Covariant color-kinematics duality

A bstract We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The journal of high energy physics Ročník 2021; číslo 11; s. 1 - 46
Hlavní autori: Cheung, Clifford, Mangan, James
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 10.11.2021
Springer Nature B.V
Springer Nature
SpringerOpen
Predmet:
ISSN:1029-8479, 1029-8479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A bstract We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the kinematic algebra and associated kinematic current. As a byproduct, we also derive new formulations of the special Galileon (SG) and Born-Infeld (BI) theory. For Yang-Mills (YM) theory, this same approach reveals a novel structure — covariant color-kinematics duality — whose only difference from the conventional duality is that 1 / □ is replaced with covariant 1 /D 2 . Remarkably, this structure implies that YM theory is itself the covariant double copy of gauged biadjoint scalar (GBAS) theory and an F 3 theory of field strengths encoding a corresponding kinematic algebra and current. Directly applying the double copy to equations of motion, we derive general relativity (GR) from the product of Einstein-YM and F 3 theory. This exercise reveals a trivial variant of the classical double copy that recasts any solution of GR as a solution of YM theory in a curved background. Covariant color-kinematics duality also implies a new decomposition of tree-level amplitudes in YM theory into those of GBAS theory. Using this representation we derive a closed-form, analytic expression for all BCJ numerators in YM theory and the NLSM for any number of particles in any spacetime dimension. By virtue of the double copy, this constitutes an explicit formula for all tree-level scattering amplitudes in YM, GR, NLSM, SG, and BI.
AbstractList We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the kinematic algebra and associated kinematic current. As a byproduct, we also derive new formulations of the special Galileon (SG) and Born-Infeld (BI) theory. For Yang-Mills (YM) theory, this same approach reveals a novel structure — covariant color-kinematics duality — whose only difference from the conventional duality is that 1/$\square$ is replaced with covariant 1/D2. Remarkably, this structure implies that YM theory is itself the covariant double copy of gauged biadjoint scalar (GBAS) theory and an F3 theory of field strengths encoding a corresponding kinematic algebra and current. Directly applying the double copy to equations of motion, we derive general relativity (GR) from the product of Einstein-YM and F3 theory. This exercise reveals a trivial variant of the classical double copy that recasts any solution of GR as a solution of YM theory in a curved background. Covariant color-kinematics duality also implies a new decomposition of tree-level amplitudes in YM theory into those of GBAS theory. Using this representation we derive a closed-form, analytic expression for all BCJ numerators in YM theory and the NLSM for any number of particles in any spacetime dimension. By virtue of the double copy, this constitutes an explicit formula for all tree-level scattering amplitudes in YM, GR, NLSM, SG, and BI.
Abstract We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the kinematic algebra and associated kinematic current. As a byproduct, we also derive new formulations of the special Galileon (SG) and Born-Infeld (BI) theory. For Yang-Mills (YM) theory, this same approach reveals a novel structure — covariant color-kinematics duality — whose only difference from the conventional duality is that 1/□ is replaced with covariant 1/D 2. Remarkably, this structure implies that YM theory is itself the covariant double copy of gauged biadjoint scalar (GBAS) theory and an F 3 theory of field strengths encoding a corresponding kinematic algebra and current. Directly applying the double copy to equations of motion, we derive general relativity (GR) from the product of Einstein-YM and F 3 theory. This exercise reveals a trivial variant of the classical double copy that recasts any solution of GR as a solution of YM theory in a curved background. Covariant color-kinematics duality also implies a new decomposition of tree-level amplitudes in YM theory into those of GBAS theory. Using this representation we derive a closed-form, analytic expression for all BCJ numerators in YM theory and the NLSM for any number of particles in any spacetime dimension. By virtue of the double copy, this constitutes an explicit formula for all tree-level scattering amplitudes in YM, GR, NLSM, SG, and BI.
We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the kinematic algebra and associated kinematic current. As a byproduct, we also derive new formulations of the special Galileon (SG) and Born-Infeld (BI) theory.For Yang-Mills (YM) theory, this same approach reveals a novel structure — covariant color-kinematics duality — whose only difference from the conventional duality is that 1/□ is replaced with covariant 1/D2. Remarkably, this structure implies that YM theory is itself the covariant double copy of gauged biadjoint scalar (GBAS) theory and an F3 theory of field strengths encoding a corresponding kinematic algebra and current. Directly applying the double copy to equations of motion, we derive general relativity (GR) from the product of Einstein-YM and F3 theory. This exercise reveals a trivial variant of the classical double copy that recasts any solution of GR as a solution of YM theory in a curved background.Covariant color-kinematics duality also implies a new decomposition of tree-level amplitudes in YM theory into those of GBAS theory. Using this representation we derive a closed-form, analytic expression for all BCJ numerators in YM theory and the NLSM for any number of particles in any spacetime dimension. By virtue of the double copy, this constitutes an explicit formula for all tree-level scattering amplitudes in YM, GR, NLSM, SG, and BI.
A bstract We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the kinematic algebra and associated kinematic current. As a byproduct, we also derive new formulations of the special Galileon (SG) and Born-Infeld (BI) theory. For Yang-Mills (YM) theory, this same approach reveals a novel structure — covariant color-kinematics duality — whose only difference from the conventional duality is that 1 / □ is replaced with covariant 1 /D 2 . Remarkably, this structure implies that YM theory is itself the covariant double copy of gauged biadjoint scalar (GBAS) theory and an F 3 theory of field strengths encoding a corresponding kinematic algebra and current. Directly applying the double copy to equations of motion, we derive general relativity (GR) from the product of Einstein-YM and F 3 theory. This exercise reveals a trivial variant of the classical double copy that recasts any solution of GR as a solution of YM theory in a curved background. Covariant color-kinematics duality also implies a new decomposition of tree-level amplitudes in YM theory into those of GBAS theory. Using this representation we derive a closed-form, analytic expression for all BCJ numerators in YM theory and the NLSM for any number of particles in any spacetime dimension. By virtue of the double copy, this constitutes an explicit formula for all tree-level scattering amplitudes in YM, GR, NLSM, SG, and BI.
We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model (NLSM), this insight enables an implementation of the double copy at the level of fields, as well as an explicit construction of the kinematic algebra and associated kinematic current. As a byproduct, we also derive new formulations of the special Galileon (SG) and Born-Infeld (BI) theory. For Yang-Mills (YM) theory, this same approach reveals a novel structure — covariant color-kinematics duality — whose only difference from the conventional duality is that 1 / □ is replaced with covariant 1 /D 2 . Remarkably, this structure implies that YM theory is itself the covariant double copy of gauged biadjoint scalar (GBAS) theory and an F 3 theory of field strengths encoding a corresponding kinematic algebra and current. Directly applying the double copy to equations of motion, we derive general relativity (GR) from the product of Einstein-YM and F 3 theory. This exercise reveals a trivial variant of the classical double copy that recasts any solution of GR as a solution of YM theory in a curved background. Covariant color-kinematics duality also implies a new decomposition of tree-level amplitudes in YM theory into those of GBAS theory. Using this representation we derive a closed-form, analytic expression for all BCJ numerators in YM theory and the NLSM for any number of particles in any spacetime dimension. By virtue of the double copy, this constitutes an explicit formula for all tree-level scattering amplitudes in YM, GR, NLSM, SG, and BI.
ArticleNumber 69
Author Cheung, Clifford
Mangan, James
Author_xml – sequence: 1
  givenname: Clifford
  surname: Cheung
  fullname: Cheung, Clifford
  organization: Walter Burke Institute for Theoretical Physics, Division of Physics, Mathematics and Astronomy, California Institute of Technology
– sequence: 2
  givenname: James
  orcidid: 0000-0002-9713-7446
  surname: Mangan
  fullname: Mangan, James
  email: james.mangan@northwestern.edu
  organization: Walter Burke Institute for Theoretical Physics, Division of Physics, Mathematics and Astronomy, California Institute of Technology
BackLink https://www.osti.gov/servlets/purl/1976578$$D View this record in Osti.gov
BookMark eNp1kM1LAzEQxYMoWKtnr1Ivelg7yWY3yVGK2oqgBz2HbDatqdukJqngf2_qKorgaT54v8fMO0C7zjuD0DGGCwzAxrfTqweMzwgQfA612EEDDEQUnDKx-6vfRwcxLgFwhQUM0Gji31SwyqUT7TsfihfrzEolq-NJu1GdTe-HaG-uumiOvuoQPV1fPU6mxd39zWxyeVdoSmkqKGlKLmpaQ1s1IBS0WHHCGCuBshKb3ANtCFGNBjMnhFORJy2AU-CC6nKIZr1v69VSroNdqfAuvbLyc-HDQqqQD-uMxKLSpNTzStQt5aB5CxjamlNVVg1uaPYa9V4-JiujtsnoZ-2dMzplmtUV41l02ovWwb9uTExy6TfB5R8lyc6YcV7jrKp6lQ4-xmDmMrvlgLxLQdlOYpDb_GWfv9zmL3P-mRv_4b5f-p-AnohZ6RYm_NzzH_IB-22TuA
CitedBy_id crossref_primary_10_1103_PhysRevD_111_L021703
crossref_primary_10_1007_JHEP01_2022_186
crossref_primary_10_1007_JHEP10_2022_066
crossref_primary_10_1007_JHEP03_2025_121
crossref_primary_10_1007_JHEP12_2023_118
crossref_primary_10_1007_JHEP01_2023_092
crossref_primary_10_1007_JHEP08_2023_222
crossref_primary_10_1007_JHEP03_2023_177
crossref_primary_10_1007_JHEP03_2023_112
crossref_primary_10_1140_epjc_s10052_023_12325_w
crossref_primary_10_1007_JHEP03_2024_081
crossref_primary_10_1007_JHEP01_2024_019
crossref_primary_10_1007_JHEP12_2022_101
crossref_primary_10_1007_JHEP10_2023_022
crossref_primary_10_1140_epjc_s10052_024_12517_y
crossref_primary_10_1007_JHEP07_2024_149
crossref_primary_10_1007_JHEP11_2021_126
crossref_primary_10_1007_JHEP07_2024_206
crossref_primary_10_1007_JHEP07_2024_009
crossref_primary_10_1007_JHEP07_2024_002
crossref_primary_10_1007_JHEP02_2023_076
crossref_primary_10_1007_JHEP06_2023_084
crossref_primary_10_1007_JHEP08_2022_160
crossref_primary_10_1007_JHEP04_2022_036
crossref_primary_10_1007_JHEP06_2025_231
crossref_primary_10_1007_JHEP06_2022_021
crossref_primary_10_1007_JHEP05_2024_310
crossref_primary_10_1088_1751_8121_ac8846
crossref_primary_10_1007_JHEP05_2025_060
crossref_primary_10_1007_JHEP02_2024_096
crossref_primary_10_1007_JHEP03_2025_017
crossref_primary_10_1007_JHEP05_2022_027
crossref_primary_10_1007_JHEP05_2022_026
crossref_primary_10_1007_JHEP06_2024_008
crossref_primary_10_1007_JHEP08_2022_035
crossref_primary_10_1007_JHEP03_2024_163
crossref_primary_10_1007_JHEP05_2022_051
crossref_primary_10_1007_JHEP05_2023_047
crossref_primary_10_1007_JHEP09_2023_030
crossref_primary_10_1007_JHEP06_2023_170
Cites_doi 10.1103/PhysRevLett.120.261602
10.1103/PhysRevLett.120.231602
10.1142/9789813233348_0008
10.1103/PhysRevLett.116.041601
10.1016/0550-3213(86)90362-7
10.1007/JHEP03(2014)110
10.1016/j.nuclphysb.2016.10.012
10.1007/JHEP07(2011)007
10.1016/0370-1573(91)90091-Y
10.1007/JHEP10(2012)091
10.1007/JHEP10(2018)018
10.1007/JHEP08(2014)098
10.1007/JHEP10(2021)141
10.1103/PhysRevLett.105.061602
10.1007/JHEP08(2021)118
10.1007/JHEP12(2014)056
10.1007/JHEP10(2021)042
10.1016/j.physletb.2015.09.021
10.1007/JHEP02(2018)095
10.1007/JHEP02(2021)194
10.1088/1361-6382/ab03e6
10.1016/S0550-3213(99)00809-3
10.1103/PhysRevD.92.023503
10.1007/JHEP01(2011)035
10.1103/PhysRevLett.127.141601
10.1007/JHEP07(2021)198
10.1016/0550-3213(88)90442-7
10.1007/JHEP06(2012)061
10.1103/PhysRevD.84.085009
10.1007/JHEP02(2020)046
10.1103/PhysRevLett.114.221602
10.1007/JHEP01(2017)104
10.1007/JHEP11(2020)158
10.1007/JHEP12(2020)138
10.1007/JHEP07(2021)047
10.1007/JHEP07(2014)143
10.1007/JHEP05(2021)268
10.1090/S0002-9947-1941-0004740-5
10.1007/JHEP09(2017)021
10.1007/JHEP03(2016)097
10.1088/1126-6708/2008/04/076
10.1007/JHEP04(2017)033
10.1007/JHEP09(2018)141
10.1103/PhysRevLett.125.251602
10.1007/JHEP06(2016)023
10.1007/JHEP06(2017)084
10.1007/JHEP07(2014)033
10.1007/JHEP11(2019)055
10.1103/PhysRevD.91.105017
10.1103/PhysRevD.102.125009
10.1007/JHEP05(2013)032
10.1007/JHEP10(2019)022
10.1007/JHEP03(2013)050
10.1007/JHEP01(2011)001
10.1103/PhysRevD.102.105011
10.1088/1126-6708/2009/04/018
10.1103/PhysRevD.78.085011
10.1016/0550-3213(81)90392-8
10.1103/PhysRevLett.126.061602
10.1007/JHEP10(2016)130
10.1007/JHEP07(2015)149
10.1007/JHEP09(2016)094
10.1140/epjc/s10052-019-7604-8
10.1007/JHEP09(2016)174
10.1103/PhysRevLett.118.121601
10.1007/JHEP07(2017)002
10.1007/JHEP04(2018)129
10.1007/JHEP01(2015)081
10.1007/JHEP02(2017)020
10.1103/PhysRevD.94.044023
10.1007/JHEP01(2016)171
10.1007/JHEP09(2017)002
10.1007/JHEP07(2011)092
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor California Institute of Technology (CalTech), Pasadena, CA (United States)
CorporateAuthor_xml – name: California Institute of Technology (CalTech), Pasadena, CA (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP11(2021)069
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 46
ExternalDocumentID oai_doaj_org_article_195c23cf596d480c8d010d684a35b1b4
1976578
10_1007_JHEP11_2021_069
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AFFHD
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
AAYZJ
AFNRJ
AHBXF
OIOZB
OTOTI
ID FETCH-LOGICAL-c444t-42b3896460d5b09a0d1a82777304731e82704b22abc0ef22849b22c90840894c3
IEDL.DBID PIMPY
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000717494800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-8479
IngestDate Fri Oct 03 12:50:37 EDT 2025
Mon Jan 15 05:23:13 EST 2024
Sat Oct 18 22:43:38 EDT 2025
Tue Nov 18 22:12:02 EST 2025
Sat Nov 29 02:12:26 EST 2025
Fri Feb 21 02:47:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Duality in Gauge Field Theories
Gauge-gravity correspondence
Scattering Amplitudes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-42b3896460d5b09a0d1a82777304731e82704b22abc0ef22849b22c90840894c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0011632
USDOE Office of Science (SC)
Walter Burke Institute
ORCID 0000-0002-9713-7446
0000000297137446
OpenAccessLink https://www.proquest.com/publiccontent/docview/2596178861?pq-origsite=%requestingapplication%
PQID 2596178861
PQPubID 2034718
PageCount 46
ParticipantIDs doaj_primary_oai_doaj_org_article_195c23cf596d480c8d010d684a35b1b4
osti_scitechconnect_1976578
proquest_journals_2596178861
crossref_citationtrail_10_1007_JHEP11_2021_069
crossref_primary_10_1007_JHEP11_2021_069
springer_journals_10_1007_JHEP11_2021_069
PublicationCentury 2000
PublicationDate 2021-11-10
PublicationDateYYYYMMDD 2021-11-10
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-10
  day: 10
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Nature
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Nature
– name: SpringerOpen
References CheungCRemmenGNHidden simplicity of the gravity actionJHEP2017090022017JHEP...09..002C37141811382.83007[arXiv:1705.00626] [INSPIRE]
CachazoFHeSYuanEYScattering of massless particles: scalars, gluons and gravitonsJHEP2014070332014JHEP...07..033C1391.81198[arXiv:1309.0885] [INSPIRE]
Arkani-HamedNKaplanJOn tree amplitudes in gauge theory and gravityJHEP2008040762008JHEP...04..076A24252271246.81103[arXiv:0801.2385] [INSPIRE]
V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B571 (2000) 51 [hep-ph/9910563] [INSPIRE].
Bjerrum-BohrNEJBourjailyJLDamgaardPHFengBManifesting color-kinematics duality in the scattering equation formalismJHEP2016090942016JHEP...09..094B35579971390.83090[arXiv:1608.00006] [INSPIRE]
MizeraSSkrzypekBPerturbiner methods for effective field theories and the double copyJHEP2018100182018JHEP...10..018M38910781402.81193[arXiv:1809.02096] [INSPIRE]
C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett.114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].
Bjerrum-BohrNEJBourjailyJLDamgaardPHFengBAnalytic representations of Yang-Mills amplitudesNucl. Phys. B20169139642016NuPhB.913..964B1349.81135[arXiv:1605.06501] [INSPIRE]
BroedelJDixonLJColor-kinematics duality and double-copy construction for amplitudes from higher-dimension operatorsJHEP2012100912012JHEP...10..091B[arXiv:1208.0876] [INSPIRE]
LunaAMonteiroRNicholsonIO’ConnellDWhiteCDThe double copy: bremsstrahlung and accelerating black holesJHEP2016060232016JHEP...06..023L35381841388.83025[arXiv:1603.05737] [INSPIRE]
MafraCRSchlottererOStiebergerSExplicit BCJ numerators from pure spinorsJHEP2011070922011JHEP...07..092M28759471298.81319[arXiv:1104.5224] [INSPIRE]
C.D. White, Twistorial foundation for the classical double copy, Phys. Rev. Lett.126 (2021) 061602 [arXiv:2012.02479] [INSPIRE].
A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D spacetimes and the Weyl double copy, Class. Quant. Grav.36 (2019) 065003 [arXiv:1810.08183] [INSPIRE].
MonteiroRO’ConnellDThe kinematic algebra from the self-dual sectorJHEP2011070072011JHEP...07..007M28759911298.81401[arXiv:1105.2565] [INSPIRE]
ChenGJohanssonHTengFWangTNext-to-MHV Yang-Mills kinematic algebraJHEP2021100422021JHEP...10..042C4339884[arXiv:2104.12726] [INSPIRE]
ManganoMLParkeSJMultiparton amplitudes in gauge theoriesPhys. Rept.19912003011991PhR...200..301M[hep-th/0509223] [INSPIRE]
H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].
ChenGWangTBCJ numerators from differential operator of multidimensional residueEur. Phys. J. C202080372020EPJC...80...37C[arXiv:1709.08503] [INSPIRE]
M. Carrillo González, R. Penco and M. Trodden, Shift symmetries, soft limits, and the double copy beyond leading order, Phys. Rev. D102 (2020) 105011 [arXiv:1908.07531] [INSPIRE].
LunaAMonteiroRO’ConnellDWhiteCDThe classical double copy for Taub-NUT spacetimePhys. Lett. B20157502722015PhLB..750..272L1364.83005[arXiv:1507.01869] [INSPIRE]
DouglasJSolution of the inverse problem of the calculus of variationsTrans. Amer. Math. Soc.1941507147400025.18102
EberhardtLKomatsuSMizeraSScattering equations in AdS: scalar correlators in arbitrary dimensionsJHEP2020111582020JHEP...11..158E42041201456.83096[arXiv:2007.06574] [INSPIRE]
C. Cheung and J. Mangan, Scattering amplitudes and the Navier-Stokes equation, arXiv:2010.15970 [INSPIRE].
FuC-HVanhovePWangYA vertex operator algebra construction of the colour-kinematics dual numeratorJHEP2018091412018JHEP...09..141F38683461398.81252[arXiv:1806.09584] [INSPIRE]
N. Arkani-Hamed, L. Rodina and J. Trnka, Locality and unitarity of scattering amplitudes from singularities and gauge invariance, Phys. Rev. Lett.120 (2018) 231602 [arXiv:1612.02797] [INSPIRE].
W.T. Emond, Y.-T. Huang, U. Kol, N. Moynihan and D. O’Connell, Amplitudes from Coulomb to Kerr-Taub-NUT, arXiv:2010.07861 [INSPIRE].
ChenGJohanssonHTengFWangTOn the kinematic algebra for BCJ numerators beyond the MHV sectorJHEP2019110552019JHEP...11..055C4069508[arXiv:1906.10683] [INSPIRE]
ChacónENagySWhiteCDThe Weyl double copy from twistor spaceJHEP2021052392021JHEP...05..239C42958041466.83062[arXiv:2103.16441] [INSPIRE]
BrandhuberAChenGTravagliniGWenCA new gauge-invariant double copy for heavy-mass effective theoryJHEP2021070472021JHEP...07..047B4317050[arXiv:2104.11206] [INSPIRE]
H. Johansson and J. Nohle, Conformal gravity from gauge theory, arXiv:1707.02965 [INSPIRE].
DuY-JFuC-HExplicit BCJ numerators of nonlinear sigma modelJHEP2016091742016JHEP...09..174D1390.81321[arXiv:1606.05846] [INSPIRE]
MizeraSInverse of the string theory KLT kernelJHEP2017060842017JHEP...06..084M36784431380.81424[arXiv:1610.04230] [INSPIRE]
FuC-HDuY-JHuangRFengBExpansion of Einstein-Yang-Mills amplitudeJHEP2017090212017JHEP...09..021F37141631382.83010[arXiv:1702.08158] [INSPIRE]
BridgesEMafraCRAlgorithmic construction of SYM multiparticle superfields in the BCJ gaugeJHEP2019100222019JHEP...10..022B40596721427.83097[arXiv:1906.12252] [INSPIRE]
Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The duality between color and kinematics and its applications, arXiv:1909.01358 [INSPIRE].
Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
K. Roehrig and D. Skinner, Ambitwistor strings and the scattering equations on AdS3 × S3, arXiv:2007.07234 [INSPIRE].
D.Z. Freedman and P.K. Townsend, Antisymmetric tensor gauge theories and nonlinear sigma models, Nucl. Phys. B177 (1981) 282 [INSPIRE].
CheungCRemmenGNShenC-HWenCPions as gluons in higher dimensionsJHEP2018041292018JHEP...04..129C38011451390.81291[arXiv:1709.04932] [INSPIRE]
EdisonATengFEfficient calculation of crossing symmetric BCJ tree numeratorsJHEP2020121382020JHEP...12..138E42393151457.83071[arXiv:2005.03638] [INSPIRE]
H. Frost, C.R. Mafra and L. Mason, A Lie bracket for the momentum kernel, arXiv:2012.00519 [INSPIRE].
R. Monteiro, D. O’Connell, D. Peinador Veiga and M. Sergola, Classical solutions and their double copy in split signature, JHEP05 (2021) 268 [arXiv:2012.11190] [INSPIRE].
X. Zhou, Double copy relation in AdS space, Phys. Rev. Lett.127 (2021) 141601 [arXiv:2106.07651] [INSPIRE].
ArmstrongCLipsteinAEMeiJColor/kinematics duality in AdS4JHEP2021021942021JHEP...02..194A1460.81104[arXiv:2012.02059] [INSPIRE]
K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].
DixonLJHennJMPlefkaJSchusterTAll tree-level amplitudes in massless QCDJHEP2011010352011JHEP...01..035D27922951214.81297[arXiv:1010.3991] [INSPIRE]
KampfKNovotnyJTrnkaJTree-level amplitudes in the nonlinear sigma modelJHEP2013050322013JHEP...05..032K1392.81139[arXiv:1304.3048] [INSPIRE]
F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B306 (1988) 759 [INSPIRE].
DrummondJMHennJMAll tree-level amplitudes in N = 4 SYMJHEP2009040182009JHEP...04..018D2506011[arXiv:0808.2475] [INSPIRE]
ChiodaroliMGünaydinMJohanssonHRoibanRExplicit formulae for Yang-Mills-Einstein amplitudes from the double copyJHEP2017070022017JHEP...07..002C36883981380.83280[arXiv:1703.00421] [INSPIRE]
F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP07 (2015) 149 [arXiv:1412.3479] [INSPIRE].
Bjerrum-BohrNEJDamgaardPHMonteiroRO’ConnellDAlgebras for amplitudesJHEP2012060612012JHEP...06..061B30068731397.81135[arXiv:1203.0944] [INSPIRE]
C. Cheung, TASI lectures on scattering amplitudes, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: anticipating the next discoveries in particle physics (TASI 2016), Boulder, CO, U.S.A., 6 June –1 July 2016, R. Essig and I. Low eds., World Scientific, Singapore (2018), pg. 571 [arXiv:1708.03872] [INSPIRE].
H.-H. Chi, H. Elvang, A. Herderschee, C.R.T. Jones and S. Paranjape, Generalizations of the double-copy: the KLT bootstrap, arXiv:2106.12600 [INSPIRE].
A.K. Ridgway and M.B. Wise, Static spherically symmetric Kerr-Schild metrics and implications for the classical double copy, Phys. Rev. D94 (2016) 044023 [arXiv:1512.02243] [INSPIRE].
CheungCMossZSymmetry and unification from soft theorems and unitarityJHEP2021051612021JHEP...05..161C43016431466.81044[arXiv:2012.13076] [INSPIRE]
HeSMonteiroRSchlottererOString-inspired BCJ numerators for one-loop MHV amplitudesJHEP2016011712016JHEP...01..171H34714091388.81544[arXiv:1507.06288] [INSPIRE]
DuY-JTengFBCJ numerators from reduced PfaffianJHEP2017040332017JHEP...04..033D36577351378.81071[arXiv:1703.05717] [INSPIRE]
CheungCKampfKNovotnyJShenC-HTrnkaJA periodic table of effective field theoriesJHEP2017020202017JHEP...02..020C36402471377.81123[arXiv:1611.03137] [INSPIRE]
ChiodaroliMGünaydinMJohanssonHRoibanRScattering amplitudes in N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravityJHEP2015010812015JHEP...01..081C33139611388.83772[arXiv:1408.0764] [INSPIRE]
C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka and C. Wen, Vector effective field theories from soft limits, Phys. Rev. Lett.120 (2018) 261602 [arXiv:1801.01496] [INSPIRE].
C. Cheung and C.-H. Shen, Symmetry for flavor-kinematics duality from an action, Phys. Rev. Lett.118 (2017) 121601 [arXiv:1612.00868] [INSPIRE].
C. Cheung, J. Mangan and C.-H. Shen, Hidden conformal invariance of scalar effective field theories, Phys. Rev. D102 (2020) 125009 [arXiv:2005.13027] [INSPIRE].
MafraCRSchlottererOBerends-Giele recursions and the BCJ duality in superspace and componentsJHEP2016030972016JHEP...03..097M1388.81581[arXiv:1510.08846] [INSPIRE]
MonteiroRO’ConnellDThe kinematic algebras from the scattering equationsJHEP2014031102014JHEP...03..110M31909361333.81421[arXiv:1311.1151] [INSPIRE]
CheungCShenC-HWenCUnifying relations for scattering amplitudesJHEP2018020952018JHEP...02..095C37851571387.81264[arXiv:1705.03025] [INSPIRE]
J. Broedel and J.J.M. Carrasco, Virtuous trees at five and six points for Yang-M
C-H Fu (17111_CR60) 2014; 08
N Arkani-Hamed (17111_CR29) 2008; 04
CW Misner (17111_CR32) 1973
Y-J Du (17111_CR59) 2016; 09
JM Drummond (17111_CR70) 2009; 04
17111_CR10
17111_CR2
17111_CR1
K Farnsworth (17111_CR27) 2021; 07
17111_CR18
17111_CR9
R Monteiro (17111_CR5) 2011; 07
17111_CR4
17111_CR3
RW Brown (17111_CR86) 2016; 10
M Chiodaroli (17111_CR16) 2015; 01
17111_CR46
17111_CR45
17111_CR48
17111_CR47
17111_CR41
17111_CR44
C-H Fu (17111_CR61) 2013; 03
CR Mafra (17111_CR65) 2016; 03
R Monteiro (17111_CR33) 2014; 12
R Monteiro (17111_CR7) 2014; 03
C Cheung (17111_CR25) 2018; 04
G Chen (17111_CR8) 2019; 11
CR Mafra (17111_CR57) 2011; 07
G Chen (17111_CR58) 2020; 80
S He (17111_CR53) 2021; 08
17111_CR51
E Bridges (17111_CR66) 2019; 10
C Cheung (17111_CR31) 2017; 09
C-H Fu (17111_CR62) 2018; 09
L Eberhardt (17111_CR83) 2020; 11
C Cheung (17111_CR19) 2021; 05
17111_CR35
17111_CR79
17111_CR78
17111_CR37
ML Mangano (17111_CR13) 1991; 200
17111_CR36
C Cheung (17111_CR74) 2017; 02
A Luna (17111_CR38) 2016; 06
NEJ Bjerrum-Bohr (17111_CR64) 2016; 913
17111_CR76
A Edison (17111_CR52) 2020; 12
NEJ Bjerrum-Bohr (17111_CR63) 2016; 09
LJ Dixon (17111_CR71) 2011; 01
17111_CR39
G Chen (17111_CR54) 2021; 10
NEJ Bjerrum-Bohr (17111_CR6) 2012; 06
M Chiodaroli (17111_CR17) 2017; 07
C Cheung (17111_CR43) 2018; 02
C-H Fu (17111_CR50) 2017; 09
A Brandhuber (17111_CR55) 2021; 07
17111_CR82
17111_CR40
17111_CR84
S He (17111_CR56) 2016; 01
P Diwakar (17111_CR81) 2021; 10
Y-J Du (17111_CR49) 2017; 04
17111_CR80
NEJ Bjerrum-Bohr (17111_CR69) 2011; 01
C Armstrong (17111_CR85) 2021; 02
17111_CR24
S Mizera (17111_CR12) 2017; 06
17111_CR23
17111_CR67
K Kampf (17111_CR75) 2013; 05
J Broedel (17111_CR77) 2012; 10
17111_CR26
17111_CR20
17111_CR22
17111_CR21
C Cheung (17111_CR30) 2017; 01
17111_CR28
J Douglas (17111_CR15) 1941; 50
F Cachazo (17111_CR11) 2014; 07
E Chacón (17111_CR42) 2021; 05
A Luna (17111_CR34) 2015; 750
S Mizera (17111_CR14) 2018; 10
17111_CR73
17111_CR72
SG Naculich (17111_CR68) 2014; 07
References_xml – reference: Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The duality between color and kinematics and its applications, arXiv:1909.01358 [INSPIRE].
– reference: X. Zhou, Double copy relation in AdS space, Phys. Rev. Lett.127 (2021) 141601 [arXiv:2106.07651] [INSPIRE].
– reference: DuY-JTengFBCJ numerators from reduced PfaffianJHEP2017040332017JHEP...04..033D36577351378.81071[arXiv:1703.05717] [INSPIRE]
– reference: H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B269 (1986) 1 [INSPIRE].
– reference: FuC-HDuY-JFengBAn algebraic approach to BCJ numeratorsJHEP2013030502013JHEP...03..050F30467271342.81351[arXiv:1212.6168] [INSPIRE]
– reference: K. Roehrig and D. Skinner, Ambitwistor strings and the scattering equations on AdS3 × S3, arXiv:2007.07234 [INSPIRE].
– reference: L.J. Dixon, A brief introduction to modern amplitude methods, in Theoretical Advanced Study Institute in Elementary Particle Physics. Particle physics: the Higgs boson and beyond, SLAC-PUB-15775, (2014), pg. 31 [arXiv:1310.5353] [INSPIRE].
– reference: C. Cheung and J. Mangan, Scattering amplitudes and the Navier-Stokes equation, arXiv:2010.15970 [INSPIRE].
– reference: MonteiroRO’ConnellDThe kinematic algebras from the scattering equationsJHEP2014031102014JHEP...03..110M31909361333.81421[arXiv:1311.1151] [INSPIRE]
– reference: CachazoFHeSYuanEYScattering of massless particles: scalars, gluons and gravitonsJHEP2014070332014JHEP...07..033C1391.81198[arXiv:1309.0885] [INSPIRE]
– reference: FuC-HDuY-JFengBNote on symmetric BCJ numeratorJHEP2014080982014JHEP...08..098F[arXiv:1403.6262] [INSPIRE]
– reference: C.D. White, Twistorial foundation for the classical double copy, Phys. Rev. Lett.126 (2021) 061602 [arXiv:2012.02479] [INSPIRE].
– reference: Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
– reference: C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett.114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].
– reference: HeSMonteiroRSchlottererOString-inspired BCJ numerators for one-loop MHV amplitudesJHEP2016011712016JHEP...01..171H34714091388.81544[arXiv:1507.06288] [INSPIRE]
– reference: KampfKNovotnyJTrnkaJTree-level amplitudes in the nonlinear sigma modelJHEP2013050322013JHEP...05..032K1392.81139[arXiv:1304.3048] [INSPIRE]
– reference: C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-shell recursion relations for effective field theories, Phys. Rev. Lett.116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].
– reference: BrandhuberAChenGTravagliniGWenCA new gauge-invariant double copy for heavy-mass effective theoryJHEP2021070472021JHEP...07..047B4317050[arXiv:2104.11206] [INSPIRE]
– reference: ChiodaroliMGünaydinMJohanssonHRoibanRExplicit formulae for Yang-Mills-Einstein amplitudes from the double copyJHEP2017070022017JHEP...07..002C36883981380.83280[arXiv:1703.00421] [INSPIRE]
– reference: L.J. Dixon, Calculating scattering amplitudes efficiently, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 95): QCD and beyond, (1996), pg. 539 [hep-ph/9601359] [INSPIRE].
– reference: LunaAMonteiroRO’ConnellDWhiteCDThe classical double copy for Taub-NUT spacetimePhys. Lett. B20157502722015PhLB..750..272L1364.83005[arXiv:1507.01869] [INSPIRE]
– reference: ChenGWangTBCJ numerators from differential operator of multidimensional residueEur. Phys. J. C202080372020EPJC...80...37C[arXiv:1709.08503] [INSPIRE]
– reference: A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D spacetimes and the Weyl double copy, Class. Quant. Grav.36 (2019) 065003 [arXiv:1810.08183] [INSPIRE].
– reference: ChacónENagySWhiteCDThe Weyl double copy from twistor spaceJHEP2021052392021JHEP...05..239C42958041466.83062[arXiv:2103.16441] [INSPIRE]
– reference: DouglasJSolution of the inverse problem of the calculus of variationsTrans. Amer. Math. Soc.1941507147400025.18102
– reference: MafraCRSchlottererOBerends-Giele recursions and the BCJ duality in superspace and componentsJHEP2016030972016JHEP...03..097M1388.81581[arXiv:1510.08846] [INSPIRE]
– reference: FuC-HDuY-JHuangRFengBExpansion of Einstein-Yang-Mills amplitudeJHEP2017090212017JHEP...09..021F37141631382.83010[arXiv:1702.08158] [INSPIRE]
– reference: BroedelJDixonLJColor-kinematics duality and double-copy construction for amplitudes from higher-dimension operatorsJHEP2012100912012JHEP...10..091B[arXiv:1208.0876] [INSPIRE]
– reference: Bjerrum-BohrNEJDamgaardPHMonteiroRO’ConnellDAlgebras for amplitudesJHEP2012060612012JHEP...06..061B30068731397.81135[arXiv:1203.0944] [INSPIRE]
– reference: FarnsworthKHinterbichlerKHulikOOn the conformal symmetry of exceptional scalar theoriesJHEP2021071982021JHEP...07..198F43164731468.81093[arXiv:2102.12479] [INSPIRE]
– reference: ChiodaroliMGünaydinMJohanssonHRoibanRScattering amplitudes in N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravityJHEP2015010812015JHEP...01..081C33139611388.83772[arXiv:1408.0764] [INSPIRE]
– reference: W.T. Emond, Y.-T. Huang, U. Kol, N. Moynihan and D. O’Connell, Amplitudes from Coulomb to Kerr-Taub-NUT, arXiv:2010.07861 [INSPIRE].
– reference: MafraCRSchlottererOStiebergerSExplicit BCJ numerators from pure spinorsJHEP2011070922011JHEP...07..092M28759471298.81319[arXiv:1104.5224] [INSPIRE]
– reference: MonteiroRO’ConnellDWhiteCDBlack holes and the double copyJHEP2014120562014JHEP...12..056M33035371333.83048[arXiv:1410.0239] [INSPIRE]
– reference: MizeraSSkrzypekBPerturbiner methods for effective field theories and the double copyJHEP2018100182018JHEP...10..018M38910781402.81193[arXiv:1809.02096] [INSPIRE]
– reference: EberhardtLKomatsuSMizeraSScattering equations in AdS: scalar correlators in arbitrary dimensionsJHEP2020111582020JHEP...11..158E42041201456.83096[arXiv:2007.06574] [INSPIRE]
– reference: H.-H. Chi, H. Elvang, A. Herderschee, C.R.T. Jones and S. Paranjape, Generalizations of the double-copy: the KLT bootstrap, arXiv:2106.12600 [INSPIRE].
– reference: ManganoMLParkeSJMultiparton amplitudes in gauge theoriesPhys. Rept.19912003011991PhR...200..301M[hep-th/0509223] [INSPIRE]
– reference: C. Cheung, TASI lectures on scattering amplitudes, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: anticipating the next discoveries in particle physics (TASI 2016), Boulder, CO, U.S.A., 6 June –1 July 2016, R. Essig and I. Low eds., World Scientific, Singapore (2018), pg. 571 [arXiv:1708.03872] [INSPIRE].
– reference: DrummondJMHennJMAll tree-level amplitudes in N = 4 SYMJHEP2009040182009JHEP...04..018D2506011[arXiv:0808.2475] [INSPIRE]
– reference: R. Monteiro, D. O’Connell, D. Peinador Veiga and M. Sergola, Classical solutions and their double copy in split signature, JHEP05 (2021) 268 [arXiv:2012.11190] [INSPIRE].
– reference: LunaAMonteiroRNicholsonIO’ConnellDWhiteCDThe double copy: bremsstrahlung and accelerating black holesJHEP2016060232016JHEP...06..023L35381841388.83025[arXiv:1603.05737] [INSPIRE]
– reference: J. Broedel and J.J.M. Carrasco, Virtuous trees at five and six points for Yang-Mills and gravity, Phys. Rev. D84 (2011) 085009 [arXiv:1107.4802] [INSPIRE].
– reference: D.Z. Freedman and P.K. Townsend, Antisymmetric tensor gauge theories and nonlinear sigma models, Nucl. Phys. B177 (1981) 282 [INSPIRE].
– reference: H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].
– reference: N. Arkani-Hamed, L. Rodina and J. Trnka, Locality and unitarity of scattering amplitudes from singularities and gauge invariance, Phys. Rev. Lett.120 (2018) 231602 [arXiv:1612.02797] [INSPIRE].
– reference: H. Frost, C.R. Mafra and L. Mason, A Lie bracket for the momentum kernel, arXiv:2012.00519 [INSPIRE].
– reference: EdisonATengFEfficient calculation of crossing symmetric BCJ tree numeratorsJHEP2020121382020JHEP...12..138E42393151457.83071[arXiv:2005.03638] [INSPIRE]
– reference: HeSHouLTianJZhangYKinematic numerators from the worldsheet: cubic trees from labelled treesJHEP2021081182021JHEP...08..118H43171521469.81077[arXiv:2103.15810] [INSPIRE]
– reference: K. Kim, K. Lee, R. Monteiro, I. Nicholson and D. Peinador Veiga, The classical double copy of a point charge, JHEP02 (2020) 046 [arXiv:1912.02177] [INSPIRE].
– reference: I. Low, Adler’s zero and effective Lagrangians for nonlinearly realized symmetry, Phys. Rev. D91 (2015) 105017 [arXiv:1412.2145] [INSPIRE].
– reference: CheungCRemmenGNHidden simplicity of the gravity actionJHEP2017090022017JHEP...09..002C37141811382.83007[arXiv:1705.00626] [INSPIRE]
– reference: CheungCMossZSymmetry and unification from soft theorems and unitarityJHEP2021051612021JHEP...05..161C43016431466.81044[arXiv:2012.13076] [INSPIRE]
– reference: CheungCRemmenGNShenC-HWenCPions as gluons in higher dimensionsJHEP2018041292018JHEP...04..129C38011451390.81291[arXiv:1709.04932] [INSPIRE]
– reference: Bjerrum-BohrNEJDamgaardPHSondergaardTVanhovePThe momentum kernel of gauge and gravity theoriesJHEP2011010012011JHEP...01..001B27923101214.81145[arXiv:1010.3933] [INSPIRE]
– reference: F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B306 (1988) 759 [INSPIRE].
– reference: ChenGJohanssonHTengFWangTNext-to-MHV Yang-Mills kinematic algebraJHEP2021100422021JHEP...10..042C4339884[arXiv:2104.12726] [INSPIRE]
– reference: CheungCRemmenGNTwofold symmetries of the pure gravity actionJHEP2017011042017JHEP...01..104C36286341373.83013[arXiv:1612.03927] [INSPIRE]
– reference: CheungCShenC-HWenCUnifying relations for scattering amplitudesJHEP2018020952018JHEP...02..095C37851571387.81264[arXiv:1705.03025] [INSPIRE]
– reference: DixonLJHennJMPlefkaJSchusterTAll tree-level amplitudes in massless QCDJHEP2011010352011JHEP...01..035D27922951214.81297[arXiv:1010.3991] [INSPIRE]
– reference: MizeraSInverse of the string theory KLT kernelJHEP2017060842017JHEP...06..084M36784431380.81424[arXiv:1610.04230] [INSPIRE]
– reference: ChenGJohanssonHTengFWangTOn the kinematic algebra for BCJ numerators beyond the MHV sectorJHEP2019110552019JHEP...11..055C4069508[arXiv:1906.10683] [INSPIRE]
– reference: Bjerrum-BohrNEJBourjailyJLDamgaardPHFengBAnalytic representations of Yang-Mills amplitudesNucl. Phys. B20169139642016NuPhB.913..964B1349.81135[arXiv:1605.06501] [INSPIRE]
– reference: BridgesEMafraCRAlgorithmic construction of SYM multiparticle superfields in the BCJ gaugeJHEP2019100222019JHEP...10..022B40596721427.83097[arXiv:1906.12252] [INSPIRE]
– reference: DiwakarPHerderscheeARoibanRTengFBCJ amplitude relations for anti-de Sitter boundary correlators in embedding spaceJHEP2021101412021JHEP...10..141D4339785[arXiv:2106.10822] [INSPIRE]
– reference: NaculichSGScattering equations and virtuous kinematic numerators and dual-trace functionsJHEP2014071432014JHEP...07..143N32501151333.83021[arXiv:1404.7141] [INSPIRE]
– reference: M. Carrillo González, R. Penco and M. Trodden, Shift symmetries, soft limits, and the double copy beyond leading order, Phys. Rev. D102 (2020) 105011 [arXiv:1908.07531] [INSPIRE].
– reference: CheungCKampfKNovotnyJShenC-HTrnkaJA periodic table of effective field theoriesJHEP2017020202017JHEP...02..020C36402471377.81123[arXiv:1611.03137] [INSPIRE]
– reference: C. Cheung and C.-H. Shen, Symmetry for flavor-kinematics duality from an action, Phys. Rev. Lett.118 (2017) 121601 [arXiv:1612.00868] [INSPIRE].
– reference: MonteiroRO’ConnellDThe kinematic algebra from the self-dual sectorJHEP2011070072011JHEP...07..007M28759911298.81401[arXiv:1105.2565] [INSPIRE]
– reference: V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B571 (2000) 51 [hep-ph/9910563] [INSPIRE].
– reference: DuY-JFuC-HExplicit BCJ numerators of nonlinear sigma modelJHEP2016091742016JHEP...09..174D1390.81321[arXiv:1606.05846] [INSPIRE]
– reference: C. Cheung, J. Mangan and C.-H. Shen, Hidden conformal invariance of scalar effective field theories, Phys. Rev. D102 (2020) 125009 [arXiv:2005.13027] [INSPIRE].
– reference: MisnerCWThorneKSWheelerJAGravitation1973San Francisco, CA, U.S.A.W.H. Freeman
– reference: FuC-HVanhovePWangYA vertex operator algebra construction of the colour-kinematics dual numeratorJHEP2018091412018JHEP...09..141F38683461398.81252[arXiv:1806.09584] [INSPIRE]
– reference: A.K. Ridgway and M.B. Wise, Static spherically symmetric Kerr-Schild metrics and implications for the classical double copy, Phys. Rev. D94 (2016) 044023 [arXiv:1512.02243] [INSPIRE].
– reference: J.J.M. Carrasco, L. Rodina, Z. Yin and S. Zekioglu, Simple encoding of higher derivative gauge and gravity counterterms, Phys. Rev. Lett.125 (2020) 251602 [arXiv:1910.12850] [INSPIRE].
– reference: C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka and C. Wen, Vector effective field theories from soft limits, Phys. Rev. Lett.120 (2018) 261602 [arXiv:1801.01496] [INSPIRE].
– reference: ArmstrongCLipsteinAEMeiJColor/kinematics duality in AdS4JHEP2021021942021JHEP...02..194A1460.81104[arXiv:2012.02059] [INSPIRE]
– reference: BrownRWNaculichSGBCJ relations from a new symmetry of gauge-theory amplitudesJHEP2016101302016JHEP...10..130B35785551390.81307[arXiv:1608.04387] [INSPIRE]
– reference: Arkani-HamedNKaplanJOn tree amplitudes in gauge theory and gravityJHEP2008040762008JHEP...04..076A24252271246.81103[arXiv:0801.2385] [INSPIRE]
– reference: K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].
– reference: Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
– reference: H. Johansson and J. Nohle, Conformal gravity from gauge theory, arXiv:1707.02965 [INSPIRE].
– reference: Bjerrum-BohrNEJBourjailyJLDamgaardPHFengBManifesting color-kinematics duality in the scattering equation formalismJHEP2016090942016JHEP...09..094B35579971390.83090[arXiv:1608.00006] [INSPIRE]
– reference: F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP07 (2015) 149 [arXiv:1412.3479] [INSPIRE].
– ident: 17111_CR76
  doi: 10.1103/PhysRevLett.120.261602
– ident: 17111_CR72
  doi: 10.1103/PhysRevLett.120.231602
– ident: 17111_CR48
  doi: 10.1142/9789813233348_0008
– ident: 17111_CR73
  doi: 10.1103/PhysRevLett.116.041601
– ident: 17111_CR21
– ident: 17111_CR1
  doi: 10.1016/0550-3213(86)90362-7
– ident: 17111_CR4
– volume: 03
  start-page: 110
  year: 2014
  ident: 17111_CR7
  publication-title: JHEP
  doi: 10.1007/JHEP03(2014)110
– volume: 913
  start-page: 964
  year: 2016
  ident: 17111_CR64
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2016.10.012
– volume: 07
  start-page: 007
  year: 2011
  ident: 17111_CR5
  publication-title: JHEP
  doi: 10.1007/JHEP07(2011)007
– volume: 05
  start-page: 239
  year: 2021
  ident: 17111_CR42
  publication-title: JHEP
– ident: 17111_CR39
– ident: 17111_CR45
– volume: 200
  start-page: 301
  year: 1991
  ident: 17111_CR13
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(91)90091-Y
– volume: 10
  start-page: 091
  year: 2012
  ident: 17111_CR77
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)091
– volume: 10
  start-page: 018
  year: 2018
  ident: 17111_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)018
– volume-title: Gravitation
  year: 1973
  ident: 17111_CR32
– volume: 08
  start-page: 098
  year: 2014
  ident: 17111_CR60
  publication-title: JHEP
  doi: 10.1007/JHEP08(2014)098
– volume: 10
  start-page: 141
  year: 2021
  ident: 17111_CR81
  publication-title: JHEP
  doi: 10.1007/JHEP10(2021)141
– ident: 17111_CR3
  doi: 10.1103/PhysRevLett.105.061602
– volume: 08
  start-page: 118
  year: 2021
  ident: 17111_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP08(2021)118
– ident: 17111_CR78
– volume: 12
  start-page: 056
  year: 2014
  ident: 17111_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP12(2014)056
– volume: 10
  start-page: 042
  year: 2021
  ident: 17111_CR54
  publication-title: JHEP
  doi: 10.1007/JHEP10(2021)042
– volume: 750
  start-page: 272
  year: 2015
  ident: 17111_CR34
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2015.09.021
– volume: 02
  start-page: 095
  year: 2018
  ident: 17111_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP02(2018)095
– volume: 02
  start-page: 194
  year: 2021
  ident: 17111_CR85
  publication-title: JHEP
  doi: 10.1007/JHEP02(2021)194
– ident: 17111_CR37
  doi: 10.1088/1361-6382/ab03e6
– ident: 17111_CR44
  doi: 10.1016/S0550-3213(99)00809-3
– ident: 17111_CR24
  doi: 10.1103/PhysRevD.92.023503
– volume: 01
  start-page: 035
  year: 2011
  ident: 17111_CR71
  publication-title: JHEP
  doi: 10.1007/JHEP01(2011)035
– volume: 05
  start-page: 161
  year: 2021
  ident: 17111_CR19
  publication-title: JHEP
– ident: 17111_CR82
  doi: 10.1103/PhysRevLett.127.141601
– volume: 07
  start-page: 198
  year: 2021
  ident: 17111_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP07(2021)198
– ident: 17111_CR10
  doi: 10.1016/0550-3213(88)90442-7
– volume: 06
  start-page: 061
  year: 2012
  ident: 17111_CR6
  publication-title: JHEP
  doi: 10.1007/JHEP06(2012)061
– ident: 17111_CR67
  doi: 10.1103/PhysRevD.84.085009
– ident: 17111_CR36
  doi: 10.1007/JHEP02(2020)046
– ident: 17111_CR46
– ident: 17111_CR84
– ident: 17111_CR22
  doi: 10.1103/PhysRevLett.114.221602
– volume: 01
  start-page: 104
  year: 2017
  ident: 17111_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP01(2017)104
– volume: 11
  start-page: 158
  year: 2020
  ident: 17111_CR83
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)158
– volume: 12
  start-page: 138
  year: 2020
  ident: 17111_CR52
  publication-title: JHEP
  doi: 10.1007/JHEP12(2020)138
– volume: 07
  start-page: 047
  year: 2021
  ident: 17111_CR55
  publication-title: JHEP
  doi: 10.1007/JHEP07(2021)047
– volume: 07
  start-page: 143
  year: 2014
  ident: 17111_CR68
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)143
– ident: 17111_CR35
  doi: 10.1007/JHEP05(2021)268
– volume: 50
  start-page: 71
  year: 1941
  ident: 17111_CR15
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1941-0004740-5
– volume: 09
  start-page: 021
  year: 2017
  ident: 17111_CR50
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)021
– volume: 03
  start-page: 097
  year: 2016
  ident: 17111_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP03(2016)097
– volume: 04
  start-page: 076
  year: 2008
  ident: 17111_CR29
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/04/076
– volume: 04
  start-page: 033
  year: 2017
  ident: 17111_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)033
– volume: 09
  start-page: 141
  year: 2018
  ident: 17111_CR62
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)141
– ident: 17111_CR80
  doi: 10.1103/PhysRevLett.125.251602
– volume: 06
  start-page: 023
  year: 2016
  ident: 17111_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP06(2016)023
– volume: 06
  start-page: 084
  year: 2017
  ident: 17111_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP06(2017)084
– volume: 07
  start-page: 033
  year: 2014
  ident: 17111_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)033
– volume: 11
  start-page: 055
  year: 2019
  ident: 17111_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP11(2019)055
– ident: 17111_CR18
  doi: 10.1103/PhysRevD.91.105017
– ident: 17111_CR26
  doi: 10.1103/PhysRevD.102.125009
– volume: 05
  start-page: 032
  year: 2013
  ident: 17111_CR75
  publication-title: JHEP
  doi: 10.1007/JHEP05(2013)032
– ident: 17111_CR47
– volume: 10
  start-page: 022
  year: 2019
  ident: 17111_CR66
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)022
– volume: 03
  start-page: 050
  year: 2013
  ident: 17111_CR61
  publication-title: JHEP
  doi: 10.1007/JHEP03(2013)050
– volume: 01
  start-page: 001
  year: 2011
  ident: 17111_CR69
  publication-title: JHEP
  doi: 10.1007/JHEP01(2011)001
– ident: 17111_CR79
  doi: 10.1103/PhysRevD.102.105011
– volume: 04
  start-page: 018
  year: 2009
  ident: 17111_CR70
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/04/018
– ident: 17111_CR2
  doi: 10.1103/PhysRevD.78.085011
– ident: 17111_CR20
  doi: 10.1016/0550-3213(81)90392-8
– ident: 17111_CR41
  doi: 10.1103/PhysRevLett.126.061602
– volume: 10
  start-page: 130
  year: 2016
  ident: 17111_CR86
  publication-title: JHEP
  doi: 10.1007/JHEP10(2016)130
– ident: 17111_CR23
  doi: 10.1007/JHEP07(2015)149
– volume: 09
  start-page: 094
  year: 2016
  ident: 17111_CR63
  publication-title: JHEP
  doi: 10.1007/JHEP09(2016)094
– ident: 17111_CR51
– ident: 17111_CR28
– volume: 80
  start-page: 37
  year: 2020
  ident: 17111_CR58
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-7604-8
– volume: 09
  start-page: 174
  year: 2016
  ident: 17111_CR59
  publication-title: JHEP
  doi: 10.1007/JHEP09(2016)174
– ident: 17111_CR9
  doi: 10.1103/PhysRevLett.118.121601
– volume: 07
  start-page: 002
  year: 2017
  ident: 17111_CR17
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)002
– volume: 04
  start-page: 129
  year: 2018
  ident: 17111_CR25
  publication-title: JHEP
  doi: 10.1007/JHEP04(2018)129
– volume: 01
  start-page: 081
  year: 2015
  ident: 17111_CR16
  publication-title: JHEP
  doi: 10.1007/JHEP01(2015)081
– volume: 02
  start-page: 020
  year: 2017
  ident: 17111_CR74
  publication-title: JHEP
  doi: 10.1007/JHEP02(2017)020
– ident: 17111_CR40
  doi: 10.1103/PhysRevD.94.044023
– volume: 01
  start-page: 171
  year: 2016
  ident: 17111_CR56
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)171
– volume: 09
  start-page: 002
  year: 2017
  ident: 17111_CR31
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)002
– volume: 07
  start-page: 092
  year: 2011
  ident: 17111_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP07(2011)092
SSID ssj0015190
Score 2.6361527
Snippet A bstract We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear...
We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear sigma model...
Abstract We show that color-kinematics duality is a manifest property of the equations of motion governing currents and field strengths. For the nonlinear...
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Amplitudes
Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Color
Duality in Gauge Field Theories
Elementary Particles
Equations of motion
Field theory
Formulations
Gauge-gravity correspondence
High energy physics
Kinematics
Mathematical analysis
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quantum theory
Regular Article - Theoretical Physics
Relativity
Relativity Theory
Scattering Amplitudes
String Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EFLyIT6wvFvGgh2jSJk1yVNlFPIgHBW8hrwVRdmV3Ffz3TtLWF4gXT30lZfim6cwwk28ADmthy-C4JkF5S3jwiiirBQmRVTEE7SizudmEvL5W9_f65kurr1QT1tADN8CdMi18Wfmh0HXginoVMIIIteK2Eo65zARKpe6CqTZ_gH4J7Yh8qDy9uuzfMHaEgT47pqm2-YsNylT9eBjjkvrmZv7IjGaDM1iB5dZT7J01Eq7CXBytwWKu2PTTdTi4GL9inIvA9BLx9IQ8or-Y-VenvZB3Sr5twN2gf3txSdqGB8RzzmeElw79h5rXNAhHtaWBWVVKKVNurGIRzyl3ZWmdp3FYomXReOU1xShNae6rTZgfjUdxC3qy8oicdc4OBeeRWxdVSoEyqaywVhRw0kFgfMsGnppSPJmOx7jBzCTMDGJWwNHHhOeGCOP3oecJ049hicE630C9mlav5i-9FrCTNGLQEUhstj6V_fgZTpM1_mQK2O0UZdpFNzUYyaUNj6pmBRx3yvt8_Iu02_8h7Q4spfeRXB-4C_OzyUvcgwX_OnuYTvbzt_kO-V7h-Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7qC7z4FteqFPFQD5FkN9lNjlqU4kE8KHgLeVVEaaWtgv_eSbqrqHjQ02Z3JzDJZJIZZuYLwFEpTO4tV8RLZwj3ThJplCA-sCJ4ryxlJl02UV1dybs7dd0C1tTCpGz3JiSZduqm2O2yf37NWBeddXZMSzUHCxFLLGZx9WKBQx04QIOENgg-Pzt9OXwSRj8-RqhLX-zLbyHRdNJcrP6DxzVYqc3KzulsHaxDKww3YCmld7rJJhz2Rq_oFOMsdiJK9Zg8onGZwFonHZ_KKt-24Pbi_KbXJ_XtCMRxzqeE5xaNjZKX1AtLlaGeGZlXVRUDaQUL2Kbc5rmxjoZBjseQwjenKLp0UnFXbMP8cDQMO9CpCseUMNaageA8cGODjPFSVkkjjBEZnDTTpl0NHR5vsHjSDejxbOA6DlzjwDPofnR4nqFm_E56FuXwQRbhrtOH0fhe19qjkTuXF24gVOm5pE56dCN9KbkphGWWZ9COUtRoNUToWxdzhNwUu1Ul7kgZ7DXC1bWGTjS6fbE6UpYsg-NGmJ-_f-F29w-0bViOTZJyBvdgfjp-Cfuw6F6nD5PxQVq2740r5FI
  priority: 102
  providerName: Springer Nature
Title Covariant color-kinematics duality
URI https://link.springer.com/article/10.1007/JHEP11(2021)069
https://www.proquest.com/docview/2596178861
https://www.osti.gov/servlets/purl/1976578
https://doaj.org/article/195c23cf596d480c8d010d684a35b1b4
Volume 2021
WOSCitedRecordID wos000717494800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xFiReGJ8ibFQV4mF7MLUTJ7GfEKs6DSSqCIE0eLH81QmBmtGUSfvvd3adjiGNJ17yaUfOnX2-851_B_C6KnXuDJfECasJd1YQoWVJnGeFd04aynRMNlHP5-L0VDZpe3SXwip7mRgF9QbtOcRtoxCeuNaGFfMJKu1hb5uo2NvzXyTkkAq-1pRQYweGAXiLDmDYvP_YfN16FVBboT28D60nH05mDWMHaP6zQxoinv-YmSKAP55aHGg3lM-__KVxGjre_b8_8BAeJHV0_G7Tfx7BHb98DPdiWKjtnsCraXuBxjRSfxzQrVfkByqlEeS1G7u4HfPyKXw5nn2enpCUVYFYzvma8NygklLxirrSUKmpY1rkdV0HB1zBPF5TbvJcG0v9IsfpS-KdlRRNQSG5LZ7BYNku_XMY14VlstTG6AXS23NtvAh-VvwxXWpdZvCmp6iyCXI8ZL74qXqw5A0LVGCBQhZkcLCtcL5B27i96FFg0bZYgMmOD9rVmUqjTmHrbF7YBRLbcUGtcGh-ukpwXZSGGZ7BXmCwQm0jQObaEFtk11itrlCSZbDfc1Klkd2pa8ZlcNj3hevXt7T2xb8_tQf3Q0kSwwv3YbBe_fYv4a69WH_vViMYHs3mzacR7ExzPoqrBnhsym-j1MGvAHnUAjI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvBGhBSIEUnswtR0ncQ4IQWm1S9vVHorUnoxfixBoUzahqH-K38jYm2wBqdx64JSXbVmepzPjbwCeF7nmzoiKOGk1Ec5KInWVE-dZ5p2rDGU6Fpsox2N5dFRNVuBnfxYmpFX2OjEqalfb8I98C930cJpNFuz1yTcSqkaF6GpfQmPBFnv-7Adu2ZpXo3dI3xec7-4cbg9JV1WAWCFESwQ3aKQLUVCXG1pp6piWvCzLEIDKmMd7Kgzn2ljqpxzVd4VPtqK4FZKVsBmOewVWBTI7HcDqZHQwOV7GLdAfoj2AEC233g93JoxtcDSkmzTkVP9m-2KJALzUKMp_uLd_RWSjodu99b8t0W242bnU6ZuFDNyBFT-7C9diaqtt7sGz7fpUo5jN2jQgdM_JF3SsI1Btk7p4pPTsPny4lAk-gMGsnvmHkJaZZVWujdHTXAgvtPEyxIpxIXWudZ7Ay55mynaw6aF6x1fVAz4viKwCkRUSOYGNZYeTBWLIxU3fBiZYNgtQ3_FFPf-kOs2hcHaWZ3aKxHVCUisdbqFdIYXOcsOMSGAtsJBCjynA_tqQH2Vb7FYWqI0TWO95RXXaqVHnjJLAZs9t558vmO2jfw_1FK4PDw_21f5ovLcGN0IvEtMl12HQzr_7x3DVnrafm_mTTmhS-HjZTPgL3M9KXQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvBGhBSIEUnswaztO4hwQou2uWopWKwRSb65fixBoUzahqH-NX8fYm2wBqdx64JSXbVmeh2cy428Anhe55s6IijhpNRHOSiJ1lRPnWeadqwxlOhabKCcTeXRUTdfgZ38WJqRV9joxKmpX2_CPfIhmejjNJgs2nHVpEdO98euTbyRUkAqR1r6cxpJFDv3ZD3TfmlcHe0jrF5yPRx9290lXYYBYIURLBDe4YReioC43tNLUMS15WZYhGJUxj_dUGM61sdTPOKryCp9sRdEtkpWwGY57BdbLDJ2eAazvjCbT96sYBtpGtAcTouXw7f5oytgWx011m4b86t_2wVguAC81ivUfpu5f0dm46Y1v_c_LdRtudqZ2-mYpG3dgzc_vwrWY8mqbe_Bstz7VKH7zNg3I3QvyBQ3uCGDbpC4eNT27Dx8vZYIPYDCv5_4hpGVmWZVrY_QsF8ILbbwMMWRcVJ1rnSfwsqefsh2ceqjq8VX1QNBLgqtAcIUET2Br1eFkiSRycdOdwBCrZgECPL6oF59Up1EUzs7yzM6Q0E5IaqVD19oVUugsN8yIBDYCOym0pAIcsA15U7bFbmWBWjqBzZ5vVKe1GnXONAls95x3_vmC2T7691BP4Tpynnp3MDncgBuhE4lZlJswaBff_WO4ak_bz83iSSc_KRxfNg_-AtlaUvc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariant+color-kinematics+duality&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Cheung%2C+Clifford&rft.au=Mangan%2C+James&rft.date=2021-11-10&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2021&rft.issue=11&rft_id=info:doi/10.1007%2FJHEP11%282021%29069&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon