High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs
High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively...
Saved in:
| Published in: | Nucleic acids research Vol. 45; no. 12; p. e116 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Oxford University Press
07.07.2017
|
| Subjects: | |
| ISSN: | 0305-1048, 1362-4962, 1362-4962 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively stable, their association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression programs. While exoribonuclease treatment is widely used to degrade linear RNAs and enrich circRNAs in RNA samples, it does not efficiently eliminate all linear RNAs. Here, we describe a novel method for the isolation of highly pure circRNA populations involving RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion (RPAD), which removes linear RNA to near completion. High-throughput sequencing of RNA prepared using RPAD from human cervical carcinoma HeLa cells and mouse C2C12 myoblasts led to two surprising discoveries: (i) many exonic circRNA (EcircRNA) isoforms share an identical backsplice sequence but have different body sizes and sequences, and (ii) thousands of novel intronic circular RNAs (IcircRNAs) are expressed in cells. In sum, isolating high-purity circRNAs using the RPAD method can enable quantitative and qualitative analyses of circRNA types and sequence composition, paving the way for the elucidation of circRNA functions. |
|---|---|
| AbstractList | High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively stable, their association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression programs. While exoribonuclease treatment is widely used to degrade linear RNAs and enrich circRNAs in RNA samples, it does not efficiently eliminate all linear RNAs. Here, we describe a novel method for the isolation of highly pure circRNA populations involving RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion (RPAD), which removes linear RNA to near completion. High-throughput sequencing of RNA prepared using RPAD from human cervical carcinoma HeLa cells and mouse C2C12 myoblasts led to two surprising discoveries: (i) many exonic circRNA (EcircRNA) isoforms share an identical backsplice sequence but have different body sizes and sequences, and (ii) thousands of novel intronic circular RNAs (IcircRNAs) are expressed in cells. In sum, isolating high-purity circRNAs using the RPAD method can enable quantitative and qualitative analyses of circRNA types and sequence composition, paving the way for the elucidation of circRNA functions. High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively stable, their association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression programs. While exoribonuclease treatment is widely used to degrade linear RNAs and enrich circRNAs in RNA samples, it does not efficiently eliminate all linear RNAs. Here, we describe a novel method for the isolation of highly pure circRNA populations involving RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion (RPAD), which removes linear RNA to near completion. High-throughput sequencing of RNA prepared using RPAD from human cervical carcinoma HeLa cells and mouse C2C12 myoblasts led to two surprising discoveries: (i) many exonic circRNA (EcircRNA) isoforms share an identical backsplice sequence but have different body sizes and sequences, and (ii) thousands of novel intronic circular RNAs (IcircRNAs) are expressed in cells. In sum, isolating high-purity circRNAs using the RPAD method can enable quantitative and qualitative analyses of circRNA types and sequence composition, paving the way for the elucidation of circRNA functions.High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively stable, their association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression programs. While exoribonuclease treatment is widely used to degrade linear RNAs and enrich circRNAs in RNA samples, it does not efficiently eliminate all linear RNAs. Here, we describe a novel method for the isolation of highly pure circRNA populations involving RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion (RPAD), which removes linear RNA to near completion. High-throughput sequencing of RNA prepared using RPAD from human cervical carcinoma HeLa cells and mouse C2C12 myoblasts led to two surprising discoveries: (i) many exonic circRNA (EcircRNA) isoforms share an identical backsplice sequence but have different body sizes and sequences, and (ii) thousands of novel intronic circular RNAs (IcircRNAs) are expressed in cells. In sum, isolating high-purity circRNAs using the RPAD method can enable quantitative and qualitative analyses of circRNA types and sequence composition, paving the way for the elucidation of circRNA functions. |
| Author | Piao, Yulan Abdelmohsen, Kotb Panda, Amaresh C. Gorospe, Myriam Grammatikakis, Ioannis Dudekula, Dawood B. De, Supriyo Yang, Xiaoling Munk, Rachel |
| AuthorAffiliation | Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA |
| AuthorAffiliation_xml | – name: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA |
| Author_xml | – sequence: 1 givenname: Amaresh C. surname: Panda fullname: Panda, Amaresh C. organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA – sequence: 2 givenname: Supriyo surname: De fullname: De, Supriyo organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA – sequence: 3 givenname: Ioannis surname: Grammatikakis fullname: Grammatikakis, Ioannis organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA – sequence: 4 givenname: Rachel surname: Munk fullname: Munk, Rachel organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA – sequence: 5 givenname: Xiaoling surname: Yang fullname: Yang, Xiaoling organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA – sequence: 6 givenname: Yulan surname: Piao fullname: Piao, Yulan organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA – sequence: 7 givenname: Dawood B. surname: Dudekula fullname: Dudekula, Dawood B. organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA – sequence: 8 givenname: Kotb surname: Abdelmohsen fullname: Abdelmohsen, Kotb organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA – sequence: 9 givenname: Myriam surname: Gorospe fullname: Gorospe, Myriam organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28444238$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkV1LIzEUhsOirFX3Zn_AkksVRvM1k-ZGKH6DqIheSshkTtvsppOazBT998ZWxRWvcpHnPOflvJtorQ0tIPSbkn1KFD9oTTyY_HtiSv5AA8orVghVsTU0IJyUBSViuIE2U_pLCBW0FD_RBhsKIRgfDtDDuZtMi3kfXfeMrYu29ybi26sRdil407nQ4hl009Dgndub0fEujrAA4xNemNRhG7wHu6TCGLu2i6F1dinKjrSN1seZhV9v7xa6Pz25OzovLq_PLo5Gl4XNObqC85IYZpSEUtqaUWikrKGpbK2Ac0kqQqwYW6g4ocxQY5moJZHKNAaASsa30OHKO-_rGTQWchDj9Ty6mYnPOhin__9p3VRPwkKXQqlSvQp23gQxPPaQOj1zyYL3poXQJ02HGeKiklVG_3ze9bHk_aYZ2FsBNoaUIow_EEr0a2E6F6ZXhWWYfIGt65Znzzmd_27kBQZvm54 |
| CitedBy_id | crossref_primary_10_1016_j_mad_2018_05_001 crossref_primary_10_1038_s41467_022_30183_0 crossref_primary_10_3390_cancers14194728 crossref_primary_10_1038_s44318_025_00404_5 crossref_primary_10_1093_bib_bbab494 crossref_primary_10_1002_tpg2_20429 crossref_primary_10_3390_ncrna8010012 crossref_primary_10_1093_nar_gkz576 crossref_primary_10_1038_s41420_022_01092_4 crossref_primary_10_1186_s12943_022_01514_y crossref_primary_10_1002_wrna_1566 crossref_primary_10_1007_s11010_021_04286_z crossref_primary_10_3390_cancers14174313 crossref_primary_10_1007_s11010_020_03900_w crossref_primary_10_1016_j_prp_2022_153968 crossref_primary_10_1038_s41556_024_01537_1 crossref_primary_10_1016_j_ymeth_2018_10_022 crossref_primary_10_1080_17474124_2020_1715211 crossref_primary_10_1002_rmv_2530 crossref_primary_10_3390_biom13040679 crossref_primary_10_1002_jcp_27384 crossref_primary_10_1016_j_tcb_2019_12_004 crossref_primary_10_1186_s12911_023_02384_0 crossref_primary_10_1155_2020_7958362 crossref_primary_10_1038_s41588_025_02157_7 crossref_primary_10_1038_s41592_022_01487_2 crossref_primary_10_1002_wrna_1850 crossref_primary_10_1097_FJC_0000000000000841 crossref_primary_10_1016_j_microc_2024_110310 crossref_primary_10_1111_jipb_13081 crossref_primary_10_1016_j_ymeth_2021_09_010 crossref_primary_10_3389_fgene_2018_00577 crossref_primary_10_1111_jipb_13002 crossref_primary_10_1002_pros_24102 crossref_primary_10_1016_j_trac_2024_118112 crossref_primary_10_1186_s13045_021_01052_y crossref_primary_10_1038_s41467_023_41491_4 crossref_primary_10_3390_biom14080952 crossref_primary_10_3390_ncrna4040038 crossref_primary_10_3389_fcell_2021_618113 crossref_primary_10_1007_s11033_024_09211_3 crossref_primary_10_1016_j_ymeth_2021_02_019 crossref_primary_10_1242_dev_175786 crossref_primary_10_1016_j_molcel_2018_06_034 crossref_primary_10_1016_j_biotechadv_2025_108710 crossref_primary_10_1016_j_biopha_2023_115217 crossref_primary_10_3389_fgene_2020_00999 crossref_primary_10_1089_gtmb_2022_0086 crossref_primary_10_3390_ijms20163988 crossref_primary_10_1016_j_bbagrm_2022_194888 crossref_primary_10_1016_j_jmb_2020_166758 crossref_primary_10_1016_j_semcancer_2018_12_002 crossref_primary_10_3389_fcell_2021_659417 crossref_primary_10_1038_s41596_023_00815_w crossref_primary_10_1016_j_phrs_2021_105766 crossref_primary_10_1016_j_chroma_2023_464321 crossref_primary_10_1016_j_ymeth_2021_04_016 crossref_primary_10_7717_peerj_10032 crossref_primary_10_19127_bshealthscience_871765 crossref_primary_10_1038_onc_2017_361 crossref_primary_10_1073_pnas_1811728115 crossref_primary_10_1089_omi_2023_0158 crossref_primary_10_3389_fgene_2019_00897 crossref_primary_10_1016_j_cellsig_2020_109747 crossref_primary_10_2147_IJGM_S380834 crossref_primary_10_1016_j_ymeth_2021_04_014 crossref_primary_10_3389_fonc_2020_579940 crossref_primary_10_1016_j_semcancer_2020_09_003 crossref_primary_10_1111_jcmm_13684 crossref_primary_10_3390_ijms25031477 crossref_primary_10_1016_j_omtn_2021_01_003 crossref_primary_10_1002_wrna_1872 crossref_primary_10_1016_j_arr_2020_101058 crossref_primary_10_1002_wrna_1478 crossref_primary_10_1002_wrna_1633 crossref_primary_10_1038_s41374_018_0108_6 crossref_primary_10_1016_j_pharmthera_2022_108123 crossref_primary_10_1016_j_bbagrm_2019_02_011 crossref_primary_10_3390_ncrna9040038 crossref_primary_10_1093_bib_bbaa001 crossref_primary_10_1146_annurev_cellbio_120420_125117 crossref_primary_10_1016_j_ejphar_2024_176855 crossref_primary_10_1128_spectrum_01106_22 crossref_primary_10_3390_biom14020158 crossref_primary_10_1007_s11033_023_09138_1 crossref_primary_10_1111_bph_16434 crossref_primary_10_3390_biom13030533 crossref_primary_10_1016_j_bbcan_2023_188894 crossref_primary_10_1038_s41388_018_0369_y crossref_primary_10_1099_mgen_0_000821 crossref_primary_10_15252_embr_202052072 crossref_primary_10_1136_jclinpath_2019_205891 crossref_primary_10_1002_jcp_28156 crossref_primary_10_1111_jcmm_13789 crossref_primary_10_1186_s12943_020_01187_5 crossref_primary_10_3390_cancers13184618 crossref_primary_10_1016_j_biopha_2023_115818 crossref_primary_10_3390_ncrna8050065 crossref_primary_10_1016_j_joms_2021_11_021 crossref_primary_10_1073_pnas_1808816115 crossref_primary_10_3390_ijms24033050 crossref_primary_10_1093_genetics_iyab145 crossref_primary_10_1016_j_tibs_2018_09_016 crossref_primary_10_3389_fmolb_2021_625722 crossref_primary_10_1186_s12864_024_10420_0 crossref_primary_10_1038_s41388_023_02780_w crossref_primary_10_1002_2211_5463_12538 crossref_primary_10_1186_s13059_021_02497_7 crossref_primary_10_3389_fonc_2020_00663 crossref_primary_10_1093_nar_gkaa035 crossref_primary_10_1016_j_semcancer_2020_12_026 crossref_primary_10_3389_fcvm_2021_672600 crossref_primary_10_3390_ijms21124302 crossref_primary_10_3389_fgene_2019_00176 crossref_primary_10_1371_journal_pone_0214301 crossref_primary_10_1038_s41421_018_0050_1 crossref_primary_10_1016_j_cell_2022_04_021 crossref_primary_10_3390_genes12081258 crossref_primary_10_1038_s41422_020_0279_8 crossref_primary_10_1038_s41467_021_24975_z crossref_primary_10_3389_fonc_2020_01742 crossref_primary_10_3389_fcell_2020_00273 crossref_primary_10_3390_ijms19113454 |
| Cites_doi | 10.1038/nature11928 10.1261/rna.043687.113 10.1101/gr.202895.115 10.1016/0092-8674(93)90279-Y 10.1074/jbc.M606744200 10.1038/nrg.2016.114 10.1016/j.molcel.2014.08.019 10.1038/ncomms12060 10.1002/j.1460-2075.1992.tb05148.x 10.1186/s13059-015-0690-5 10.18632/oncotarget.3469 10.18632/aging.100834 10.1093/nar/gkw1201 10.1152/physrev.00041.2015 10.1186/s13059-014-0409-z 10.1016/0092-8674(80)90505-X 10.1038/nrm.2015.32 10.1038/ncomms11215 10.1093/nar/gkl556 10.1016/j.molcel.2013.08.017 10.1038/nsmb.2959 10.1093/nar/gkw023 10.1093/nar/gkl151 10.1073/pnas.73.11.3852 10.1038/nature11993 10.1261/rna.035667.112 10.1038/nprot.2008.73 10.1038/323558a0 10.1093/hmg/7.5.919 10.1080/15476286.2015.1094602 10.1101/gr.849004 10.1016/0092-8674(91)90244-S 10.1016/j.molcel.2015.03.027 10.1093/nar/gkw027 10.1038/nbt.2890 10.1080/15476286.2015.1128065 10.1038/nn.3975 10.1038/nature11233 10.1093/nar/gkt1181 |
| ContentType | Journal Article |
| Copyright | Published by Oxford University Press on behalf of Nucleic Acids Research 2017. Published by Oxford University Press on behalf of Nucleic Acids Research 2017. 2017 |
| Copyright_xml | – notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2017. – notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2017. 2017 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1093/nar/gkx297 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1362-4962 |
| EndPage | e116 |
| ExternalDocumentID | PMC5499592 28444238 10_1093_nar_gkx297 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAPPN ADIXU AFULF BTTYL CGR CUY CVF ECM EIF M49 M~E NPM ROX 7X8 ESTFP 5PM |
| ID | FETCH-LOGICAL-c444t-3350a2a97e57cb21ed77bed6cb9e3370600c4fce63012a1ac24b7079adaee1723 |
| ISICitedReferencesCount | 151 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404879000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-1048 1362-4962 |
| IngestDate | Tue Sep 30 16:29:17 EDT 2025 Wed Oct 01 13:07:01 EDT 2025 Wed Feb 19 02:16:14 EST 2025 Sat Nov 29 03:24:44 EST 2025 Tue Nov 18 21:36:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Published by Oxford University Press on behalf of Nucleic Acids Research 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c444t-3350a2a97e57cb21ed77bed6cb9e3370600c4fce63012a1ac24b7079adaee1723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://dx.doi.org/10.1093/nar/gkx297 |
| PMID | 28444238 |
| PQID | 1892334676 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499592 proquest_miscellaneous_1892334676 pubmed_primary_28444238 crossref_primary_10_1093_nar_gkx297 crossref_citationtrail_10_1093_nar_gkx297 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-07 |
| PublicationDateYYYYMMDD | 2017-07-07 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Nucleic acids research |
| PublicationTitleAlternate | Nucleic Acids Res |
| PublicationYear | 2017 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Zhang ( key 20180801083959_B32) 2016; 26 Beermann ( key 20180801083959_B2) 2016; 96 Jeck ( key 20180801083959_B10) 2013; 19 Vincent ( key 20180801083959_B30) 2006; 281 Abdelmohsen ( key 20180801083959_B22) 2015; 7 Panda ( key 20180801083959_B37) 2016; 8 Djebali ( key 20180801083959_B1) 2012; 489 Szabo ( key 20180801083959_B7) 2015; 16 Kos ( key 20180801083959_B35) 1986; 323 Rybak-Wolf ( key 20180801083959_B14) 2015; 58 Suzuki ( key 20180801083959_B29) 2006; 34 Panda ( key 20180801083959_B39) 2016; 45 Crooks ( key 20180801083959_B27) 2004; 14 Chen ( key 20180801083959_B15) 2016; 17 Li ( key 20180801083959_B18) 2015; 6 Szabo ( key 20180801083959_B38) 2016; 17 Gao ( key 20180801083959_B33) 2016; 7 Zhang ( key 20180801083959_B34) 1998; 7 Cocquerelle ( key 20180801083959_B36) 1992; 11 Du ( key 20180801083959_B21) 2016; 44 Zheng ( key 20180801083959_B19) 2016; 7 Dudekula ( key 20180801083959_B23) 2016; 13 Arnberg ( key 20180801083959_B4) 1980; 19 Glazar ( key 20180801083959_B9) 2014; 20 Hudson ( key 20180801083959_B8) 2015; 12 Hansen ( key 20180801083959_B17) 2013; 495 You ( key 20180801083959_B31) 2015; 18 Schmittgen ( key 20180801083959_B26) 2008; 3 Zhang ( key 20180801083959_B12) 2013; 51 Capel ( key 20180801083959_B5) 1993; 73 Guo ( key 20180801083959_B13) 2014; 15 Panda ( key 20180801083959_B25) 2016; 44 Sheth ( key 20180801083959_B40) 2006; 34 Nigro ( key 20180801083959_B6) 1991; 64 Sanger ( key 20180801083959_B3) 1976; 73 Li ( key 20180801083959_B16) 2015; 22 Ashwal-Fluss ( key 20180801083959_B20) 2014; 56 Kozomara ( key 20180801083959_B24) 2014; 42 Memczak ( key 20180801083959_B11) 2013; 495 Jeck ( key 20180801083959_B28) 2014; 32 26669964 - RNA Biol. 2016;13(1):34-42 26861625 - Nucleic Acids Res. 2016 Apr 7;44(6):2846-58 7684656 - Cell. 1993 Jun 4;73(5):1019-30 24275495 - Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73 26546448 - Aging (Albany NY). 2015 Nov;7(11):903-10 1991322 - Cell. 1991 Feb 8;64(3):607-13 26908011 - Nat Rev Mol Cell Biol. 2016 Apr;17 (4):205-11 25070500 - Genome Biol. 2014 Jul 29;15(7):409 6986989 - Cell. 1980 Feb;19(2):313-9 27365365 - Genome Res. 2016 Sep;26(9):1277-87 27535639 - Physiol Rev. 2016 Oct;96(4):1297-325 23249747 - RNA. 2013 Feb;19(2):141-57 16914448 - Nucleic Acids Res. 2006;34(14):3955-67 25664725 - Nat Struct Mol Biol. 2015 Mar;22(3):256-64 23446348 - Nature. 2013 Mar 21;495(7441):333-8 1069269 - Proc Natl Acad Sci U S A. 1976 Nov;73(11):3852-6 27612318 - Wiley Interdiscip Rev RNA. 2017 Mar;8(2) 27350239 - Nat Commun. 2016 Jun 28;7:12060 26076956 - Genome Biol. 2015 Jun 16;16:126 25921068 - Mol Cell. 2015 Jun 4;58(5):870-85 18546601 - Nat Protoc. 2008;3(6):1101-8 16682442 - Nucleic Acids Res. 2006 May 08;34(8):e63 9536098 - Hum Mol Genet. 1998 May;7(5):919-32 16893880 - J Biol Chem. 2006 Oct 6;281(40):29769-75 26400738 - RNA Biol. 2015;12(11):1-8 27739534 - Nat Rev Genet. 2016 Oct 14;17 (11):679-692 15173120 - Genome Res. 2004 Jun;14(6):1188-90 27050392 - Nat Commun. 2016 Apr 06;7:11215 1339341 - EMBO J. 1992 Mar;11(3):1095-8 2429192 - Nature. 1986 Oct 9-15;323(6088):558-60 25749389 - Oncotarget. 2015 Mar 20;6(8):6001-13 25242144 - Mol Cell. 2014 Oct 2;56(1):55-66 24035497 - Mol Cell. 2013 Sep 26;51(6):792-806 26819411 - Nucleic Acids Res. 2016 Mar 18;44(5):2393-408 23446346 - Nature. 2013 Mar 21;495(7441):384-8 27928058 - Nucleic Acids Res. 2017 Apr 20;45(7):4021-4035 25714049 - Nat Neurosci. 2015 Apr;18(4):603-10 24811520 - Nat Biotechnol. 2014 May;32(5):453-61 25234927 - RNA. 2014 Nov;20(11):1666-70 22955620 - Nature. 2012 Sep 6;489(7414):101-8 |
| References_xml | – volume: 495 start-page: 333 year: 2013 ident: key 20180801083959_B11 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature doi: 10.1038/nature11928 – volume: 20 start-page: 1666 year: 2014 ident: key 20180801083959_B9 article-title: circBase: a database for circular RNAs publication-title: RNA doi: 10.1261/rna.043687.113 – volume: 26 start-page: 1277 year: 2016 ident: key 20180801083959_B32 article-title: Diverse alternative back-splicing and alternative splicing landscape of circular RNAs publication-title: Genome Res. doi: 10.1101/gr.202895.115 – volume: 73 start-page: 1019 year: 1993 ident: key 20180801083959_B5 article-title: Circular transcripts of the testis-determining gene Sry in adult mouse testis publication-title: Cell doi: 10.1016/0092-8674(93)90279-Y – volume: 281 start-page: 29769 year: 2006 ident: key 20180801083959_B30 article-title: Substrate recognition and catalysis by the exoribonuclease RNase R publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606744200 – volume: 17 start-page: 679 year: 2016 ident: key 20180801083959_B38 article-title: Detecting circular RNAs: bioinformatic and experimental challenges publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.114 – volume: 56 start-page: 55 year: 2014 ident: key 20180801083959_B20 article-title: circRNA biogenesis competes with pre-mRNA splicing publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.08.019 – volume: 7 start-page: 12060 year: 2016 ident: key 20180801083959_B33 article-title: Comprehensive identification of internal structure and alternative splicing events in circular RNAs publication-title: Nat. Commun. doi: 10.1038/ncomms12060 – volume: 11 start-page: 1095 year: 1992 ident: key 20180801083959_B36 article-title: Splicing with inverted order of exons occurs proximal to large introns publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05148.x – volume: 16 start-page: 126 year: 2015 ident: key 20180801083959_B7 article-title: Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development publication-title: Genome Biol. doi: 10.1186/s13059-015-0690-5 – volume: 6 start-page: 6001 year: 2015 ident: key 20180801083959_B18 article-title: Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway publication-title: Oncotarget doi: 10.18632/oncotarget.3469 – volume: 7 start-page: 903 year: 2015 ident: key 20180801083959_B22 article-title: Circular RNAs in monkey muscle: age-dependent changes publication-title: Aging doi: 10.18632/aging.100834 – volume: 45 start-page: 4021 year: 2016 ident: key 20180801083959_B39 article-title: Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence supressor CircPVT1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1201 – volume: 96 start-page: 1297 year: 2016 ident: key 20180801083959_B2 article-title: Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches publication-title: Physiol. Rev. doi: 10.1152/physrev.00041.2015 – volume: 15 start-page: 409 year: 2014 ident: key 20180801083959_B13 article-title: Expanded identification and characterization of mammalian circular RNAs publication-title: Genome Biol. doi: 10.1186/s13059-014-0409-z – volume: 19 start-page: 313 year: 1980 ident: key 20180801083959_B4 article-title: Some yeast mitochondrial RNAs are circular publication-title: Cell doi: 10.1016/0092-8674(80)90505-X – volume: 17 start-page: 205 year: 2016 ident: key 20180801083959_B15 article-title: The biogenesis and emerging roles of circular RNAs publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2015.32 – volume: 7 start-page: 11215 year: 2016 ident: key 20180801083959_B19 article-title: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs publication-title: Nat. Commun. doi: 10.1038/ncomms11215 – volume: 34 start-page: 3955 year: 2006 ident: key 20180801083959_B40 article-title: Comprehensive splice-site analysis using comparative genomics publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl556 – volume: 51 start-page: 792 year: 2013 ident: key 20180801083959_B12 article-title: Circular intronic long noncoding RNAs publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.08.017 – volume: 22 start-page: 256 year: 2015 ident: key 20180801083959_B16 article-title: Exon-intron circular RNAs regulate transcription in the nucleus publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2959 – volume: 44 start-page: 2393 year: 2016 ident: key 20180801083959_B25 article-title: Novel RNA-binding activity of MYF5 enhances Ccnd1/Cyclin D1 mRNA translation during myogenesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw023 – volume: 34 start-page: e63 year: 2006 ident: key 20180801083959_B29 article-title: Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl151 – volume: 73 start-page: 3852 year: 1976 ident: key 20180801083959_B3 article-title: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.73.11.3852 – volume: 495 start-page: 384 year: 2013 ident: key 20180801083959_B17 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – volume: 19 start-page: 141 year: 2013 ident: key 20180801083959_B10 article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats publication-title: RNA doi: 10.1261/rna.035667.112 – volume: 3 start-page: 1101 year: 2008 ident: key 20180801083959_B26 article-title: Analyzing real-time PCR data by the comparative C(T) method publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.73 – volume: 323 start-page: 558 year: 1986 ident: key 20180801083959_B35 article-title: The hepatitis delta (delta) virus possesses a circular RNA publication-title: Nature doi: 10.1038/323558a0 – volume: 7 start-page: 919 year: 1998 ident: key 20180801083959_B34 article-title: Statistical features of human exons and their flanking regions publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/7.5.919 – volume: 12 start-page: 1 year: 2015 ident: key 20180801083959_B8 article-title: Splicing diversity revealed by reduced spliceosomes in C. merolae and other organisms publication-title: RNA Biol. doi: 10.1080/15476286.2015.1094602 – volume: 14 start-page: 1188 year: 2004 ident: key 20180801083959_B27 article-title: WebLogo: a sequence logo generator publication-title: Genome Res. doi: 10.1101/gr.849004 – volume: 64 start-page: 607 year: 1991 ident: key 20180801083959_B6 article-title: Scrambled exons publication-title: Cell doi: 10.1016/0092-8674(91)90244-S – volume: 58 start-page: 870 year: 2015 ident: key 20180801083959_B14 article-title: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.03.027 – volume: 44 start-page: 2846 year: 2016 ident: key 20180801083959_B21 article-title: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw027 – volume: 32 start-page: 453 year: 2014 ident: key 20180801083959_B28 article-title: Detecting and characterizing circular RNAs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2890 – volume: 8 start-page: 1 year: 2016 ident: key 20180801083959_B37 article-title: Emerging roles and context of circular RNAs publication-title: Wiley Interdiscip. Rev. RNA – volume: 13 start-page: 34 year: 2016 ident: key 20180801083959_B23 article-title: CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs publication-title: RNA Biol. doi: 10.1080/15476286.2015.1128065 – volume: 18 start-page: 603 year: 2015 ident: key 20180801083959_B31 article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity publication-title: Nat. Neurosci. doi: 10.1038/nn.3975 – volume: 489 start-page: 101 year: 2012 ident: key 20180801083959_B1 article-title: Landscape of transcription in human cells publication-title: Nature doi: 10.1038/nature11233 – volume: 42 start-page: D68 year: 2014 ident: key 20180801083959_B24 article-title: miRBase: annotating high confidence microRNAs using deep sequencing data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1181 – reference: 25234927 - RNA. 2014 Nov;20(11):1666-70 – reference: 27612318 - Wiley Interdiscip Rev RNA. 2017 Mar;8(2): – reference: 27535639 - Physiol Rev. 2016 Oct;96(4):1297-325 – reference: 1339341 - EMBO J. 1992 Mar;11(3):1095-8 – reference: 23249747 - RNA. 2013 Feb;19(2):141-57 – reference: 25664725 - Nat Struct Mol Biol. 2015 Mar;22(3):256-64 – reference: 27739534 - Nat Rev Genet. 2016 Oct 14;17 (11):679-692 – reference: 27350239 - Nat Commun. 2016 Jun 28;7:12060 – reference: 25070500 - Genome Biol. 2014 Jul 29;15(7):409 – reference: 18546601 - Nat Protoc. 2008;3(6):1101-8 – reference: 25749389 - Oncotarget. 2015 Mar 20;6(8):6001-13 – reference: 23446348 - Nature. 2013 Mar 21;495(7441):333-8 – reference: 26908011 - Nat Rev Mol Cell Biol. 2016 Apr;17 (4):205-11 – reference: 27050392 - Nat Commun. 2016 Apr 06;7:11215 – reference: 25714049 - Nat Neurosci. 2015 Apr;18(4):603-10 – reference: 1069269 - Proc Natl Acad Sci U S A. 1976 Nov;73(11):3852-6 – reference: 22955620 - Nature. 2012 Sep 6;489(7414):101-8 – reference: 26546448 - Aging (Albany NY). 2015 Nov;7(11):903-10 – reference: 16893880 - J Biol Chem. 2006 Oct 6;281(40):29769-75 – reference: 23446346 - Nature. 2013 Mar 21;495(7441):384-8 – reference: 6986989 - Cell. 1980 Feb;19(2):313-9 – reference: 24811520 - Nat Biotechnol. 2014 May;32(5):453-61 – reference: 27928058 - Nucleic Acids Res. 2017 Apr 20;45(7):4021-4035 – reference: 1991322 - Cell. 1991 Feb 8;64(3):607-13 – reference: 26400738 - RNA Biol. 2015;12(11):1-8 – reference: 27365365 - Genome Res. 2016 Sep;26(9):1277-87 – reference: 16682442 - Nucleic Acids Res. 2006 May 08;34(8):e63 – reference: 26076956 - Genome Biol. 2015 Jun 16;16:126 – reference: 2429192 - Nature. 1986 Oct 9-15;323(6088):558-60 – reference: 25921068 - Mol Cell. 2015 Jun 4;58(5):870-85 – reference: 25242144 - Mol Cell. 2014 Oct 2;56(1):55-66 – reference: 9536098 - Hum Mol Genet. 1998 May;7(5):919-32 – reference: 24275495 - Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73 – reference: 26669964 - RNA Biol. 2016;13(1):34-42 – reference: 24035497 - Mol Cell. 2013 Sep 26;51(6):792-806 – reference: 16914448 - Nucleic Acids Res. 2006;34(14):3955-67 – reference: 26819411 - Nucleic Acids Res. 2016 Mar 18;44(5):2393-408 – reference: 15173120 - Genome Res. 2004 Jun;14(6):1188-90 – reference: 26861625 - Nucleic Acids Res. 2016 Apr 7;44(6):2846-58 – reference: 7684656 - Cell. 1993 Jun 4;73(5):1019-30 |
| SSID | ssj0014154 |
| Score | 2.5959854 |
| Snippet | High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs,... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e116 |
| SubjectTerms | Animals Base Sequence Cell Line Computational Biology Exons Exoribonucleases - chemistry HeLa Cells High-Throughput Nucleotide Sequencing Humans Introns Methods Online Mice Molecular Sequence Annotation Myoblasts - cytology Myoblasts - metabolism Poly A - genetics Poly A - metabolism Polyadenylation RNA - genetics RNA - isolation & purification RNA - metabolism RNA Cleavage RNA, Messenger - chemistry RNA, Messenger - genetics RNA, Messenger - metabolism |
| Title | High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28444238 https://www.proquest.com/docview/1892334676 https://pubmed.ncbi.nlm.nih.gov/PMC5499592 |
| Volume | 45 |
| WOSCitedRecordID | wos000404879000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1362-4962 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014154 issn: 0305-1048 databaseCode: TOX dateStart: 19960101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKQIIXBBuXcqmMQIipyrbEuT5WhYkHKNVUUF9Q5DgOi9YmVZtV3e_jj3GOHacpQwiQeKna1LWVfF-Pz7GPv0PIK85Z6oGjYGGGoeWmMrAiN2KWnbmpD8G2kymdgi8fgtEonE6jcafz3ZyFWc-Cogg3m2jxX6GGawA2Hp39C7ibTuECvAfQ4RVgh9c_Ah4zN6yFKkrXF_lS55mejQb9HMbVcOuy0Wr1YDx4iwsDKOSEQsprvqr6yA0pjCuZF3WZHOwM-lm1_dkRyiGj5KvIU9yAaK2NqX0pCPiV9ZnjMafz_vCocZzrnKDFMr8qt0lAfI4e9AW6tcp6lVhSabVlRaGM9xmqUM_aCxa2WgnVlW1_dxCyZfeYEkfVApxHUttldbgr2jXcWofSENRpmWFp235rSjcfr00XWkqrwFT2028XG0enCrdIspgrlsAc7oLfGW4nzSaVcfxxiCG2F4EfcNMJvAhN6-TTtNnKAg9Ja5jVd2U0ciN2DAMf62FRk7oeY9dBuhb1_Jy82_KGJvfI3TqMoQNNv_ukI4t9cjAoeFXOr-hrqhKL1Y7NPrk9NEUFD8jXFjupYScFVtGGnVSzk75Bbh7SmpkUmUm3zKRlRg0zqWHmA_L59N1k-N6qK3xYAm62shjzTrjDo0B6gUgcW6ZBkMjUF0kkGUNhpxPhZkL6MA053ObCcROUdOQplxJcb_aQ7BVlIR8TyhLP4T6TmZ2ErpNgu9RLRJYwTyaeG3TJoXmssajl77EKyyzWaRgsBjRijUaXvGzaLrToyy9bvTDoxPAUcaONF7K8XMV2CGETAxfE75JHGq2mHwNzlwQ7ODYNUO9995siP1e67zXPnvzzL5-SO9s_5DOyVy0v5XNyS6yrfLXskRvBNOypRameovAPhuLZCw |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-purity+circular+RNA+isolation+method+%28RPAD%29+reveals+vast+collection+of+intronic+circRNAs&rft.jtitle=Nucleic+acids+research&rft.au=Panda%2C+Amaresh+C.&rft.au=De%2C+Supriyo&rft.au=Grammatikakis%2C+Ioannis&rft.au=Munk%2C+Rachel&rft.date=2017-07-07&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=45&rft.issue=12&rft.spage=e116&rft.epage=e116&rft_id=info:doi/10.1093%2Fnar%2Fgkx297&rft_id=info%3Apmid%2F28444238&rft.externalDocID=PMC5499592 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |