High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs

High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research Vol. 45; no. 12; p. e116
Main Authors: Panda, Amaresh C., De, Supriyo, Grammatikakis, Ioannis, Munk, Rachel, Yang, Xiaoling, Piao, Yulan, Dudekula, Dawood B., Abdelmohsen, Kotb, Gorospe, Myriam
Format: Journal Article
Language:English
Published: England Oxford University Press 07.07.2017
Subjects:
ISSN:0305-1048, 1362-4962, 1362-4962
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively stable, their association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression programs. While exoribonuclease treatment is widely used to degrade linear RNAs and enrich circRNAs in RNA samples, it does not efficiently eliminate all linear RNAs. Here, we describe a novel method for the isolation of highly pure circRNA populations involving RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion (RPAD), which removes linear RNA to near completion. High-throughput sequencing of RNA prepared using RPAD from human cervical carcinoma HeLa cells and mouse C2C12 myoblasts led to two surprising discoveries: (i) many exonic circRNA (EcircRNA) isoforms share an identical backsplice sequence but have different body sizes and sequences, and (ii) thousands of novel intronic circular RNAs (IcircRNAs) are expressed in cells. In sum, isolating high-purity circRNAs using the RPAD method can enable quantitative and qualitative analyses of circRNA types and sequence composition, paving the way for the elucidation of circRNA functions.
AbstractList High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively stable, their association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression programs. While exoribonuclease treatment is widely used to degrade linear RNAs and enrich circRNAs in RNA samples, it does not efficiently eliminate all linear RNAs. Here, we describe a novel method for the isolation of highly pure circRNA populations involving RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion (RPAD), which removes linear RNA to near completion. High-throughput sequencing of RNA prepared using RPAD from human cervical carcinoma HeLa cells and mouse C2C12 myoblasts led to two surprising discoveries: (i) many exonic circRNA (EcircRNA) isoforms share an identical backsplice sequence but have different body sizes and sequences, and (ii) thousands of novel intronic circular RNAs (IcircRNAs) are expressed in cells. In sum, isolating high-purity circRNAs using the RPAD method can enable quantitative and qualitative analyses of circRNA types and sequence composition, paving the way for the elucidation of circRNA functions.
High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively stable, their association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression programs. While exoribonuclease treatment is widely used to degrade linear RNAs and enrich circRNAs in RNA samples, it does not efficiently eliminate all linear RNAs. Here, we describe a novel method for the isolation of highly pure circRNA populations involving RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion (RPAD), which removes linear RNA to near completion. High-throughput sequencing of RNA prepared using RPAD from human cervical carcinoma HeLa cells and mouse C2C12 myoblasts led to two surprising discoveries: (i) many exonic circRNA (EcircRNA) isoforms share an identical backsplice sequence but have different body sizes and sequences, and (ii) thousands of novel intronic circular RNAs (IcircRNAs) are expressed in cells. In sum, isolating high-purity circRNAs using the RPAD method can enable quantitative and qualitative analyses of circRNA types and sequence composition, paving the way for the elucidation of circRNA functions.High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively stable, their association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression programs. While exoribonuclease treatment is widely used to degrade linear RNAs and enrich circRNAs in RNA samples, it does not efficiently eliminate all linear RNAs. Here, we describe a novel method for the isolation of highly pure circRNA populations involving RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion (RPAD), which removes linear RNA to near completion. High-throughput sequencing of RNA prepared using RPAD from human cervical carcinoma HeLa cells and mouse C2C12 myoblasts led to two surprising discoveries: (i) many exonic circRNA (EcircRNA) isoforms share an identical backsplice sequence but have different body sizes and sequences, and (ii) thousands of novel intronic circular RNAs (IcircRNAs) are expressed in cells. In sum, isolating high-purity circRNAs using the RPAD method can enable quantitative and qualitative analyses of circRNA types and sequence composition, paving the way for the elucidation of circRNA functions.
Author Piao, Yulan
Abdelmohsen, Kotb
Panda, Amaresh C.
Gorospe, Myriam
Grammatikakis, Ioannis
Dudekula, Dawood B.
De, Supriyo
Yang, Xiaoling
Munk, Rachel
AuthorAffiliation Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
AuthorAffiliation_xml – name: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
Author_xml – sequence: 1
  givenname: Amaresh C.
  surname: Panda
  fullname: Panda, Amaresh C.
  organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
– sequence: 2
  givenname: Supriyo
  surname: De
  fullname: De, Supriyo
  organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
– sequence: 3
  givenname: Ioannis
  surname: Grammatikakis
  fullname: Grammatikakis, Ioannis
  organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
– sequence: 4
  givenname: Rachel
  surname: Munk
  fullname: Munk, Rachel
  organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
– sequence: 5
  givenname: Xiaoling
  surname: Yang
  fullname: Yang, Xiaoling
  organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
– sequence: 6
  givenname: Yulan
  surname: Piao
  fullname: Piao, Yulan
  organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
– sequence: 7
  givenname: Dawood B.
  surname: Dudekula
  fullname: Dudekula, Dawood B.
  organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
– sequence: 8
  givenname: Kotb
  surname: Abdelmohsen
  fullname: Abdelmohsen, Kotb
  organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
– sequence: 9
  givenname: Myriam
  surname: Gorospe
  fullname: Gorospe, Myriam
  organization: Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28444238$$D View this record in MEDLINE/PubMed
BookMark eNptkV1LIzEUhsOirFX3Zn_AkksVRvM1k-ZGKH6DqIheSshkTtvsppOazBT998ZWxRWvcpHnPOflvJtorQ0tIPSbkn1KFD9oTTyY_HtiSv5AA8orVghVsTU0IJyUBSViuIE2U_pLCBW0FD_RBhsKIRgfDtDDuZtMi3kfXfeMrYu29ybi26sRdil407nQ4hl009Dgndub0fEujrAA4xNemNRhG7wHu6TCGLu2i6F1dinKjrSN1seZhV9v7xa6Pz25OzovLq_PLo5Gl4XNObqC85IYZpSEUtqaUWikrKGpbK2Ac0kqQqwYW6g4ocxQY5moJZHKNAaASsa30OHKO-_rGTQWchDj9Ty6mYnPOhin__9p3VRPwkKXQqlSvQp23gQxPPaQOj1zyYL3poXQJ02HGeKiklVG_3ze9bHk_aYZ2FsBNoaUIow_EEr0a2E6F6ZXhWWYfIGt65Znzzmd_27kBQZvm54
CitedBy_id crossref_primary_10_1016_j_mad_2018_05_001
crossref_primary_10_1038_s41467_022_30183_0
crossref_primary_10_3390_cancers14194728
crossref_primary_10_1038_s44318_025_00404_5
crossref_primary_10_1093_bib_bbab494
crossref_primary_10_1002_tpg2_20429
crossref_primary_10_3390_ncrna8010012
crossref_primary_10_1093_nar_gkz576
crossref_primary_10_1038_s41420_022_01092_4
crossref_primary_10_1186_s12943_022_01514_y
crossref_primary_10_1002_wrna_1566
crossref_primary_10_1007_s11010_021_04286_z
crossref_primary_10_3390_cancers14174313
crossref_primary_10_1007_s11010_020_03900_w
crossref_primary_10_1016_j_prp_2022_153968
crossref_primary_10_1038_s41556_024_01537_1
crossref_primary_10_1016_j_ymeth_2018_10_022
crossref_primary_10_1080_17474124_2020_1715211
crossref_primary_10_1002_rmv_2530
crossref_primary_10_3390_biom13040679
crossref_primary_10_1002_jcp_27384
crossref_primary_10_1016_j_tcb_2019_12_004
crossref_primary_10_1186_s12911_023_02384_0
crossref_primary_10_1155_2020_7958362
crossref_primary_10_1038_s41588_025_02157_7
crossref_primary_10_1038_s41592_022_01487_2
crossref_primary_10_1002_wrna_1850
crossref_primary_10_1097_FJC_0000000000000841
crossref_primary_10_1016_j_microc_2024_110310
crossref_primary_10_1111_jipb_13081
crossref_primary_10_1016_j_ymeth_2021_09_010
crossref_primary_10_3389_fgene_2018_00577
crossref_primary_10_1111_jipb_13002
crossref_primary_10_1002_pros_24102
crossref_primary_10_1016_j_trac_2024_118112
crossref_primary_10_1186_s13045_021_01052_y
crossref_primary_10_1038_s41467_023_41491_4
crossref_primary_10_3390_biom14080952
crossref_primary_10_3390_ncrna4040038
crossref_primary_10_3389_fcell_2021_618113
crossref_primary_10_1007_s11033_024_09211_3
crossref_primary_10_1016_j_ymeth_2021_02_019
crossref_primary_10_1242_dev_175786
crossref_primary_10_1016_j_molcel_2018_06_034
crossref_primary_10_1016_j_biotechadv_2025_108710
crossref_primary_10_1016_j_biopha_2023_115217
crossref_primary_10_3389_fgene_2020_00999
crossref_primary_10_1089_gtmb_2022_0086
crossref_primary_10_3390_ijms20163988
crossref_primary_10_1016_j_bbagrm_2022_194888
crossref_primary_10_1016_j_jmb_2020_166758
crossref_primary_10_1016_j_semcancer_2018_12_002
crossref_primary_10_3389_fcell_2021_659417
crossref_primary_10_1038_s41596_023_00815_w
crossref_primary_10_1016_j_phrs_2021_105766
crossref_primary_10_1016_j_chroma_2023_464321
crossref_primary_10_1016_j_ymeth_2021_04_016
crossref_primary_10_7717_peerj_10032
crossref_primary_10_19127_bshealthscience_871765
crossref_primary_10_1038_onc_2017_361
crossref_primary_10_1073_pnas_1811728115
crossref_primary_10_1089_omi_2023_0158
crossref_primary_10_3389_fgene_2019_00897
crossref_primary_10_1016_j_cellsig_2020_109747
crossref_primary_10_2147_IJGM_S380834
crossref_primary_10_1016_j_ymeth_2021_04_014
crossref_primary_10_3389_fonc_2020_579940
crossref_primary_10_1016_j_semcancer_2020_09_003
crossref_primary_10_1111_jcmm_13684
crossref_primary_10_3390_ijms25031477
crossref_primary_10_1016_j_omtn_2021_01_003
crossref_primary_10_1002_wrna_1872
crossref_primary_10_1016_j_arr_2020_101058
crossref_primary_10_1002_wrna_1478
crossref_primary_10_1002_wrna_1633
crossref_primary_10_1038_s41374_018_0108_6
crossref_primary_10_1016_j_pharmthera_2022_108123
crossref_primary_10_1016_j_bbagrm_2019_02_011
crossref_primary_10_3390_ncrna9040038
crossref_primary_10_1093_bib_bbaa001
crossref_primary_10_1146_annurev_cellbio_120420_125117
crossref_primary_10_1016_j_ejphar_2024_176855
crossref_primary_10_1128_spectrum_01106_22
crossref_primary_10_3390_biom14020158
crossref_primary_10_1007_s11033_023_09138_1
crossref_primary_10_1111_bph_16434
crossref_primary_10_3390_biom13030533
crossref_primary_10_1016_j_bbcan_2023_188894
crossref_primary_10_1038_s41388_018_0369_y
crossref_primary_10_1099_mgen_0_000821
crossref_primary_10_15252_embr_202052072
crossref_primary_10_1136_jclinpath_2019_205891
crossref_primary_10_1002_jcp_28156
crossref_primary_10_1111_jcmm_13789
crossref_primary_10_1186_s12943_020_01187_5
crossref_primary_10_3390_cancers13184618
crossref_primary_10_1016_j_biopha_2023_115818
crossref_primary_10_3390_ncrna8050065
crossref_primary_10_1016_j_joms_2021_11_021
crossref_primary_10_1073_pnas_1808816115
crossref_primary_10_3390_ijms24033050
crossref_primary_10_1093_genetics_iyab145
crossref_primary_10_1016_j_tibs_2018_09_016
crossref_primary_10_3389_fmolb_2021_625722
crossref_primary_10_1186_s12864_024_10420_0
crossref_primary_10_1038_s41388_023_02780_w
crossref_primary_10_1002_2211_5463_12538
crossref_primary_10_1186_s13059_021_02497_7
crossref_primary_10_3389_fonc_2020_00663
crossref_primary_10_1093_nar_gkaa035
crossref_primary_10_1016_j_semcancer_2020_12_026
crossref_primary_10_3389_fcvm_2021_672600
crossref_primary_10_3390_ijms21124302
crossref_primary_10_3389_fgene_2019_00176
crossref_primary_10_1371_journal_pone_0214301
crossref_primary_10_1038_s41421_018_0050_1
crossref_primary_10_1016_j_cell_2022_04_021
crossref_primary_10_3390_genes12081258
crossref_primary_10_1038_s41422_020_0279_8
crossref_primary_10_1038_s41467_021_24975_z
crossref_primary_10_3389_fonc_2020_01742
crossref_primary_10_3389_fcell_2020_00273
crossref_primary_10_3390_ijms19113454
Cites_doi 10.1038/nature11928
10.1261/rna.043687.113
10.1101/gr.202895.115
10.1016/0092-8674(93)90279-Y
10.1074/jbc.M606744200
10.1038/nrg.2016.114
10.1016/j.molcel.2014.08.019
10.1038/ncomms12060
10.1002/j.1460-2075.1992.tb05148.x
10.1186/s13059-015-0690-5
10.18632/oncotarget.3469
10.18632/aging.100834
10.1093/nar/gkw1201
10.1152/physrev.00041.2015
10.1186/s13059-014-0409-z
10.1016/0092-8674(80)90505-X
10.1038/nrm.2015.32
10.1038/ncomms11215
10.1093/nar/gkl556
10.1016/j.molcel.2013.08.017
10.1038/nsmb.2959
10.1093/nar/gkw023
10.1093/nar/gkl151
10.1073/pnas.73.11.3852
10.1038/nature11993
10.1261/rna.035667.112
10.1038/nprot.2008.73
10.1038/323558a0
10.1093/hmg/7.5.919
10.1080/15476286.2015.1094602
10.1101/gr.849004
10.1016/0092-8674(91)90244-S
10.1016/j.molcel.2015.03.027
10.1093/nar/gkw027
10.1038/nbt.2890
10.1080/15476286.2015.1128065
10.1038/nn.3975
10.1038/nature11233
10.1093/nar/gkt1181
ContentType Journal Article
Copyright Published by Oxford University Press on behalf of Nucleic Acids Research 2017.
Published by Oxford University Press on behalf of Nucleic Acids Research 2017. 2017
Copyright_xml – notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2017.
– notice: Published by Oxford University Press on behalf of Nucleic Acids Research 2017. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkx297
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage e116
ExternalDocumentID PMC5499592
28444238
10_1093_nar_gkx297
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAPPN
ADIXU
AFULF
BTTYL
CGR
CUY
CVF
ECM
EIF
M49
M~E
NPM
ROX
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c444t-3350a2a97e57cb21ed77bed6cb9e3370600c4fce63012a1ac24b7079adaee1723
ISICitedReferencesCount 151
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404879000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-1048
1362-4962
IngestDate Tue Sep 30 16:29:17 EDT 2025
Wed Oct 01 13:07:01 EDT 2025
Wed Feb 19 02:16:14 EST 2025
Sat Nov 29 03:24:44 EST 2025
Tue Nov 18 21:36:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Published by Oxford University Press on behalf of Nucleic Acids Research 2017.
This work is written by (a) US Government employee(s) and is in the public domain in the US.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-3350a2a97e57cb21ed77bed6cb9e3370600c4fce63012a1ac24b7079adaee1723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1093/nar/gkx297
PMID 28444238
PQID 1892334676
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499592
proquest_miscellaneous_1892334676
pubmed_primary_28444238
crossref_primary_10_1093_nar_gkx297
crossref_citationtrail_10_1093_nar_gkx297
PublicationCentury 2000
PublicationDate 2017-07-07
PublicationDateYYYYMMDD 2017-07-07
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Zhang ( key 20180801083959_B32) 2016; 26
Beermann ( key 20180801083959_B2) 2016; 96
Jeck ( key 20180801083959_B10) 2013; 19
Vincent ( key 20180801083959_B30) 2006; 281
Abdelmohsen ( key 20180801083959_B22) 2015; 7
Panda ( key 20180801083959_B37) 2016; 8
Djebali ( key 20180801083959_B1) 2012; 489
Szabo ( key 20180801083959_B7) 2015; 16
Kos ( key 20180801083959_B35) 1986; 323
Rybak-Wolf ( key 20180801083959_B14) 2015; 58
Suzuki ( key 20180801083959_B29) 2006; 34
Panda ( key 20180801083959_B39) 2016; 45
Crooks ( key 20180801083959_B27) 2004; 14
Chen ( key 20180801083959_B15) 2016; 17
Li ( key 20180801083959_B18) 2015; 6
Szabo ( key 20180801083959_B38) 2016; 17
Gao ( key 20180801083959_B33) 2016; 7
Zhang ( key 20180801083959_B34) 1998; 7
Cocquerelle ( key 20180801083959_B36) 1992; 11
Du ( key 20180801083959_B21) 2016; 44
Zheng ( key 20180801083959_B19) 2016; 7
Dudekula ( key 20180801083959_B23) 2016; 13
Arnberg ( key 20180801083959_B4) 1980; 19
Glazar ( key 20180801083959_B9) 2014; 20
Hudson ( key 20180801083959_B8) 2015; 12
Hansen ( key 20180801083959_B17) 2013; 495
You ( key 20180801083959_B31) 2015; 18
Schmittgen ( key 20180801083959_B26) 2008; 3
Zhang ( key 20180801083959_B12) 2013; 51
Capel ( key 20180801083959_B5) 1993; 73
Guo ( key 20180801083959_B13) 2014; 15
Panda ( key 20180801083959_B25) 2016; 44
Sheth ( key 20180801083959_B40) 2006; 34
Nigro ( key 20180801083959_B6) 1991; 64
Sanger ( key 20180801083959_B3) 1976; 73
Li ( key 20180801083959_B16) 2015; 22
Ashwal-Fluss ( key 20180801083959_B20) 2014; 56
Kozomara ( key 20180801083959_B24) 2014; 42
Memczak ( key 20180801083959_B11) 2013; 495
Jeck ( key 20180801083959_B28) 2014; 32
26669964 - RNA Biol. 2016;13(1):34-42
26861625 - Nucleic Acids Res. 2016 Apr 7;44(6):2846-58
7684656 - Cell. 1993 Jun 4;73(5):1019-30
24275495 - Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73
26546448 - Aging (Albany NY). 2015 Nov;7(11):903-10
1991322 - Cell. 1991 Feb 8;64(3):607-13
26908011 - Nat Rev Mol Cell Biol. 2016 Apr;17 (4):205-11
25070500 - Genome Biol. 2014 Jul 29;15(7):409
6986989 - Cell. 1980 Feb;19(2):313-9
27365365 - Genome Res. 2016 Sep;26(9):1277-87
27535639 - Physiol Rev. 2016 Oct;96(4):1297-325
23249747 - RNA. 2013 Feb;19(2):141-57
16914448 - Nucleic Acids Res. 2006;34(14):3955-67
25664725 - Nat Struct Mol Biol. 2015 Mar;22(3):256-64
23446348 - Nature. 2013 Mar 21;495(7441):333-8
1069269 - Proc Natl Acad Sci U S A. 1976 Nov;73(11):3852-6
27612318 - Wiley Interdiscip Rev RNA. 2017 Mar;8(2)
27350239 - Nat Commun. 2016 Jun 28;7:12060
26076956 - Genome Biol. 2015 Jun 16;16:126
25921068 - Mol Cell. 2015 Jun 4;58(5):870-85
18546601 - Nat Protoc. 2008;3(6):1101-8
16682442 - Nucleic Acids Res. 2006 May 08;34(8):e63
9536098 - Hum Mol Genet. 1998 May;7(5):919-32
16893880 - J Biol Chem. 2006 Oct 6;281(40):29769-75
26400738 - RNA Biol. 2015;12(11):1-8
27739534 - Nat Rev Genet. 2016 Oct 14;17 (11):679-692
15173120 - Genome Res. 2004 Jun;14(6):1188-90
27050392 - Nat Commun. 2016 Apr 06;7:11215
1339341 - EMBO J. 1992 Mar;11(3):1095-8
2429192 - Nature. 1986 Oct 9-15;323(6088):558-60
25749389 - Oncotarget. 2015 Mar 20;6(8):6001-13
25242144 - Mol Cell. 2014 Oct 2;56(1):55-66
24035497 - Mol Cell. 2013 Sep 26;51(6):792-806
26819411 - Nucleic Acids Res. 2016 Mar 18;44(5):2393-408
23446346 - Nature. 2013 Mar 21;495(7441):384-8
27928058 - Nucleic Acids Res. 2017 Apr 20;45(7):4021-4035
25714049 - Nat Neurosci. 2015 Apr;18(4):603-10
24811520 - Nat Biotechnol. 2014 May;32(5):453-61
25234927 - RNA. 2014 Nov;20(11):1666-70
22955620 - Nature. 2012 Sep 6;489(7414):101-8
References_xml – volume: 495
  start-page: 333
  year: 2013
  ident: key 20180801083959_B11
  article-title: Circular RNAs are a large class of animal RNAs with regulatory potency
  publication-title: Nature
  doi: 10.1038/nature11928
– volume: 20
  start-page: 1666
  year: 2014
  ident: key 20180801083959_B9
  article-title: circBase: a database for circular RNAs
  publication-title: RNA
  doi: 10.1261/rna.043687.113
– volume: 26
  start-page: 1277
  year: 2016
  ident: key 20180801083959_B32
  article-title: Diverse alternative back-splicing and alternative splicing landscape of circular RNAs
  publication-title: Genome Res.
  doi: 10.1101/gr.202895.115
– volume: 73
  start-page: 1019
  year: 1993
  ident: key 20180801083959_B5
  article-title: Circular transcripts of the testis-determining gene Sry in adult mouse testis
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90279-Y
– volume: 281
  start-page: 29769
  year: 2006
  ident: key 20180801083959_B30
  article-title: Substrate recognition and catalysis by the exoribonuclease RNase R
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606744200
– volume: 17
  start-page: 679
  year: 2016
  ident: key 20180801083959_B38
  article-title: Detecting circular RNAs: bioinformatic and experimental challenges
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.114
– volume: 56
  start-page: 55
  year: 2014
  ident: key 20180801083959_B20
  article-title: circRNA biogenesis competes with pre-mRNA splicing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.08.019
– volume: 7
  start-page: 12060
  year: 2016
  ident: key 20180801083959_B33
  article-title: Comprehensive identification of internal structure and alternative splicing events in circular RNAs
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12060
– volume: 11
  start-page: 1095
  year: 1992
  ident: key 20180801083959_B36
  article-title: Splicing with inverted order of exons occurs proximal to large introns
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1992.tb05148.x
– volume: 16
  start-page: 126
  year: 2015
  ident: key 20180801083959_B7
  article-title: Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0690-5
– volume: 6
  start-page: 6001
  year: 2015
  ident: key 20180801083959_B18
  article-title: Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3469
– volume: 7
  start-page: 903
  year: 2015
  ident: key 20180801083959_B22
  article-title: Circular RNAs in monkey muscle: age-dependent changes
  publication-title: Aging
  doi: 10.18632/aging.100834
– volume: 45
  start-page: 4021
  year: 2016
  ident: key 20180801083959_B39
  article-title: Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence supressor CircPVT1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1201
– volume: 96
  start-page: 1297
  year: 2016
  ident: key 20180801083959_B2
  article-title: Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00041.2015
– volume: 15
  start-page: 409
  year: 2014
  ident: key 20180801083959_B13
  article-title: Expanded identification and characterization of mammalian circular RNAs
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0409-z
– volume: 19
  start-page: 313
  year: 1980
  ident: key 20180801083959_B4
  article-title: Some yeast mitochondrial RNAs are circular
  publication-title: Cell
  doi: 10.1016/0092-8674(80)90505-X
– volume: 17
  start-page: 205
  year: 2016
  ident: key 20180801083959_B15
  article-title: The biogenesis and emerging roles of circular RNAs
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2015.32
– volume: 7
  start-page: 11215
  year: 2016
  ident: key 20180801083959_B19
  article-title: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11215
– volume: 34
  start-page: 3955
  year: 2006
  ident: key 20180801083959_B40
  article-title: Comprehensive splice-site analysis using comparative genomics
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl556
– volume: 51
  start-page: 792
  year: 2013
  ident: key 20180801083959_B12
  article-title: Circular intronic long noncoding RNAs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.08.017
– volume: 22
  start-page: 256
  year: 2015
  ident: key 20180801083959_B16
  article-title: Exon-intron circular RNAs regulate transcription in the nucleus
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2959
– volume: 44
  start-page: 2393
  year: 2016
  ident: key 20180801083959_B25
  article-title: Novel RNA-binding activity of MYF5 enhances Ccnd1/Cyclin D1 mRNA translation during myogenesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw023
– volume: 34
  start-page: e63
  year: 2006
  ident: key 20180801083959_B29
  article-title: Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl151
– volume: 73
  start-page: 3852
  year: 1976
  ident: key 20180801083959_B3
  article-title: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.73.11.3852
– volume: 495
  start-page: 384
  year: 2013
  ident: key 20180801083959_B17
  article-title: Natural RNA circles function as efficient microRNA sponges
  publication-title: Nature
  doi: 10.1038/nature11993
– volume: 19
  start-page: 141
  year: 2013
  ident: key 20180801083959_B10
  article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats
  publication-title: RNA
  doi: 10.1261/rna.035667.112
– volume: 3
  start-page: 1101
  year: 2008
  ident: key 20180801083959_B26
  article-title: Analyzing real-time PCR data by the comparative C(T) method
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.73
– volume: 323
  start-page: 558
  year: 1986
  ident: key 20180801083959_B35
  article-title: The hepatitis delta (delta) virus possesses a circular RNA
  publication-title: Nature
  doi: 10.1038/323558a0
– volume: 7
  start-page: 919
  year: 1998
  ident: key 20180801083959_B34
  article-title: Statistical features of human exons and their flanking regions
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/7.5.919
– volume: 12
  start-page: 1
  year: 2015
  ident: key 20180801083959_B8
  article-title: Splicing diversity revealed by reduced spliceosomes in C. merolae and other organisms
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2015.1094602
– volume: 14
  start-page: 1188
  year: 2004
  ident: key 20180801083959_B27
  article-title: WebLogo: a sequence logo generator
  publication-title: Genome Res.
  doi: 10.1101/gr.849004
– volume: 64
  start-page: 607
  year: 1991
  ident: key 20180801083959_B6
  article-title: Scrambled exons
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90244-S
– volume: 58
  start-page: 870
  year: 2015
  ident: key 20180801083959_B14
  article-title: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.03.027
– volume: 44
  start-page: 2846
  year: 2016
  ident: key 20180801083959_B21
  article-title: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw027
– volume: 32
  start-page: 453
  year: 2014
  ident: key 20180801083959_B28
  article-title: Detecting and characterizing circular RNAs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2890
– volume: 8
  start-page: 1
  year: 2016
  ident: key 20180801083959_B37
  article-title: Emerging roles and context of circular RNAs
  publication-title: Wiley Interdiscip. Rev. RNA
– volume: 13
  start-page: 34
  year: 2016
  ident: key 20180801083959_B23
  article-title: CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2015.1128065
– volume: 18
  start-page: 603
  year: 2015
  ident: key 20180801083959_B31
  article-title: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3975
– volume: 489
  start-page: 101
  year: 2012
  ident: key 20180801083959_B1
  article-title: Landscape of transcription in human cells
  publication-title: Nature
  doi: 10.1038/nature11233
– volume: 42
  start-page: D68
  year: 2014
  ident: key 20180801083959_B24
  article-title: miRBase: annotating high confidence microRNAs using deep sequencing data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1181
– reference: 25234927 - RNA. 2014 Nov;20(11):1666-70
– reference: 27612318 - Wiley Interdiscip Rev RNA. 2017 Mar;8(2):
– reference: 27535639 - Physiol Rev. 2016 Oct;96(4):1297-325
– reference: 1339341 - EMBO J. 1992 Mar;11(3):1095-8
– reference: 23249747 - RNA. 2013 Feb;19(2):141-57
– reference: 25664725 - Nat Struct Mol Biol. 2015 Mar;22(3):256-64
– reference: 27739534 - Nat Rev Genet. 2016 Oct 14;17 (11):679-692
– reference: 27350239 - Nat Commun. 2016 Jun 28;7:12060
– reference: 25070500 - Genome Biol. 2014 Jul 29;15(7):409
– reference: 18546601 - Nat Protoc. 2008;3(6):1101-8
– reference: 25749389 - Oncotarget. 2015 Mar 20;6(8):6001-13
– reference: 23446348 - Nature. 2013 Mar 21;495(7441):333-8
– reference: 26908011 - Nat Rev Mol Cell Biol. 2016 Apr;17 (4):205-11
– reference: 27050392 - Nat Commun. 2016 Apr 06;7:11215
– reference: 25714049 - Nat Neurosci. 2015 Apr;18(4):603-10
– reference: 1069269 - Proc Natl Acad Sci U S A. 1976 Nov;73(11):3852-6
– reference: 22955620 - Nature. 2012 Sep 6;489(7414):101-8
– reference: 26546448 - Aging (Albany NY). 2015 Nov;7(11):903-10
– reference: 16893880 - J Biol Chem. 2006 Oct 6;281(40):29769-75
– reference: 23446346 - Nature. 2013 Mar 21;495(7441):384-8
– reference: 6986989 - Cell. 1980 Feb;19(2):313-9
– reference: 24811520 - Nat Biotechnol. 2014 May;32(5):453-61
– reference: 27928058 - Nucleic Acids Res. 2017 Apr 20;45(7):4021-4035
– reference: 1991322 - Cell. 1991 Feb 8;64(3):607-13
– reference: 26400738 - RNA Biol. 2015;12(11):1-8
– reference: 27365365 - Genome Res. 2016 Sep;26(9):1277-87
– reference: 16682442 - Nucleic Acids Res. 2006 May 08;34(8):e63
– reference: 26076956 - Genome Biol. 2015 Jun 16;16:126
– reference: 2429192 - Nature. 1986 Oct 9-15;323(6088):558-60
– reference: 25921068 - Mol Cell. 2015 Jun 4;58(5):870-85
– reference: 25242144 - Mol Cell. 2014 Oct 2;56(1):55-66
– reference: 9536098 - Hum Mol Genet. 1998 May;7(5):919-32
– reference: 24275495 - Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73
– reference: 26669964 - RNA Biol. 2016;13(1):34-42
– reference: 24035497 - Mol Cell. 2013 Sep 26;51(6):792-806
– reference: 16914448 - Nucleic Acids Res. 2006;34(14):3955-67
– reference: 26819411 - Nucleic Acids Res. 2016 Mar 18;44(5):2393-408
– reference: 15173120 - Genome Res. 2004 Jun;14(6):1188-90
– reference: 26861625 - Nucleic Acids Res. 2016 Apr 7;44(6):2846-58
– reference: 7684656 - Cell. 1993 Jun 4;73(5):1019-30
SSID ssj0014154
Score 2.5959854
Snippet High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e116
SubjectTerms Animals
Base Sequence
Cell Line
Computational Biology
Exons
Exoribonucleases - chemistry
HeLa Cells
High-Throughput Nucleotide Sequencing
Humans
Introns
Methods Online
Mice
Molecular Sequence Annotation
Myoblasts - cytology
Myoblasts - metabolism
Poly A - genetics
Poly A - metabolism
Polyadenylation
RNA - genetics
RNA - isolation & purification
RNA - metabolism
RNA Cleavage
RNA, Messenger - chemistry
RNA, Messenger - genetics
RNA, Messenger - metabolism
Title High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs
URI https://www.ncbi.nlm.nih.gov/pubmed/28444238
https://www.proquest.com/docview/1892334676
https://pubmed.ncbi.nlm.nih.gov/PMC5499592
Volume 45
WOSCitedRecordID wos000404879000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1362-4962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014154
  issn: 0305-1048
  databaseCode: TOX
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKQIIXBBuXcqmMQIipyrbEuT5WhYkHKNVUUF9Q5DgOi9YmVZtV3e_jj3GOHacpQwiQeKna1LWVfF-Pz7GPv0PIK85Z6oGjYGGGoeWmMrAiN2KWnbmpD8G2kymdgi8fgtEonE6jcafz3ZyFWc-Cogg3m2jxX6GGawA2Hp39C7ibTuECvAfQ4RVgh9c_Ah4zN6yFKkrXF_lS55mejQb9HMbVcOuy0Wr1YDx4iwsDKOSEQsprvqr6yA0pjCuZF3WZHOwM-lm1_dkRyiGj5KvIU9yAaK2NqX0pCPiV9ZnjMafz_vCocZzrnKDFMr8qt0lAfI4e9AW6tcp6lVhSabVlRaGM9xmqUM_aCxa2WgnVlW1_dxCyZfeYEkfVApxHUttldbgr2jXcWofSENRpmWFp235rSjcfr00XWkqrwFT2028XG0enCrdIspgrlsAc7oLfGW4nzSaVcfxxiCG2F4EfcNMJvAhN6-TTtNnKAg9Ja5jVd2U0ciN2DAMf62FRk7oeY9dBuhb1_Jy82_KGJvfI3TqMoQNNv_ukI4t9cjAoeFXOr-hrqhKL1Y7NPrk9NEUFD8jXFjupYScFVtGGnVSzk75Bbh7SmpkUmUm3zKRlRg0zqWHmA_L59N1k-N6qK3xYAm62shjzTrjDo0B6gUgcW6ZBkMjUF0kkGUNhpxPhZkL6MA053ObCcROUdOQplxJcb_aQ7BVlIR8TyhLP4T6TmZ2ErpNgu9RLRJYwTyaeG3TJoXmssajl77EKyyzWaRgsBjRijUaXvGzaLrToyy9bvTDoxPAUcaONF7K8XMV2CGETAxfE75JHGq2mHwNzlwQ7ODYNUO9995siP1e67zXPnvzzL5-SO9s_5DOyVy0v5XNyS6yrfLXskRvBNOypRameovAPhuLZCw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-purity+circular+RNA+isolation+method+%28RPAD%29+reveals+vast+collection+of+intronic+circRNAs&rft.jtitle=Nucleic+acids+research&rft.au=Panda%2C+Amaresh+C.&rft.au=De%2C+Supriyo&rft.au=Grammatikakis%2C+Ioannis&rft.au=Munk%2C+Rachel&rft.date=2017-07-07&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=45&rft.issue=12&rft.spage=e116&rft.epage=e116&rft_id=info:doi/10.1093%2Fnar%2Fgkx297&rft_id=info%3Apmid%2F28444238&rft.externalDocID=PMC5499592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon