2 givenname: James orcidid: 0000-0002-9713-7446 surname: Mangan fullname: Mangan, James email: james.mangan@northwestern.edu organization: Walter Burke Institute for Theoretical Physics, Division of Physics, Mathematics and Astronomy, California Institute of Technology |
| BackLink | https://www.osti.gov/servlets/purl/1976578$$D View this record in Osti.gov |
| BookMark | eNp1kM1LAzEQxYMoWKtnr1Ivelg7yWY3yVGK2oqgBz2HbDatqdukJqngf2_qKorgaT54v8fMO0C7zjuD0DGGCwzAxrfTqweMzwgQfA612EEDDEQUnDKx-6vfRwcxLgFwhQUM0Gji31SwyqUT7TsfihfrzEolq-NJu1GdTe-HaG-uumiOvuoQPV1fPU6mxd39zWxyeVdoSmkqKGlKLmpaQ1s1IBS0WHHCGCuBshKb3ANtCFGNBjMnhFORJy2AU-CC6nKIZr1v69VSroNdqfAuvbLyc-HDQqqQD-uMxKLSpNTzStQt5aB5CxjamlNVVg1uaPYa9V4-JiujtsnoZ-2dMzplmtUV41l02ovWwb9uTExy6TfB5R8lyc6YcV7jrKp6lQ4-xmDmMrvlgLxLQdlOYpDb_GWfv9zmL3P-mRv_4b5f-p-AnohZ6RYm_NzzH_IB-22TuA |
| CitedBy_id | crossref_primary_10_1103_PhysRevD_111_L021703 crossref_primary_10_1007_JHEP01_2022_186 crossref_primary_10_1007_JHEP10_2022_066 crossref_primary_10_1007_JHEP03_2025_121 crossref_primary_10_1007_JHEP12_2023_118 crossref_primary_10_1007_JHEP01_2023_092 crossref_primary_10_1007_JHEP08_2023_222 crossref_primary_10_1007_JHEP03_2023_177 crossref_primary_10_1007_JHEP03_2023_112 crossref_primary_10_1140_epjc_s10052_023_12325_w crossref_primary_10_1007_JHEP03_2024_081 crossref_primary_10_1007_JHEP01_2024_019 crossref_primary_10_1007_JHEP12_2022_101 crossref_primary_10_1007_JHEP10_2023_022 crossref_primary_10_1140_epjc_s10052_024_12517_y crossref_primary_10_1007_JHEP07_2024_149 crossref_primary_10_1007_JHEP11_2021_126 crossref_primary_10_1007_JHEP07_2024_206 crossref_primary_10_1007_JHEP07_2024_009 crossref_primary_10_1007_JHEP07_2024_002 crossref_primary_10_1007_JHEP02_2023_076 crossref_primary_10_1007_JHEP06_2023_084 crossref_primary_10_1007_JHEP08_2022_160 crossref_primary_10_1007_JHEP04_2022_036 crossref_primary_10_1007_JHEP06_2025_231 crossref_primary_10_1007_JHEP06_2022_021 crossref_primary_10_1007_JHEP05_2024_310 crossref_primary_10_1088_1751_8121_ac8846 crossref_primary_10_1007_JHEP05_2025_060 crossref_primary_10_1007_JHEP02_2024_096 crossref_primary_10_1007_JHEP03_2025_017 crossref_primary_10_1007_JHEP05_2022_027 crossref_primary_10_1007_JHEP05_2022_026 crossref_primary_10_1007_JHEP06_2024_008 crossref_primary_10_1007_JHEP08_2022_035 crossref_primary_10_1007_JHEP03_2024_163 crossref_primary_10_1007_JHEP05_2022_051 crossref_primary_10_1007_JHEP05_2023_047 crossref_primary_10_1007_JHEP09_2023_030 crossref_primary_10_1007_JHEP06_2023_170 |
| Cites_doi | 10.1103/PhysRevLett.120.261602 10.1103/PhysRevLett.120.231602 10.1142/9789813233348_0008 10.1103/PhysRevLett.116.041601 10.1016/0550-3213(86)90362-7 10.1007/JHEP03(2014)110 10.1016/j.nuclphysb.2016.10.012 10.1007/JHEP07(2011)007 10.1016/0370-1573(91)90091-Y 10.1007/JHEP10(2012)091 10.1007/JHEP10(2018)018 10.1007/JHEP08(2014)098 10.1007/JHEP10(2021)141 10.1103/PhysRevLett.105.061602 10.1007/JHEP08(2021)118 10.1007/JHEP12(2014)056 10.1007/JHEP10(2021)042 10.1016/j.physletb.2015.09.021 10.1007/JHEP02(2018)095 10.1007/JHEP02(2021)194 10.1088/1361-6382/ab03e6 10.1016/S0550-3213(99)00809-3 10.1103/PhysRevD.92.023503 10.1007/JHEP01(2011)035 10.1103/PhysRevLett.127.141601 10.1007/JHEP07(2021)198 10.1016/0550-3213(88)90442-7 10.1007/JHEP06(2012)061 10.1103/PhysRevD.84.085009 10.1007/JHEP02(2020)046 10.1103/PhysRevLett.114.221602 10.1007/JHEP01(2017)104 10.1007/JHEP11(2020)158 10.1007/JHEP12(2020)138 10.1007/JHEP07(2021)047 10.1007/JHEP07(2014)143 10.1007/JHEP05(2021)268 10.1090/S0002-9947-1941-0004740-5 10.1007/JHEP09(2017)021 10.1007/JHEP03(2016)097 10.1088/1126-6708/2008/04/076 10.1007/JHEP04(2017)033 10.1007/JHEP09(2018)141 10.1103/PhysRevLett.125.251602 10.1007/JHEP06(2016)023 10.1007/JHEP06(2017)084 10.1007/JHEP07(2014)033 10.1007/JHEP11(2019)055 10.1103/PhysRevD.91.105017 10.1103/PhysRevD.102.125009 10.1007/JHEP05(2013)032 10.1007/JHEP10(2019)022 10.1007/JHEP03(2013)050 10.1007/JHEP01(2011)001 10.1103/PhysRevD.102.105011 10.1088/1126-6708/2009/04/018 10.1103/PhysRevD.78.085011 10.1016/0550-3213(81)90392-8 10.1103/PhysRevLett.126.061602 10.1007/JHEP10(2016)130 10.1007/JHEP07(2015)149 10.1007/JHEP09(2016)094 10.1140/epjc/s10052-019-7604-8 10.1007/JHEP09(2016)174 10.1103/PhysRevLett.118.121601 10.1007/JHEP07(2017)002 10.1007/JHEP04(2018)129 10.1007/JHEP01(2015)081 10.1007/JHEP02(2017)020 10.1103/PhysRevD.94.044023 10.1007/JHEP01(2016)171 10.1007/JHEP09(2017)002 10.1007/JHEP07(2011)092 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | California Institute of Technology (CalTech), Pasadena, CA (United States) |
| CorporateAuthor_xml | – name: California Institute of Technology (CalTech), Pasadena, CA (United States) |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI DOA |
| DOI | 10.1007/JHEP11(2021)069 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1029-8479 |
| EndPage | 46 |
| ExternalDocumentID | oai_doaj_org_article_195c23cf596d480c8d010d684a35b1b4 1976578 10_1007_JHEP11_2021_069 |
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AFFHD AMVHM CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS AAYZJ AFNRJ AHBXF OIOZB OTOTI |
| ID | FETCH-LOGICAL-c444t-42b3896460d5b09a0d1a82777304731e82704b22abc0ef22849b22c90840894c3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000717494800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1029-8479 |
| IngestDate | Fri Oct 03 12:50:37 EDT 2025 Mon Jan 15 05:23:13 EST 2024 Sat Oct 18 22:43:38 EDT 2025 Tue Nov 18 22:12:02 EST 2025 Sat Nov 29 02:12:26 EST 2025 Fri Feb 21 02:47:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Duality in Gauge Field Theories Gauge-gravity correspondence Scattering Amplitudes |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c444t-42b3896460d5b09a0d1a82777304731e82704b22abc0ef22849b22c90840894c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0011632 USDOE Office of Science (SC) Walter Burke Institute |
| ORCID | 0000-0002-9713-7446 0000000297137446 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2596178861?pq-origsite=%requestingapplication% |
| PQID | 2596178861 |
| PQPubID | 2034718 |
| PageCount | 46 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_195c23cf596d480c8d010d684a35b1b4 osti_scitechconnect_1976578 proquest_journals_2596178861 crossref_citationtrail_10_1007_JHEP11_2021_069 crossref_primary_10_1007_JHEP11_2021_069 springer_journals_10_1007_JHEP11_2021_069 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-10 |
| PublicationDateYYYYMMDD | 2021-11-10 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
| PublicationTitle | The journal of high energy physics |
| PublicationTitleAbbrev | J. High Energ. Phys |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Nature SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Nature – name: SpringerOpen |
| References | CheungCRemmenGNHidden simplicity of the gravity actionJHEP2017090022017JHEP...09..002C37141811382.83007[arXiv:1705.00626] [INSPIRE] CachazoFHeSYuanEYScattering of massless particles: scalars, gluons and gravitonsJHEP2014070332014JHEP...07..033C1391.81198[arXiv:1309.0885] [INSPIRE] Arkani-HamedNKaplanJOn tree amplitudes in gauge theory and gravityJHEP2008040762008JHEP...04..076A24252271246.81103[arXiv:0801.2385] [INSPIRE] V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B571 (2000) 51 [hep-ph/9910563] [INSPIRE]. Bjerrum-BohrNEJBourjailyJLDamgaardPHFengBManifesting color-kinematics duality in the scattering equation formalismJHEP2016090942016JHEP...09..094B35579971390.83090[arXiv:1608.00006] [INSPIRE] MizeraSSkrzypekBPerturbiner methods for effective field theories and the double copyJHEP2018100182018JHEP...10..018M38910781402.81193[arXiv:1809.02096] [INSPIRE] C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett.114 (2015) 221602 [arXiv:1412.4095] [INSPIRE]. Bjerrum-BohrNEJBourjailyJLDamgaardPHFengBAnalytic representations of Yang-Mills amplitudesNucl. Phys. B20169139642016NuPhB.913..964B1349.81135[arXiv:1605.06501] [INSPIRE] BroedelJDixonLJColor-kinematics duality and double-copy construction for amplitudes from higher-dimension operatorsJHEP2012100912012JHEP...10..091B[arXiv:1208.0876] [INSPIRE] LunaAMonteiroRNicholsonIO’ConnellDWhiteCDThe double copy: bremsstrahlung and accelerating black holesJHEP2016060232016JHEP...06..023L35381841388.83025[arXiv:1603.05737] [INSPIRE] MafraCRSchlottererOStiebergerSExplicit BCJ numerators from pure spinorsJHEP2011070922011JHEP...07..092M28759471298.81319[arXiv:1104.5224] [INSPIRE] C.D. White, Twistorial foundation for the classical double copy, Phys. Rev. Lett.126 (2021) 061602 [arXiv:2012.02479] [INSPIRE]. A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D spacetimes and the Weyl double copy, Class. Quant. Grav.36 (2019) 065003 [arXiv:1810.08183] [INSPIRE]. MonteiroRO’ConnellDThe kinematic algebra from the self-dual sectorJHEP2011070072011JHEP...07..007M28759911298.81401[arXiv:1105.2565] [INSPIRE] ChenGJohanssonHTengFWangTNext-to-MHV Yang-Mills kinematic algebraJHEP2021100422021JHEP...10..042C4339884[arXiv:2104.12726] [INSPIRE] ManganoMLParkeSJMultiparton amplitudes in gauge theoriesPhys. Rept.19912003011991PhR...200..301M[hep-th/0509223] [INSPIRE] H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE]. ChenGWangTBCJ numerators from differential operator of multidimensional residueEur. Phys. J. C202080372020EPJC...80...37C[arXiv:1709.08503] [INSPIRE] M. Carrillo González, R. Penco and M. Trodden, Shift symmetries, soft limits, and the double copy beyond leading order, Phys. Rev. D102 (2020) 105011 [arXiv:1908.07531] [INSPIRE]. LunaAMonteiroRO’ConnellDWhiteCDThe classical double copy for Taub-NUT spacetimePhys. Lett. B20157502722015PhLB..750..272L1364.83005[arXiv:1507.01869] [INSPIRE] DouglasJSolution of the inverse problem of the calculus of variationsTrans. Amer. Math. Soc.1941507147400025.18102 EberhardtLKomatsuSMizeraSScattering equations in AdS: scalar correlators in arbitrary dimensionsJHEP2020111582020JHEP...11..158E42041201456.83096[arXiv:2007.06574] [INSPIRE] C. Cheung and J. Mangan, Scattering amplitudes and the Navier-Stokes equation, arXiv:2010.15970 [INSPIRE]. FuC-HVanhovePWangYA vertex operator algebra construction of the colour-kinematics dual numeratorJHEP2018091412018JHEP...09..141F38683461398.81252[arXiv:1806.09584] [INSPIRE] N. Arkani-Hamed, L. Rodina and J. Trnka, Locality and unitarity of scattering amplitudes from singularities and gauge invariance, Phys. Rev. Lett.120 (2018) 231602 [arXiv:1612.02797] [INSPIRE]. W.T. Emond, Y.-T. Huang, U. Kol, N. Moynihan and D. O’Connell, Amplitudes from Coulomb to Kerr-Taub-NUT, arXiv:2010.07861 [INSPIRE]. ChenGJohanssonHTengFWangTOn the kinematic algebra for BCJ numerators beyond the MHV sectorJHEP2019110552019JHEP...11..055C4069508[arXiv:1906.10683] [INSPIRE] ChacónENagySWhiteCDThe Weyl double copy from twistor spaceJHEP2021052392021JHEP...05..239C42958041466.83062[arXiv:2103.16441] [INSPIRE] BrandhuberAChenGTravagliniGWenCA new gauge-invariant double copy for heavy-mass effective theoryJHEP2021070472021JHEP...07..047B4317050[arXiv:2104.11206] [INSPIRE] H. Johansson and J. Nohle, Conformal gravity from gauge theory, arXiv:1707.02965 [INSPIRE]. DuY-JFuC-HExplicit BCJ numerators of nonlinear sigma modelJHEP2016091742016JHEP...09..174D1390.81321[arXiv:1606.05846] [INSPIRE] MizeraSInverse of the string theory KLT kernelJHEP2017060842017JHEP...06..084M36784431380.81424[arXiv:1610.04230] [INSPIRE] FuC-HDuY-JHuangRFengBExpansion of Einstein-Yang-Mills amplitudeJHEP2017090212017JHEP...09..021F37141631382.83010[arXiv:1702.08158] [INSPIRE] BridgesEMafraCRAlgorithmic construction of SYM multiparticle superfields in the BCJ gaugeJHEP2019100222019JHEP...10..022B40596721427.83097[arXiv:1906.12252] [INSPIRE] Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The duality between color and kinematics and its applications, arXiv:1909.01358 [INSPIRE]. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE]. K. Roehrig and D. Skinner, Ambitwistor strings and the scattering equations on AdS3 × S3, arXiv:2007.07234 [INSPIRE]. D.Z. Freedman and P.K. Townsend, Antisymmetric tensor gauge theories and nonlinear sigma models, Nucl. Phys. B177 (1981) 282 [INSPIRE]. CheungCRemmenGNShenC-HWenCPions as gluons in higher dimensionsJHEP2018041292018JHEP...04..129C38011451390.81291[arXiv:1709.04932] [INSPIRE] EdisonATengFEfficient calculation of crossing symmetric BCJ tree numeratorsJHEP2020121382020JHEP...12..138E42393151457.83071[arXiv:2005.03638] [INSPIRE] H. Frost, C.R. Mafra and L. Mason, A Lie bracket for the momentum kernel, arXiv:2012.00519 [INSPIRE]. R. Monteiro, D. O’Connell, D. Peinador Veiga and M. Sergola, Classical solutions and their double copy in split signature, JHEP05 (2021) 268 [arXiv:2012.11190] [INSPIRE]. X. Zhou, Double copy relation in AdS space, Phys. Rev. Lett.127 (2021) 141601 [arXiv:2106.07651] [INSPIRE]. ArmstrongCLipsteinAEMeiJColor/kinematics duality in AdS4JHEP2021021942021JHEP...02..194A1460.81104[arXiv:2012.02059] [INSPIRE] K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D92 (2015) 023503 [arXiv:1501.07600] [INSPIRE]. DixonLJHennJMPlefkaJSchusterTAll tree-level amplitudes in massless QCDJHEP2011010352011JHEP...01..035D27922951214.81297[arXiv:1010.3991] [INSPIRE] KampfKNovotnyJTrnkaJTree-level amplitudes in the nonlinear sigma modelJHEP2013050322013JHEP...05..032K1392.81139[arXiv:1304.3048] [INSPIRE] F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B306 (1988) 759 [INSPIRE]. DrummondJMHennJMAll tree-level amplitudes in N = 4 SYMJHEP2009040182009JHEP...04..018D2506011[arXiv:0808.2475] [INSPIRE] ChiodaroliMGünaydinMJohanssonHRoibanRExplicit formulae for Yang-Mills-Einstein amplitudes from the double copyJHEP2017070022017JHEP...07..002C36883981380.83280[arXiv:1703.00421] [INSPIRE] F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP07 (2015) 149 [arXiv:1412.3479] [INSPIRE]. Bjerrum-BohrNEJDamgaardPHMonteiroRO’ConnellDAlgebras for amplitudesJHEP2012060612012JHEP...06..061B30068731397.81135[arXiv:1203.0944] [INSPIRE] C. Cheung, TASI lectures on scattering amplitudes, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: anticipating the next discoveries in particle physics (TASI 2016), Boulder, CO, U.S.A., 6 June –1 July 2016, R. Essig and I. Low eds., World Scientific, Singapore (2018), pg. 571 [arXiv:1708.03872] [INSPIRE]. H.-H. Chi, H. Elvang, A. Herderschee, C.R.T. Jones and S. Paranjape, Generalizations of the double-copy: the KLT bootstrap, arXiv:2106.12600 [INSPIRE]. A.K. Ridgway and M.B. Wise, Static spherically symmetric Kerr-Schild metrics and implications for the classical double copy, Phys. Rev. D94 (2016) 044023 [arXiv:1512.02243] [INSPIRE]. CheungCMossZSymmetry and unification from soft theorems and unitarityJHEP2021051612021JHEP...05..161C43016431466.81044[arXiv:2012.13076] [INSPIRE] HeSMonteiroRSchlottererOString-inspired BCJ numerators for one-loop MHV amplitudesJHEP2016011712016JHEP...01..171H34714091388.81544[arXiv:1507.06288] [INSPIRE] DuY-JTengFBCJ numerators from reduced PfaffianJHEP2017040332017JHEP...04..033D36577351378.81071[arXiv:1703.05717] [INSPIRE] CheungCKampfKNovotnyJShenC-HTrnkaJA periodic table of effective field theoriesJHEP2017020202017JHEP...02..020C36402471377.81123[arXiv:1611.03137] [INSPIRE] ChiodaroliMGünaydinMJohanssonHRoibanRScattering amplitudes in N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravityJHEP2015010812015JHEP...01..081C33139611388.83772[arXiv:1408.0764] [INSPIRE] C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka and C. Wen, Vector effective field theories from soft limits, Phys. Rev. Lett.120 (2018) 261602 [arXiv:1801.01496] [INSPIRE]. C. Cheung and C.-H. Shen, Symmetry for flavor-kinematics duality from an action, Phys. Rev. Lett.118 (2017) 121601 [arXiv:1612.00868] [INSPIRE]. C. Cheung, J. Mangan and C.-H. Shen, Hidden conformal invariance of scalar effective field theories, Phys. Rev. D102 (2020) 125009 [arXiv:2005.13027] [INSPIRE]. MafraCRSchlottererOBerends-Giele recursions and the BCJ duality in superspace and componentsJHEP2016030972016JHEP...03..097M1388.81581[arXiv:1510.08846] [INSPIRE] MonteiroRO’ConnellDThe kinematic algebras from the scattering equationsJHEP2014031102014JHEP...03..110M31909361333.81421[arXiv:1311.1151] [INSPIRE] CheungCShenC-HWenCUnifying relations for scattering amplitudesJHEP2018020952018JHEP...02..095C37851571387.81264[arXiv:1705.03025] [INSPIRE] J. Broedel and J.J.M. Carrasco, Virtuous trees at five and six points for Yang-M C-H Fu (17111_CR60) 2014; 08 N Arkani-Hamed (17111_CR29) 2008; 04 CW Misner (17111_CR32) 1973 Y-J Du (17111_CR59) 2016; 09 JM Drummond (17111_CR70) 2009; 04 17111_CR10 17111_CR2 17111_CR1 K Farnsworth (17111_CR27) 2021; 07 17111_CR18 17111_CR9 R Monteiro (17111_CR5) 2011; 07 17111_CR4 17111_CR3 RW Brown (17111_CR86) 2016; 10 M Chiodaroli (17111_CR16) 2015; 01 17111_CR46 17111_CR45 17111_CR48 17111_CR47 17111_CR41 17111_CR44 C-H Fu (17111_CR61) 2013; 03 CR Mafra (17111_CR65) 2016; 03 R Monteiro (17111_CR33) 2014; 12 R Monteiro (17111_CR7) 2014; 03 C Cheung (17111_CR25) 2018; 04 G Chen (17111_CR8) 2019; 11 CR Mafra (17111_CR57) 2011; 07 G Chen (17111_CR58) 2020; 80 S He (17111_CR53) 2021; 08 17111_CR51 E Bridges (17111_CR66) 2019; 10 C Cheung (17111_CR31) 2017; 09 C-H Fu (17111_CR62) 2018; 09 L Eberhardt (17111_CR83) 2020; 11 C Cheung (17111_CR19) 2021; 05 17111_CR35 17111_CR79 17111_CR78 17111_CR37 ML Mangano (17111_CR13) 1991; 200 17111_CR36 C Cheung (17111_CR74) 2017; 02 A Luna (17111_CR38) 2016; 06 NEJ Bjerrum-Bohr (17111_CR64) 2016; 913 17111_CR76 A Edison (17111_CR52) 2020; 12 NEJ Bjerrum-Bohr (17111_CR63) 2016; 09 LJ Dixon (17111_CR71) 2011; 01 17111_CR39 G Chen (17111_CR54) 2021; 10 NEJ Bjerrum-Bohr (17111_CR6) 2012; 06 M Chiodaroli (17111_CR17) 2017; 07 C Cheung (17111_CR43) 2018; 02 C-H Fu (17111_CR50) 2017; 09 A Brandhuber (17111_CR55) 2021; 07 17111_CR82 17111_CR40 17111_CR84 S He (17111_CR56) 2016; 01 P Diwakar (17111_CR81) 2021; 10 Y-J Du (17111_CR49) 2017; 04 17111_CR80 NEJ Bjerrum-Bohr (17111_CR69) 2011; 01 C Armstrong (17111_CR85) 2021; 02 17111_CR24 S Mizera (17111_CR12) 2017; 06 17111_CR23 17111_CR67 K Kampf (17111_CR75) 2013; 05 J Broedel (17111_CR77) 2012; 10 17111_CR26 17111_CR20 17111_CR22 17111_CR21 C Cheung (17111_CR30) 2017; 01 17111_CR28 J Douglas (17111_CR15) 1941; 50 F Cachazo (17111_CR11) 2014; 07 E Chacón (17111_CR42) 2021; 05 A Luna (17111_CR34) 2015; 750 S Mizera (17111_CR14) 2018; 10 17111_CR73 17111_CR72 SG Naculich (17111_CR68) 2014; 07 |
| References_xml | – reference: Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The duality between color and kinematics and its applications, arXiv:1909.01358 [INSPIRE]. – reference: X. Zhou, Double copy relation in AdS space, Phys. Rev. Lett.127 (2021) 141601 [arXiv:2106.07651] [INSPIRE]. – reference: DuY-JTengFBCJ numerators from reduced PfaffianJHEP2017040332017JHEP...04..033D36577351378.81071[arXiv:1703.05717] [INSPIRE] – reference: H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B269 (1986) 1 [INSPIRE]. – reference: FuC-HDuY-JFengBAn algebraic approach to BCJ numeratorsJHEP2013030502013JHEP...03..050F30467271342.81351[arXiv:1212.6168] [INSPIRE] – reference: K. Roehrig and D. Skinner, Ambitwistor strings and the scattering equations on AdS3 × S3, arXiv:2007.07234 [INSPIRE]. – reference: L.J. Dixon, A brief introduction to modern amplitude methods, in Theoretical Advanced Study Institute in Elementary Particle Physics. Particle physics: the Higgs boson and beyond, SLAC-PUB-15775, (2014), pg. 31 [arXiv:1310.5353] [INSPIRE]. – reference: C. Cheung and J. Mangan, Scattering amplitudes and the Navier-Stokes equation, arXiv:2010.15970 [INSPIRE]. – reference: MonteiroRO’ConnellDThe kinematic algebras from the scattering equationsJHEP2014031102014JHEP...03..110M31909361333.81421[arXiv:1311.1151] [INSPIRE] – reference: CachazoFHeSYuanEYScattering of massless particles: scalars, gluons and gravitonsJHEP2014070332014JHEP...07..033C1391.81198[arXiv:1309.0885] [INSPIRE] – reference: FuC-HDuY-JFengBNote on symmetric BCJ numeratorJHEP2014080982014JHEP...08..098F[arXiv:1403.6262] [INSPIRE] – reference: C.D. White, Twistorial foundation for the classical double copy, Phys. Rev. Lett.126 (2021) 061602 [arXiv:2012.02479] [INSPIRE]. – reference: Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE]. – reference: C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett.114 (2015) 221602 [arXiv:1412.4095] [INSPIRE]. – reference: HeSMonteiroRSchlottererOString-inspired BCJ numerators for one-loop MHV amplitudesJHEP2016011712016JHEP...01..171H34714091388.81544[arXiv:1507.06288] [INSPIRE] – reference: KampfKNovotnyJTrnkaJTree-level amplitudes in the nonlinear sigma modelJHEP2013050322013JHEP...05..032K1392.81139[arXiv:1304.3048] [INSPIRE] – reference: C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-shell recursion relations for effective field theories, Phys. Rev. Lett.116 (2016) 041601 [arXiv:1509.03309] [INSPIRE]. – reference: BrandhuberAChenGTravagliniGWenCA new gauge-invariant double copy for heavy-mass effective theoryJHEP2021070472021JHEP...07..047B4317050[arXiv:2104.11206] [INSPIRE] – reference: ChiodaroliMGünaydinMJohanssonHRoibanRExplicit formulae for Yang-Mills-Einstein amplitudes from the double copyJHEP2017070022017JHEP...07..002C36883981380.83280[arXiv:1703.00421] [INSPIRE] – reference: L.J. Dixon, Calculating scattering amplitudes efficiently, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 95): QCD and beyond, (1996), pg. 539 [hep-ph/9601359] [INSPIRE]. – reference: LunaAMonteiroRO’ConnellDWhiteCDThe classical double copy for Taub-NUT spacetimePhys. Lett. B20157502722015PhLB..750..272L1364.83005[arXiv:1507.01869] [INSPIRE] – reference: ChenGWangTBCJ numerators from differential operator of multidimensional residueEur. Phys. J. C202080372020EPJC...80...37C[arXiv:1709.08503] [INSPIRE] – reference: A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D spacetimes and the Weyl double copy, Class. Quant. Grav.36 (2019) 065003 [arXiv:1810.08183] [INSPIRE]. – reference: ChacónENagySWhiteCDThe Weyl double copy from twistor spaceJHEP2021052392021JHEP...05..239C42958041466.83062[arXiv:2103.16441] [INSPIRE] – reference: DouglasJSolution of the inverse problem of the calculus of variationsTrans. Amer. Math. Soc.1941507147400025.18102 – reference: MafraCRSchlottererOBerends-Giele recursions and the BCJ duality in superspace and componentsJHEP2016030972016JHEP...03..097M1388.81581[arXiv:1510.08846] [INSPIRE] – reference: FuC-HDuY-JHuangRFengBExpansion of Einstein-Yang-Mills amplitudeJHEP2017090212017JHEP...09..021F37141631382.83010[arXiv:1702.08158] [INSPIRE] – reference: BroedelJDixonLJColor-kinematics duality and double-copy construction for amplitudes from higher-dimension operatorsJHEP2012100912012JHEP...10..091B[arXiv:1208.0876] [INSPIRE] – reference: Bjerrum-BohrNEJDamgaardPHMonteiroRO’ConnellDAlgebras for amplitudesJHEP2012060612012JHEP...06..061B30068731397.81135[arXiv:1203.0944] [INSPIRE] – reference: FarnsworthKHinterbichlerKHulikOOn the conformal symmetry of exceptional scalar theoriesJHEP2021071982021JHEP...07..198F43164731468.81093[arXiv:2102.12479] [INSPIRE] – reference: ChiodaroliMGünaydinMJohanssonHRoibanRScattering amplitudes in N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravityJHEP2015010812015JHEP...01..081C33139611388.83772[arXiv:1408.0764] [INSPIRE] – reference: W.T. Emond, Y.-T. Huang, U. Kol, N. Moynihan and D. O’Connell, Amplitudes from Coulomb to Kerr-Taub-NUT, arXiv:2010.07861 [INSPIRE]. – reference: MafraCRSchlottererOStiebergerSExplicit BCJ numerators from pure spinorsJHEP2011070922011JHEP...07..092M28759471298.81319[arXiv:1104.5224] [INSPIRE] – reference: MonteiroRO’ConnellDWhiteCDBlack holes and the double copyJHEP2014120562014JHEP...12..056M33035371333.83048[arXiv:1410.0239] [INSPIRE] – reference: MizeraSSkrzypekBPerturbiner methods for effective field theories and the double copyJHEP2018100182018JHEP...10..018M38910781402.81193[arXiv:1809.02096] [INSPIRE] – reference: EberhardtLKomatsuSMizeraSScattering equations in AdS: scalar correlators in arbitrary dimensionsJHEP2020111582020JHEP...11..158E42041201456.83096[arXiv:2007.06574] [INSPIRE] – reference: H.-H. Chi, H. Elvang, A. Herderschee, C.R.T. Jones and S. Paranjape, Generalizations of the double-copy: the KLT bootstrap, arXiv:2106.12600 [INSPIRE]. – reference: ManganoMLParkeSJMultiparton amplitudes in gauge theoriesPhys. Rept.19912003011991PhR...200..301M[hep-th/0509223] [INSPIRE] – reference: C. Cheung, TASI lectures on scattering amplitudes, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: anticipating the next discoveries in particle physics (TASI 2016), Boulder, CO, U.S.A., 6 June –1 July 2016, R. Essig and I. Low eds., World Scientific, Singapore (2018), pg. 571 [arXiv:1708.03872] [INSPIRE]. – reference: DrummondJMHennJMAll tree-level amplitudes in N = 4 SYMJHEP2009040182009JHEP...04..018D2506011[arXiv:0808.2475] [INSPIRE] – reference: R. Monteiro, D. O’Connell, D. Peinador Veiga and M. Sergola, Classical solutions and their double copy in split signature, JHEP05 (2021) 268 [arXiv:2012.11190] [INSPIRE]. – reference: LunaAMonteiroRNicholsonIO’ConnellDWhiteCDThe double copy: bremsstrahlung and accelerating black holesJHEP2016060232016JHEP...06..023L35381841388.83025[arXiv:1603.05737] [INSPIRE] – reference: J. Broedel and J.J.M. Carrasco, Virtuous trees at five and six points for Yang-Mills and gravity, Phys. Rev. D84 (2011) 085009 [arXiv:1107.4802] [INSPIRE]. – reference: D.Z. Freedman and P.K. Townsend, Antisymmetric tensor gauge theories and nonlinear sigma models, Nucl. Phys. B177 (1981) 282 [INSPIRE]. – reference: H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE]. – reference: N. Arkani-Hamed, L. Rodina and J. Trnka, Locality and unitarity of scattering amplitudes from singularities and gauge invariance, Phys. Rev. Lett.120 (2018) 231602 [arXiv:1612.02797] [INSPIRE]. – reference: H. Frost, C.R. Mafra and L. Mason, A Lie bracket for the momentum kernel, arXiv:2012.00519 [INSPIRE]. – reference: EdisonATengFEfficient calculation of crossing symmetric BCJ tree numeratorsJHEP2020121382020JHEP...12..138E42393151457.83071[arXiv:2005.03638] [INSPIRE] – reference: HeSHouLTianJZhangYKinematic numerators from the worldsheet: cubic trees from labelled treesJHEP2021081182021JHEP...08..118H43171521469.81077[arXiv:2103.15810] [INSPIRE] – reference: K. Kim, K. Lee, R. Monteiro, I. Nicholson and D. Peinador Veiga, The classical double copy of a point charge, JHEP02 (2020) 046 [arXiv:1912.02177] [INSPIRE]. – reference: I. Low, Adler’s zero and effective Lagrangians for nonlinearly realized symmetry, Phys. Rev. D91 (2015) 105017 [arXiv:1412.2145] [INSPIRE]. – reference: CheungCRemmenGNHidden simplicity of the gravity actionJHEP2017090022017JHEP...09..002C37141811382.83007[arXiv:1705.00626] [INSPIRE] – reference: CheungCMossZSymmetry and unification from soft theorems and unitarityJHEP2021051612021JHEP...05..161C43016431466.81044[arXiv:2012.13076] [INSPIRE] – reference: CheungCRemmenGNShenC-HWenCPions as gluons in higher dimensionsJHEP2018041292018JHEP...04..129C38011451390.81291[arXiv:1709.04932] [INSPIRE] – reference: Bjerrum-BohrNEJDamgaardPHSondergaardTVanhovePThe momentum kernel of gauge and gravity theoriesJHEP2011010012011JHEP...01..001B27923101214.81145[arXiv:1010.3933] [INSPIRE] – reference: F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B306 (1988) 759 [INSPIRE]. – reference: ChenGJohanssonHTengFWangTNext-to-MHV Yang-Mills kinematic algebraJHEP2021100422021JHEP...10..042C4339884[arXiv:2104.12726] [INSPIRE] – reference: CheungCRemmenGNTwofold symmetries of the pure gravity actionJHEP2017011042017JHEP...01..104C36286341373.83013[arXiv:1612.03927] [INSPIRE] – reference: CheungCShenC-HWenCUnifying relations for scattering amplitudesJHEP2018020952018JHEP...02..095C37851571387.81264[arXiv:1705.03025] [INSPIRE] – reference: DixonLJHennJMPlefkaJSchusterTAll tree-level amplitudes in massless QCDJHEP2011010352011JHEP...01..035D27922951214.81297[arXiv:1010.3991] [INSPIRE] – reference: MizeraSInverse of the string theory KLT kernelJHEP2017060842017JHEP...06..084M36784431380.81424[arXiv:1610.04230] [INSPIRE] – reference: ChenGJohanssonHTengFWangTOn the kinematic algebra for BCJ numerators beyond the MHV sectorJHEP2019110552019JHEP...11..055C4069508[arXiv:1906.10683] [INSPIRE] – reference: Bjerrum-BohrNEJBourjailyJLDamgaardPHFengBAnalytic representations of Yang-Mills amplitudesNucl. Phys. B20169139642016NuPhB.913..964B1349.81135[arXiv:1605.06501] [INSPIRE] – reference: BridgesEMafraCRAlgorithmic construction of SYM multiparticle superfields in the BCJ gaugeJHEP2019100222019JHEP...10..022B40596721427.83097[arXiv:1906.12252] [INSPIRE] – reference: DiwakarPHerderscheeARoibanRTengFBCJ amplitude relations for anti-de Sitter boundary correlators in embedding spaceJHEP2021101412021JHEP...10..141D4339785[arXiv:2106.10822] [INSPIRE] – reference: NaculichSGScattering equations and virtuous kinematic numerators and dual-trace functionsJHEP2014071432014JHEP...07..143N32501151333.83021[arXiv:1404.7141] [INSPIRE] – reference: M. Carrillo González, R. Penco and M. Trodden, Shift symmetries, soft limits, and the double copy beyond leading order, Phys. Rev. D102 (2020) 105011 [arXiv:1908.07531] [INSPIRE]. – reference: CheungCKampfKNovotnyJShenC-HTrnkaJA periodic table of effective field theoriesJHEP2017020202017JHEP...02..020C36402471377.81123[arXiv:1611.03137] [INSPIRE] – reference: C. Cheung and C.-H. Shen, Symmetry for flavor-kinematics duality from an action, Phys. Rev. Lett.118 (2017) 121601 [arXiv:1612.00868] [INSPIRE]. – reference: MonteiroRO’ConnellDThe kinematic algebra from the self-dual sectorJHEP2011070072011JHEP...07..007M28759911298.81401[arXiv:1105.2565] [INSPIRE] – reference: V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B571 (2000) 51 [hep-ph/9910563] [INSPIRE]. – reference: DuY-JFuC-HExplicit BCJ numerators of nonlinear sigma modelJHEP2016091742016JHEP...09..174D1390.81321[arXiv:1606.05846] [INSPIRE] – reference: C. Cheung, J. Mangan and C.-H. Shen, Hidden conformal invariance of scalar effective field theories, Phys. Rev. D102 (2020) 125009 [arXiv:2005.13027] [INSPIRE]. – reference: MisnerCWThorneKSWheelerJAGravitation1973San Francisco, CA, U.S.A.W.H. Freeman – reference: FuC-HVanhovePWangYA vertex operator algebra construction of the colour-kinematics dual numeratorJHEP2018091412018JHEP...09..141F38683461398.81252[arXiv:1806.09584] [INSPIRE] – reference: A.K. Ridgway and M.B. Wise, Static spherically symmetric Kerr-Schild metrics and implications for the classical double copy, Phys. Rev. D94 (2016) 044023 [arXiv:1512.02243] [INSPIRE]. – reference: J.J.M. Carrasco, L. Rodina, Z. Yin and S. Zekioglu, Simple encoding of higher derivative gauge and gravity counterterms, Phys. Rev. Lett.125 (2020) 251602 [arXiv:1910.12850] [INSPIRE]. – reference: C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka and C. Wen, Vector effective field theories from soft limits, Phys. Rev. Lett.120 (2018) 261602 [arXiv:1801.01496] [INSPIRE]. – reference: ArmstrongCLipsteinAEMeiJColor/kinematics duality in AdS4JHEP2021021942021JHEP...02..194A1460.81104[arXiv:2012.02059] [INSPIRE] – reference: BrownRWNaculichSGBCJ relations from a new symmetry of gauge-theory amplitudesJHEP2016101302016JHEP...10..130B35785551390.81307[arXiv:1608.04387] [INSPIRE] – reference: Arkani-HamedNKaplanJOn tree amplitudes in gauge theory and gravityJHEP2008040762008JHEP...04..076A24252271246.81103[arXiv:0801.2385] [INSPIRE] – reference: K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D92 (2015) 023503 [arXiv:1501.07600] [INSPIRE]. – reference: Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE]. – reference: H. Johansson and J. Nohle, Conformal gravity from gauge theory, arXiv:1707.02965 [INSPIRE]. – reference: Bjerrum-BohrNEJBourjailyJLDamgaardPHFengBManifesting color-kinematics duality in the scattering equation formalismJHEP2016090942016JHEP...09..094B35579971390.83090[arXiv:1608.00006] [INSPIRE] – reference: F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP07 (2015) 149 [arXiv:1412.3479] [INSPIRE]. – ident: 17111_CR76 doi: 10.1103/PhysRevLett.120.261602 – ident: 17111_CR72 doi: 10.1103/PhysRevLett.120.231602 – ident: 17111_CR48 doi: 10.1142/9789813233348_0008 – ident: 17111_CR73 doi: 10.1103/PhysRevLett.116.041601 – ident: 17111_CR21 – ident: 17111_CR1 doi: 10.1016/0550-3213(86)90362-7 – ident: 17111_CR4 – volume: 03 start-page: 110 year: 2014 ident: 17111_CR7 publication-title: JHEP doi: 10.1007/JHEP03(2014)110 – volume: 913 start-page: 964 year: 2016 ident: 17111_CR64 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2016.10.012 – volume: 07 start-page: 007 year: 2011 ident: 17111_CR5 publication-title: JHEP doi: 10.1007/JHEP07(2011)007 – volume: 05 start-page: 239 year: 2021 ident: 17111_CR42 publication-title: JHEP – ident: 17111_CR39 – ident: 17111_CR45 – volume: 200 start-page: 301 year: 1991 ident: 17111_CR13 publication-title: Phys. Rept. doi: 10.1016/0370-1573(91)90091-Y – volume: 10 start-page: 091 year: 2012 ident: 17111_CR77 publication-title: JHEP doi: 10.1007/JHEP10(2012)091 – volume: 10 start-page: 018 year: 2018 ident: 17111_CR14 publication-title: JHEP doi: 10.1007/JHEP10(2018)018 – volume-title: Gravitation year: 1973 ident: 17111_CR32 – volume: 08 start-page: 098 year: 2014 ident: 17111_CR60 publication-title: JHEP doi: 10.1007/JHEP08(2014)098 – volume: 10 start-page: 141 year: 2021 ident: 17111_CR81 publication-title: JHEP doi: 10.1007/JHEP10(2021)141 – ident: 17111_CR3 doi: 10.1103/PhysRevLett.105.061602 – volume: 08 start-page: 118 year: 2021 ident: 17111_CR53 publication-title: JHEP doi: 10.1007/JHEP08(2021)118 – ident: 17111_CR78 – volume: 12 start-page: 056 year: 2014 ident: 17111_CR33 publication-title: JHEP doi: 10.1007/JHEP12(2014)056 – volume: 10 start-page: 042 year: 2021 ident: 17111_CR54 publication-title: JHEP doi: 10.1007/JHEP10(2021)042 – volume: 750 start-page: 272 year: 2015 ident: 17111_CR34 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2015.09.021 – volume: 02 start-page: 095 year: 2018 ident: 17111_CR43 publication-title: JHEP doi: 10.1007/JHEP02(2018)095 – volume: 02 start-page: 194 year: 2021 ident: 17111_CR85 publication-title: JHEP doi: 10.1007/JHEP02(2021)194 – ident: 17111_CR37 doi: 10.1088/1361-6382/ab03e6 – ident: 17111_CR44 doi: 10.1016/S0550-3213(99)00809-3 – ident: 17111_CR24 doi: 10.1103/PhysRevD.92.023503 – volume: 01 start-page: 035 year: 2011 ident: 17111_CR71 publication-title: JHEP doi: 10.1007/JHEP01(2011)035 – volume: 05 start-page: 161 year: 2021 ident: 17111_CR19 publication-title: JHEP – ident: 17111_CR82 doi: 10.1103/PhysRevLett.127.141601 – volume: 07 start-page: 198 year: 2021 ident: 17111_CR27 publication-title: JHEP doi: 10.1007/JHEP07(2021)198 – ident: 17111_CR10 doi: 10.1016/0550-3213(88)90442-7 – volume: 06 start-page: 061 year: 2012 ident: 17111_CR6 publication-title: JHEP doi: 10.1007/JHEP06(2012)061 – ident: 17111_CR67 doi: 10.1103/PhysRevD.84.085009 – ident: 17111_CR36 doi: 10.1007/JHEP02(2020)046 – ident: 17111_CR46 – ident: 17111_CR84 – ident: 17111_CR22 doi: 10.1103/PhysRevLett.114.221602 – volume: 01 start-page: 104 year: 2017 ident: 17111_CR30 publication-title: JHEP doi: 10.1007/JHEP01(2017)104 – volume: 11 start-page: 158 year: 2020 ident: 17111_CR83 publication-title: JHEP doi: 10.1007/JHEP11(2020)158 – volume: 12 start-page: 138 year: 2020 ident: 17111_CR52 publication-title: JHEP doi: 10.1007/JHEP12(2020)138 – volume: 07 start-page: 047 year: 2021 ident: 17111_CR55 publication-title: JHEP doi: 10.1007/JHEP07(2021)047 – volume: 07 start-page: 143 year: 2014 ident: 17111_CR68 publication-title: JHEP doi: 10.1007/JHEP07(2014)143 – ident: 17111_CR35 doi: 10.1007/JHEP05(2021)268 – volume: 50 start-page: 71 year: 1941 ident: 17111_CR15 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-1941-0004740-5 – volume: 09 start-page: 021 year: 2017 ident: 17111_CR50 publication-title: JHEP doi: 10.1007/JHEP09(2017)021 – volume: 03 start-page: 097 year: 2016 ident: 17111_CR65 publication-title: JHEP doi: 10.1007/JHEP03(2016)097 – volume: 04 start-page: 076 year: 2008 ident: 17111_CR29 publication-title: JHEP doi: 10.1088/1126-6708/2008/04/076 – volume: 04 start-page: 033 year: 2017 ident: 17111_CR49 publication-title: JHEP doi: 10.1007/JHEP04(2017)033 – volume: 09 start-page: 141 year: 2018 ident: 17111_CR62 publication-title: JHEP doi: 10.1007/JHEP09(2018)141 – ident: 17111_CR80 doi: 10.1103/PhysRevLett.125.251602 – volume: 06 start-page: 023 year: 2016 ident: 17111_CR38 publication-title: JHEP doi: 10.1007/JHEP06(2016)023 – volume: 06 start-page: 084 year: 2017 ident: 17111_CR12 publication-title: JHEP doi: 10.1007/JHEP06(2017)084 – volume: 07 start-page: 033 year: 2014 ident: 17111_CR11 publication-title: JHEP doi: 10.1007/JHEP07(2014)033 – volume: 11 start-page: 055 year: 2019 ident: 17111_CR8 publication-title: JHEP doi: 10.1007/JHEP11(2019)055 – ident: 17111_CR18 doi: 10.1103/PhysRevD.91.105017 – ident: 17111_CR26 doi: 10.1103/PhysRevD.102.125009 – volume: 05 start-page: 032 year: 2013 ident: 17111_CR75 publication-title: JHEP doi: 10.1007/JHEP05(2013)032 – ident: 17111_CR47 – volume: 10 start-page: 022 year: 2019 ident: 17111_CR66 publication-title: JHEP doi: 10.1007/JHEP10(2019)022 – volume: 03 start-page: 050 year: 2013 ident: 17111_CR61 publication-title: JHEP doi: 10.1007/JHEP03(2013)050 – volume: 01 start-page: 001 year: 2011 ident: 17111_CR69 publication-title: JHEP doi: 10.1007/JHEP01(2011)001 – ident: 17111_CR79 doi: 10.1103/PhysRevD.102.105011 – volume: 04 start-page: 018 year: 2009 ident: 17111_CR70 publication-title: JHEP doi: 10.1088/1126-6708/2009/04/018 – ident: 17111_CR2 doi: 10.1103/PhysRevD.78.085011 – ident: 17111_CR20 doi: 10.1016/0550-3213(81)90392-8 – ident: 17111_CR41 doi: 10.1103/PhysRevLett.126.061602 – volume: 10 start-page: 130 year: 2016 ident: 17111_CR86 publication-title: JHEP doi: 10.1007/JHEP10(2016)130 – ident: 17111_CR23 doi: 10.1007/JHEP07(2015)149 – volume: 09 start-page: 094 year: 2016 ident: 17111_CR63 publication-title: JHEP doi: 10.1007/JHEP09(2016)094 – ident: 17111_CR51 – ident: 17111_CR28 – volume: 80 start-page: 37 year: 2020 ident: 17111_CR58 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7604-8 – volume: 09 start-page: 174 year: 2016 ident: 17111_CR59 publication-title: JHEP doi: 10.1007/JHEP09(2016)174 – ident: 17111_CR9 doi: 10.1103/PhysRevLett.118.121601 – volume: 07 start-page: 002 year: 2017 ident: 17111_CR17 publication-title: JHEP doi: 10.1007/JHEP07(2017)002 – volume: 04 start-page: 129 year: 2018 ident: 17111_CR25 publication-title: JHEP doi: 10.1007/JHEP04(2018)129 – volume: 01 start-page: 081 year: 2015 ident: 17111_CR16 publication-title: JHEP doi: 10.1007/JHEP01(2015)081 – volume: 02 start-page: 020 year: 2017 ident: 17111_CR74 publication-title: JHEP doi: 10.1007/JHEP02(2017)020 – ident: 17111_CR40 doi: 10.1103/PhysRevD.94.044023 – volume: 01 start-page: 171 year: 2016 ident: 17111_CR56 publication-title: JHEP doi: 10.1007/JHEP01(2016)171 – volume: 09 start-page: 002 year: 2017 ident: 17111_CR31 publication-title: JHEP doi: 10.1007/JHEP09(2017)002 – volume: 07 start-page: 092 year: 2011 ident: 17111_CR57 publication-title: JHEP doi: 10.1007/JHEP07(2011)092 |
| SSID | ssj0015190 |
| Score | 2.6361527 |
| Snippet | A
bstract
We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear... We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model... Abstract We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear... |
| SourceID | doaj osti proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Amplitudes Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Color Duality in Gauge Field Theories Elementary Particles Equations of motion Field theory Formulations Gauge-gravity correspondence High energy physics Kinematics Mathematical analysis Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Quantum theory Regular Article - Theoretical Physics Relativity Relativity Theory Scattering Amplitudes String Theory |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EFLyIT6wvFvGgh2jSJk1yVNlFPIgHBW8hrwVRdmV3Ffz3TtLWF4gXT30lZfim6cwwk28ADmthy-C4JkF5S3jwiiirBQmRVTEE7SizudmEvL5W9_f65kurr1QT1tADN8CdMi18Wfmh0HXginoVMIIIteK2Eo65zARKpe6CqTZ_gH4J7Yh8qDy9uuzfMHaEgT47pqm2-YsNylT9eBjjkvrmZv7IjGaDM1iB5dZT7J01Eq7CXBytwWKu2PTTdTi4GL9inIvA9BLx9IQ8or-Y-VenvZB3Sr5twN2gf3txSdqGB8RzzmeElw79h5rXNAhHtaWBWVVKKVNurGIRzyl3ZWmdp3FYomXReOU1xShNae6rTZgfjUdxC3qy8oicdc4OBeeRWxdVSoEyqaywVhRw0kFgfMsGnppSPJmOx7jBzCTMDGJWwNHHhOeGCOP3oecJ049hicE630C9mlav5i-9FrCTNGLQEUhstj6V_fgZTpM1_mQK2O0UZdpFNzUYyaUNj6pmBRx3yvt8_Iu02_8h7Q4spfeRXB-4C_OzyUvcgwX_OnuYTvbzt_kO-V7h-Q priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7qC7z4FteqFPFQD5FkN9lNjlqU4kE8KHgLeVVEaaWtgv_eSbqrqHjQ02Z3JzDJZJIZZuYLwFEpTO4tV8RLZwj3ThJplCA-sCJ4ryxlJl02UV1dybs7dd0C1tTCpGz3JiSZduqm2O2yf37NWBeddXZMSzUHCxFLLGZx9WKBQx04QIOENgg-Pzt9OXwSRj8-RqhLX-zLbyHRdNJcrP6DxzVYqc3KzulsHaxDKww3YCmld7rJJhz2Rq_oFOMsdiJK9Zg8onGZwFonHZ_KKt-24Pbi_KbXJ_XtCMRxzqeE5xaNjZKX1AtLlaGeGZlXVRUDaQUL2Kbc5rmxjoZBjseQwjenKLp0UnFXbMP8cDQMO9CpCseUMNaageA8cGODjPFSVkkjjBEZnDTTpl0NHR5vsHjSDejxbOA6DlzjwDPofnR4nqFm_E56FuXwQRbhrtOH0fhe19qjkTuXF24gVOm5pE56dCN9KbkphGWWZ9COUtRoNUToWxdzhNwUu1Ul7kgZ7DXC1bWGTjS6fbE6UpYsg-NGmJ-_f-F29w-0bViOTZJyBvdgfjp-Cfuw6F6nD5PxQVq2740r5FI priority: 102 providerName: Springer Nature |
| Title | Covariant color-kinematics duality |
| URI | https://link.springer.com/article/10.1007/JHEP11(2021)069 https://www.proquest.com/docview/2596178861 https://www.osti.gov/servlets/purl/1976578 https://doaj.org/article/195c23cf596d480c8d010d684a35b1b4 |
| Volume | 2021 |
| WOSCitedRecordID | wos000717494800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: ER. dateStart: 20140101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xFiReGJ8ibFQV4mF7MLUTJ7GfEKs6DSSqCIE0eLH81QmBmtGUSfvvd3adjiGNJ17yaUfOnX2-851_B_C6KnXuDJfECasJd1YQoWVJnGeFd04aynRMNlHP5-L0VDZpe3SXwip7mRgF9QbtOcRtoxCeuNaGFfMJKu1hb5uo2NvzXyTkkAq-1pRQYweGAXiLDmDYvP_YfN16FVBboT28D60nH05mDWMHaP6zQxoinv-YmSKAP55aHGg3lM-__KVxGjre_b8_8BAeJHV0_G7Tfx7BHb98DPdiWKjtnsCraXuBxjRSfxzQrVfkByqlEeS1G7u4HfPyKXw5nn2enpCUVYFYzvma8NygklLxirrSUKmpY1rkdV0HB1zBPF5TbvJcG0v9IsfpS-KdlRRNQSG5LZ7BYNku_XMY14VlstTG6AXS23NtvAh-VvwxXWpdZvCmp6iyCXI8ZL74qXqw5A0LVGCBQhZkcLCtcL5B27i96FFg0bZYgMmOD9rVmUqjTmHrbF7YBRLbcUGtcGh-ukpwXZSGGZ7BXmCwQm0jQObaEFtk11itrlCSZbDfc1Klkd2pa8ZlcNj3hevXt7T2xb8_tQf3Q0kSwwv3YbBe_fYv4a69WH_vViMYHs3mzacR7ExzPoqrBnhsym-j1MGvAHnUAjI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvBGhBSIEUnswtR0ncQ4IQWm1S9vVHorUnoxfixBoUzahqH-K38jYm2wBqdx64JSXbVmepzPjbwCeF7nmzoiKOGk1Ec5KInWVE-dZ5p2rDGU6Fpsox2N5dFRNVuBnfxYmpFX2OjEqalfb8I98C930cJpNFuz1yTcSqkaF6GpfQmPBFnv-7Adu2ZpXo3dI3xec7-4cbg9JV1WAWCFESwQ3aKQLUVCXG1pp6piWvCzLEIDKmMd7Kgzn2ljqpxzVd4VPtqK4FZKVsBmOewVWBTI7HcDqZHQwOV7GLdAfoj2AEC233g93JoxtcDSkmzTkVP9m-2KJALzUKMp_uLd_RWSjodu99b8t0W242bnU6ZuFDNyBFT-7C9diaqtt7sGz7fpUo5jN2jQgdM_JF3SsI1Btk7p4pPTsPny4lAk-gMGsnvmHkJaZZVWujdHTXAgvtPEyxIpxIXWudZ7Ay55mynaw6aF6x1fVAz4viKwCkRUSOYGNZYeTBWLIxU3fBiZYNgtQ3_FFPf-kOs2hcHaWZ3aKxHVCUisdbqFdIYXOcsOMSGAtsJBCjynA_tqQH2Vb7FYWqI0TWO95RXXaqVHnjJLAZs9t558vmO2jfw_1FK4PDw_21f5ovLcGN0IvEtMl12HQzr_7x3DVnrafm_mTTmhS-HjZTPgL3M9KXQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvBGhBSIEUnswaztO4hwQou2uWopWKwRSb65fixBoUzahqH-NX8fYm2wBqdx64JSXbVmeh2cy428Anhe55s6IijhpNRHOSiJ1lRPnWeadqwxlOhabKCcTeXRUTdfgZ38WJqRV9joxKmpX2_CPfIhmejjNJgs2nHVpEdO98euTbyRUkAqR1r6cxpJFDv3ZD3TfmlcHe0jrF5yPRx9290lXYYBYIURLBDe4YReioC43tNLUMS15WZYhGJUxj_dUGM61sdTPOKryCp9sRdEtkpWwGY57BdbLDJ2eAazvjCbT96sYBtpGtAcTouXw7f5oytgWx011m4b86t_2wVguAC81ivUfpu5f0dm46Y1v_c_LdRtudqZ2-mYpG3dgzc_vwrWY8mqbe_Bstz7VKH7zNg3I3QvyBQ3uCGDbpC4eNT27Dx8vZYIPYDCv5_4hpGVmWZVrY_QsF8ILbbwMMWRcVJ1rnSfwsqefsh2ceqjq8VX1QNBLgqtAcIUET2Br1eFkiSRycdOdwBCrZgECPL6oF59Up1EUzs7yzM6Q0E5IaqVD19oVUugsN8yIBDYCOym0pAIcsA15U7bFbmWBWjqBzZ5vVKe1GnXONAls95x3_vmC2T7691BP4Tpynnp3MDncgBuhE4lZlJswaBff_WO4ak_bz83iSSc_KRxfNg_-AtlaUvc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariant+color-kinematics+duality&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Cheung%2C+Clifford&rft.au=Mangan%2C+James&rft.date=2021-11-10&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2021&rft.issue=11&rft_id=info:doi/10.1007%2FJHEP11%282021%29069&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |