A feasibility cachaca type recognition using computer vision and pattern recognition

•The problem of recognition of aging time and wood type in chacaca is presented.•A new approach is introduced using a computer vision system.•The developed image capture device and information processing method is presented.•Results show that the new technique is cheaper and better than previous app...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers and electronics in agriculture Ročník 123; s. 410 - 414
Hlavní autoři: Rodrigues, B.U., Soares, A.S., Costa, R.M., Van Baalen, J., Salvini, R.L., Silva, F.A., Caliari, M., Cardoso, K.C.R., Ribeiro, T.I.M., Delbem, A.C.B., Federson, F.M., Coelho, C.J., Laureano, G.T., Lima, T.W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2016
Témata:
ISSN:0168-1699, 1872-7107
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The problem of recognition of aging time and wood type in chacaca is presented.•A new approach is introduced using a computer vision system.•The developed image capture device and information processing method is presented.•Results show that the new technique is cheaper and better than previous approaches. Brazilian rum (also known as cachaça) is the third most commonly consumed distilled alcoholic drink in the world, with approximately 2.5 billion liters produced each year. It is a traditional drink with refined features and a delicate aroma that is produced mainly in Brazil but consumed in many countries. It can be aged in various types of wood for 1–3years, which adds aroma and a distinctive flavor with different characteristics that affect the price. A research challenge is to develop a cheap automatic recognition system that inspects the finished product for the wood type and the aging time of its production. Some classical methods use chemical analysis, but this approach requires relatively expensive laboratory equipment. By contrast, the system proposed in this paper captures image signals from samples and uses an intelligent classification technique to recognize the wood type and the aging time. The classification system uses an ensemble of classifiers obtained from different wavelet decompositions. Each classifier is obtained with different wavelet transform settings. We compared the proposed approach with classical methods based on chemical features. We analyzed 105 samples that had been aged for 3years and we showed that the proposed solution could automatically recognize wood types and the aging time with an accuracy up to 100.00% and 85.71% respectively, and our method is also cheaper.
AbstractList Brazilian rum (also known as cachaca) is the third most commonly consumed distilled alcoholic drink in the world, with approximately 2.5 billion liters produced each year. It is a traditional drink with refined features and a delicate aroma that is produced mainly in Brazil but consumed in many countries. It can be aged in various types of wood for 1-3years, which adds aroma and a distinctive flavor with different characteristics that affect the price. A research challenge is to develop a cheap automatic recognition system that inspects the finished product for the wood type and the aging time of its production. Some classical methods use chemical analysis, but this approach requires relatively expensive laboratory equipment. By contrast, the system proposed in this paper captures image signals from samples and uses an intelligent classification technique to recognize the wood type and the aging time. The classification system uses an ensemble of classifiers obtained from different wavelet decompositions. Each classifier is obtained with different wavelet transform settings. We compared the proposed approach with classical methods based on chemical features. We analyzed 105 samples that had been aged for 3years and we showed that the proposed solution could automatically recognize wood types and the aging time with an accuracy up to 100.00% and 85.71% respectively, and our method is also cheaper.
•The problem of recognition of aging time and wood type in chacaca is presented.•A new approach is introduced using a computer vision system.•The developed image capture device and information processing method is presented.•Results show that the new technique is cheaper and better than previous approaches. Brazilian rum (also known as cachaça) is the third most commonly consumed distilled alcoholic drink in the world, with approximately 2.5 billion liters produced each year. It is a traditional drink with refined features and a delicate aroma that is produced mainly in Brazil but consumed in many countries. It can be aged in various types of wood for 1–3years, which adds aroma and a distinctive flavor with different characteristics that affect the price. A research challenge is to develop a cheap automatic recognition system that inspects the finished product for the wood type and the aging time of its production. Some classical methods use chemical analysis, but this approach requires relatively expensive laboratory equipment. By contrast, the system proposed in this paper captures image signals from samples and uses an intelligent classification technique to recognize the wood type and the aging time. The classification system uses an ensemble of classifiers obtained from different wavelet decompositions. Each classifier is obtained with different wavelet transform settings. We compared the proposed approach with classical methods based on chemical features. We analyzed 105 samples that had been aged for 3years and we showed that the proposed solution could automatically recognize wood types and the aging time with an accuracy up to 100.00% and 85.71% respectively, and our method is also cheaper.
Brazilian rum (also known as cachaça) is the third most commonly consumed distilled alcoholic drink in the world, with approximately 2.5 billion liters produced each year. It is a traditional drink with refined features and a delicate aroma that is produced mainly in Brazil but consumed in many countries. It can be aged in various types of wood for 1–3years, which adds aroma and a distinctive flavor with different characteristics that affect the price. A research challenge is to develop a cheap automatic recognition system that inspects the finished product for the wood type and the aging time of its production. Some classical methods use chemical analysis, but this approach requires relatively expensive laboratory equipment. By contrast, the system proposed in this paper captures image signals from samples and uses an intelligent classification technique to recognize the wood type and the aging time. The classification system uses an ensemble of classifiers obtained from different wavelet decompositions. Each classifier is obtained with different wavelet transform settings. We compared the proposed approach with classical methods based on chemical features. We analyzed 105 samples that had been aged for 3years and we showed that the proposed solution could automatically recognize wood types and the aging time with an accuracy up to 100.00% and 85.71% respectively, and our method is also cheaper.
Author Salvini, R.L.
Rodrigues, B.U.
Ribeiro, T.I.M.
Lima, T.W.
Federson, F.M.
Silva, F.A.
Delbem, A.C.B.
Costa, R.M.
Van Baalen, J.
Coelho, C.J.
Caliari, M.
Cardoso, K.C.R.
Soares, A.S.
Laureano, G.T.
Author_xml – sequence: 1
  givenname: B.U.
  surname: Rodrigues
  fullname: Rodrigues, B.U.
  organization: Federal University of Goiás, Institute of Computer Science, Brazil
– sequence: 2
  givenname: A.S.
  surname: Soares
  fullname: Soares, A.S.
  email: anderson@inf.ufg.br
  organization: Federal University of Goiás, Institute of Computer Science, Brazil
– sequence: 3
  givenname: R.M.
  surname: Costa
  fullname: Costa, R.M.
  organization: Federal University of Goiás, Institute of Computer Science, Brazil
– sequence: 4
  givenname: J.
  surname: Van Baalen
  fullname: Van Baalen, J.
  organization: University of Wyoming, Computer Science Department, USA
– sequence: 5
  givenname: R.L.
  surname: Salvini
  fullname: Salvini, R.L.
  organization: Federal University of Goiás, Institute of Computer Science, Brazil
– sequence: 6
  givenname: F.A.
  surname: Silva
  fullname: Silva, F.A.
  organization: Federal University of Goiás, Food Engineering School, Brazil
– sequence: 7
  givenname: M.
  surname: Caliari
  fullname: Caliari, M.
  organization: Federal University of Goiás, Food Engineering School, Brazil
– sequence: 8
  givenname: K.C.R.
  surname: Cardoso
  fullname: Cardoso, K.C.R.
  organization: Federal University of Goiás, Food Engineering School, Brazil
– sequence: 9
  givenname: T.I.M.
  surname: Ribeiro
  fullname: Ribeiro, T.I.M.
  organization: Polytechnic Institute of Bragança, Portugal
– sequence: 10
  givenname: A.C.B.
  surname: Delbem
  fullname: Delbem, A.C.B.
  organization: University of São Paulo, Institute of Mathematical Science and Computation, Brazil
– sequence: 11
  givenname: F.M.
  surname: Federson
  fullname: Federson, F.M.
  organization: Federal University of Goiás, Institute of Computer Science, Brazil
– sequence: 12
  givenname: C.J.
  surname: Coelho
  fullname: Coelho, C.J.
  organization: Pontifical Catholic University of Goiás, School of Sciences and Computing, Brazil
– sequence: 13
  givenname: G.T.
  surname: Laureano
  fullname: Laureano, G.T.
  organization: Federal University of Goiás, Institute of Computer Science, Brazil
– sequence: 14
  givenname: T.W.
  surname: Lima
  fullname: Lima, T.W.
  organization: Federal University of Goiás, Institute of Computer Science, Brazil
BookMark eNqNkE1LxDAQhoMouH78Aw89emmdNG3SehBE_ALBi55DmkzXLN20Jllh_70p60E8qKdhZt53XuY5IvtudEjIGYWCAuUXq0KP60ktizJ1BbACStgjC9qIMhcUxD5ZpEWTU962h-QohBWkvm3EgrxcZz2qYDs72LjNtNJvSqssbifMPOpx6Wy0o8s2wbplNsdsIvrsw4Z5qpzJJhXTxH1Xn5CDXg0BT7_qMXm9u325ecifnu8fb66fcl1VVczLzrAOODcoWkax5E3X6VqbrkdoAKuG9xpMI4zgXa1EXRvWgugoMDC1qYEdk_Pd3cmP7xsMUa5t0DgMyuG4CZI2jPOalkL8Q5oiW1aVNEkvd1LtxxA89lLbqOa_old2kBTkTF2u5I66nKlLYDJRT-bqh3nydq389i_b1c6GCdeHRS-Dtug0Gpu4RmlG-_uBT8dGoSA
CitedBy_id crossref_primary_10_1016_j_compag_2020_105460
crossref_primary_10_1016_j_eswa_2017_06_044
crossref_primary_10_1002_jsfa_11857
crossref_primary_10_3390_beverages5040062
crossref_primary_10_1016_j_postharvbio_2018_01_013
crossref_primary_10_1080_10408347_2018_1548926
crossref_primary_10_3390_molecules25133025
crossref_primary_10_1016_j_foodcont_2025_111493
crossref_primary_10_1016_j_foodchem_2025_143554
crossref_primary_10_1016_j_foodchem_2018_02_035
Cites_doi 10.1016/j.compag.2013.01.013
10.1016/j.compag.2013.08.027
10.1016/j.foodres.2005.07.005
10.3923/jai.2013.210.219
10.1002/jms.1197
10.1016/j.compag.2014.08.008
10.1016/j.procs.2014.05.186
10.1007/s10044-009-0148-z
10.1021/jf0511190
10.1016/S0023-6438(95)80008-5
10.1016/j.compag.2014.07.009
10.1016/j.aca.2010.09.039
10.1016/j.asoc.2011.12.019
10.1007/s11947-012-0867-9
10.1016/j.compag.2014.06.003
10.1007/s12293-014-0144-8
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2016.03.020
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
EndPage 414
ExternalDocumentID 10_1016_j_compag_2016_03_020
S0168169916300898
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c444t-2bd3b066de7931e268bbc5cdbfe080e486fc0d87d76b5a755d3907b1030d5d503
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375166400043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Sun Sep 28 01:56:02 EDT 2025
Wed Oct 01 12:04:13 EDT 2025
Sat Nov 29 03:16:18 EST 2025
Tue Nov 18 21:41:29 EST 2025
Fri Feb 23 02:29:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Computer vision
Drinks
Pattern recognition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c444t-2bd3b066de7931e268bbc5cdbfe080e486fc0d87d76b5a755d3907b1030d5d503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10198/15503
PQID 1808093421
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1836651277
proquest_miscellaneous_1808093421
crossref_citationtrail_10_1016_j_compag_2016_03_020
crossref_primary_10_1016_j_compag_2016_03_020
elsevier_sciencedirect_doi_10_1016_j_compag_2016_03_020
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Computers and electronics in agriculture
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rodríguez-Pulido, Gordillo, González-Miret, Heredia (b0090) 2013; 99
Kashiha, Bahr, Ott, Moons, Niewold, Ödberg, Berckmans (b0040) 2013; 93
Pathare, Opara, Al-Said (b0060) 2013; 6
Reinhard, Khan, Akyz, Johnson (b0080) 2008
Sujatha, Punithavalli, Thavavel (b0100) 2013; 6
Kashiha, Bahr, Ott, Moons, Niewold, Ödberg, Berckmans (b0045) 2014; 107
Schaefer, Krawczyk, Celebi, Iyatomi (b0095) 2014; 6
Zhang, Ma (b0110) 2012
Fernández-González, Montejo-Bernardo, Rodríguez-Prieto, Castaño-Monllor, Badía-Laíño, Díaz-García (b0030) 2014; 108
Mallat (b0055) 1999
de Souza, Augusti, Catharino, Siebald, Eberlin, Augusti (b0015) 2007; 42
Petrosian, Meyer (b0065) 2013; vol. 19
Duarte-Mermoud, Beltrán, Bustos (b0025) 2010; 13
Pontes, Santos, Araujo, Almeida, Lima, Gaiao, Souto (b0075) 2006; 39
Rodrigues, da Costa, Salvini, da Silva Soares, da Silva, Caliari, Ribeiro (b0085) 2014; 29
Brand-Williams, Cuvelier, Berset (b0005) 1995; 28
De Souza, Vásquez, del Mastro, Acree, Lavin (b0010) 2006; 54
Kongsro (b0050) 2014; 109
Gevers, Gijsenij, Van de Weijer, Geusebroek (b0035) 2012; vol. 23
AOAC INTERNATIONAL (b9000) 1997; vol. 2
Yu, Zhang, Yu, Domeniconi, You, Han (b0105) 2012; 12
Do Brasil, S.F., 1973. Decreto no 73.267, 06 de dezembro de 1973.
Pinto, Galvão, Araújo (b0070) 2010; 682
Gevers (10.1016/j.compag.2016.03.020_b0035) 2012; vol. 23
Kongsro (10.1016/j.compag.2016.03.020_b0050) 2014; 109
AOAC INTERNATIONAL (10.1016/j.compag.2016.03.020_b9000) 1997; vol. 2
Duarte-Mermoud (10.1016/j.compag.2016.03.020_b0025) 2010; 13
Schaefer (10.1016/j.compag.2016.03.020_b0095) 2014; 6
De Souza (10.1016/j.compag.2016.03.020_b0010) 2006; 54
Sujatha (10.1016/j.compag.2016.03.020_b0100) 2013; 6
10.1016/j.compag.2016.03.020_b0020
Zhang (10.1016/j.compag.2016.03.020_b0110) 2012
Pontes (10.1016/j.compag.2016.03.020_b0075) 2006; 39
Rodríguez-Pulido (10.1016/j.compag.2016.03.020_b0090) 2013; 99
de Souza (10.1016/j.compag.2016.03.020_b0015) 2007; 42
Yu (10.1016/j.compag.2016.03.020_b0105) 2012; 12
Reinhard (10.1016/j.compag.2016.03.020_b0080) 2008
Fernández-González (10.1016/j.compag.2016.03.020_b0030) 2014; 108
Rodrigues (10.1016/j.compag.2016.03.020_b0085) 2014; 29
Mallat (10.1016/j.compag.2016.03.020_b0055) 1999
Kashiha (10.1016/j.compag.2016.03.020_b0040) 2013; 93
Petrosian (10.1016/j.compag.2016.03.020_b0065) 2013; vol. 19
Pathare (10.1016/j.compag.2016.03.020_b0060) 2013; 6
Brand-Williams (10.1016/j.compag.2016.03.020_b0005) 1995; 28
Pinto (10.1016/j.compag.2016.03.020_b0070) 2010; 682
Kashiha (10.1016/j.compag.2016.03.020_b0045) 2014; 107
References_xml – volume: 29
  start-page: 2024
  year: 2014
  end-page: 2033
  ident: b0085
  article-title: Cachaça classification using chemical features
  publication-title: Procedia Comput. Sci.
– volume: 6
  start-page: 210
  year: 2013
  ident: b0100
  article-title: Applicability of ensemble clustering and ensemble classification algorithm for user navigation pattern prediction
  publication-title: J. Artif. Intell.
– volume: 13
  start-page: 181
  year: 2010
  end-page: 188
  ident: b0025
  article-title: Chilean wine varietal classification using quadratic fisher transformation
  publication-title: Pattern Anal. Appl.
– volume: 93
  start-page: 111
  year: 2013
  end-page: 120
  ident: b0040
  article-title: Automatic identification of marked pigs in a pen using image pattern recognition
  publication-title: Comput. Electron. Agric.
– volume: 54
  start-page: 485
  year: 2006
  end-page: 488
  ident: b0010
  article-title: Characterization of cachaça and rum aroma
  publication-title: J. Agric. Food Chem.
– volume: 6
  start-page: 233
  year: 2014
  end-page: 240
  ident: b0095
  article-title: An ensemble classification approach for melanoma diagnosis
  publication-title: Memetic Comput.
– volume: 99
  start-page: 108
  year: 2013
  end-page: 115
  ident: b0090
  article-title: Analysis of food appearance properties by computer vision applying ellipsoids to colour data
  publication-title: Comput. Electron. Agric.
– volume: vol. 19
  year: 2013
  ident: b0065
  publication-title: Wavelets in Signal and Image Analysis: From Theory to Practice
– year: 2012
  ident: b0110
  article-title: Ensemble Machine Learning
– volume: 28
  start-page: 25
  year: 1995
  end-page: 30
  ident: b0005
  article-title: Use of a free radical method to evaluate antioxidant activity
  publication-title: {LWT} – Food Sci. Technol.
– volume: 108
  start-page: 166
  year: 2014
  end-page: 172
  ident: b0030
  article-title: Easy-to-use analytical approach based on ATR–FTIR and chemometrics to identify apple varieties under Protected Designation of Origin (PDO)
  publication-title: Comput. Electron. Agric.
– reference: Do Brasil, S.F., 1973. Decreto no 73.267, 06 de dezembro de 1973.
– volume: 42
  start-page: 1294
  year: 2007
  end-page: 1299
  ident: b0015
  article-title: Differentiation of rum and brazilian artisan cachaça via electrospray ionization mass spectrometry fingerprinting
  publication-title: J. Mass Spectrom.
– year: 2008
  ident: b0080
  article-title: Color Imaging: Fundamentals and Applications
– volume: 6
  start-page: 36
  year: 2013
  end-page: 60
  ident: b0060
  article-title: Colour measurement and analysis in fresh and processed foods: a review
  publication-title: Food Bioprocess Technol.
– volume: vol. 23
  year: 2012
  ident: b0035
  publication-title: Color in Computer Vision: Fundamentals and Applications
– volume: 109
  start-page: 32
  year: 2014
  end-page: 35
  ident: b0050
  article-title: Estimation of pig weight using a Microsoft Kinect prototype imaging system
  publication-title: Comput. Electron. Agric.
– volume: 39
  start-page: 182
  year: 2006
  end-page: 189
  ident: b0075
  article-title: Classification of distilled alcoholic beverages and verification of adulteration by near infrared spectrometry
  publication-title: Food Res. Int.
– volume: vol. 2
  start-page: 1
  year: 1997
  end-page: 43
  ident: b9000
  publication-title: Official Methods of Analysis
– volume: 107
  start-page: 38
  year: 2014
  end-page: 44
  ident: b0045
  article-title: Automatic weight estimation of individual pigs using image analysis
  publication-title: Comput. Electron. Agric.
– volume: 682
  start-page: 37
  year: 2010
  end-page: 47
  ident: b0070
  article-title: Ensemble wavelet modelling for determination of wheat and gasoline properties by near and middle infrared spectroscopy
  publication-title: Anal. Chimica Acta
– volume: 12
  start-page: 1511
  year: 2012
  end-page: 1522
  ident: b0105
  article-title: Semi-supervised ensemble classification in subspaces
  publication-title: Appl. Soft Comput.
– year: 1999
  ident: b0055
  article-title: A Wavelet Tour of Signal Processing
– volume: 93
  start-page: 111
  year: 2013
  ident: 10.1016/j.compag.2016.03.020_b0040
  article-title: Automatic identification of marked pigs in a pen using image pattern recognition
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.01.013
– volume: 99
  start-page: 108
  year: 2013
  ident: 10.1016/j.compag.2016.03.020_b0090
  article-title: Analysis of food appearance properties by computer vision applying ellipsoids to colour data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.08.027
– year: 2008
  ident: 10.1016/j.compag.2016.03.020_b0080
– volume: 39
  start-page: 182
  issue: 2
  year: 2006
  ident: 10.1016/j.compag.2016.03.020_b0075
  article-title: Classification of distilled alcoholic beverages and verification of adulteration by near infrared spectrometry
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2005.07.005
– ident: 10.1016/j.compag.2016.03.020_b0020
– volume: 6
  start-page: 210
  issue: 3
  year: 2013
  ident: 10.1016/j.compag.2016.03.020_b0100
  article-title: Applicability of ensemble clustering and ensemble classification algorithm for user navigation pattern prediction
  publication-title: J. Artif. Intell.
  doi: 10.3923/jai.2013.210.219
– year: 2012
  ident: 10.1016/j.compag.2016.03.020_b0110
– volume: 42
  start-page: 1294
  issue: 10
  year: 2007
  ident: 10.1016/j.compag.2016.03.020_b0015
  article-title: Differentiation of rum and brazilian artisan cachaça via electrospray ionization mass spectrometry fingerprinting
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.1197
– year: 1999
  ident: 10.1016/j.compag.2016.03.020_b0055
– volume: vol. 2
  start-page: 1
  year: 1997
  ident: 10.1016/j.compag.2016.03.020_b9000
– volume: 109
  start-page: 32
  year: 2014
  ident: 10.1016/j.compag.2016.03.020_b0050
  article-title: Estimation of pig weight using a Microsoft Kinect prototype imaging system
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.08.008
– volume: 29
  start-page: 2024
  year: 2014
  ident: 10.1016/j.compag.2016.03.020_b0085
  article-title: Cachaça classification using chemical features
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2014.05.186
– volume: 13
  start-page: 181
  issue: 2
  year: 2010
  ident: 10.1016/j.compag.2016.03.020_b0025
  article-title: Chilean wine varietal classification using quadratic fisher transformation
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-009-0148-z
– volume: vol. 23
  year: 2012
  ident: 10.1016/j.compag.2016.03.020_b0035
– volume: vol. 19
  year: 2013
  ident: 10.1016/j.compag.2016.03.020_b0065
– volume: 54
  start-page: 485
  issue: 2
  year: 2006
  ident: 10.1016/j.compag.2016.03.020_b0010
  article-title: Characterization of cachaça and rum aroma
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0511190
– volume: 28
  start-page: 25
  issue: 1
  year: 1995
  ident: 10.1016/j.compag.2016.03.020_b0005
  article-title: Use of a free radical method to evaluate antioxidant activity
  publication-title: {LWT} – Food Sci. Technol.
  doi: 10.1016/S0023-6438(95)80008-5
– volume: 108
  start-page: 166
  year: 2014
  ident: 10.1016/j.compag.2016.03.020_b0030
  article-title: Easy-to-use analytical approach based on ATR–FTIR and chemometrics to identify apple varieties under Protected Designation of Origin (PDO)
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.07.009
– volume: 682
  start-page: 37
  issue: 1
  year: 2010
  ident: 10.1016/j.compag.2016.03.020_b0070
  article-title: Ensemble wavelet modelling for determination of wheat and gasoline properties by near and middle infrared spectroscopy
  publication-title: Anal. Chimica Acta
  doi: 10.1016/j.aca.2010.09.039
– volume: 12
  start-page: 1511
  issue: 5
  year: 2012
  ident: 10.1016/j.compag.2016.03.020_b0105
  article-title: Semi-supervised ensemble classification in subspaces
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.12.019
– volume: 6
  start-page: 36
  issue: 1
  year: 2013
  ident: 10.1016/j.compag.2016.03.020_b0060
  article-title: Colour measurement and analysis in fresh and processed foods: a review
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-012-0867-9
– volume: 107
  start-page: 38
  year: 2014
  ident: 10.1016/j.compag.2016.03.020_b0045
  article-title: Automatic weight estimation of individual pigs using image analysis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.06.003
– volume: 6
  start-page: 233
  issue: 4
  year: 2014
  ident: 10.1016/j.compag.2016.03.020_b0095
  article-title: An ensemble classification approach for melanoma diagnosis
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-014-0144-8
SSID ssj0016987
Score 2.187363
Snippet •The problem of recognition of aging time and wood type in chacaca is presented.•A new approach is introduced using a computer vision system.•The developed...
Brazilian rum (also known as cachaca) is the third most commonly consumed distilled alcoholic drink in the world, with approximately 2.5 billion liters...
Brazilian rum (also known as cachaça) is the third most commonly consumed distilled alcoholic drink in the world, with approximately 2.5 billion liters...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 410
SubjectTerms Aroma
automatic detection
Brazil
chemical analysis
Classification
Classifiers
Computer vision
Consumption
Drinks
flavor
Laboratory equipment
odors
Pattern recognition
prices
rum
wavelet
Wavelet transforms
Wood
Title A feasibility cachaca type recognition using computer vision and pattern recognition
URI https://dx.doi.org/10.1016/j.compag.2016.03.020
https://www.proquest.com/docview/1808093421
https://www.proquest.com/docview/1836651277
Volume 123
WOSCitedRecordID wos000375166400043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXjISt1WiPBw7OaZVESCoEGzR3izbcZZWVVJtd6vyK_jLjOPHRgVaeuAS7VrOKNnv2_F4PA-E3oAJy1RWsShN2zwiuhKRkG0SaSJLRkRVCFtd_yM7OCjn8-rzZPLT58Kcn7CuKy8uqtP_CjWMAdgmdfYGcAehMACfAXS4Auxw_Sfg62mrhQt6_TFVQn0XSlhXa4gWAsjXPt12aOowtTnmtmzAUHKzG88em7C-D4Qt7rxpozME1orF0hXzCIT50jfLo8XaqqPd-DAOTp3e5D4Nyin-Gkb3em_Qxp_C4DfQQrsC1jKbSRKPfRUpHYW4OPclhT0rtS2Rgv7N8pEGJS7KVbtv5I963rocjuMhUH9hIvToUKs2Szbrmj_Lv7TchSBEH992zK0UbqTwJOcg5RbazlhRgabfrt_vzz-EgylalTYD372Iz8YcQgZ_f5q_WTuX1v3BmJndR_fcLgTXlj0P0ER3D9HdegPeIzSr8YhH2PEIGx7hETPwwCPseYQtjzBQAzsejWc_Rodv92d77yLXgiNShJBVlMkml2CVNhr0eKozWkqpCtXIVsNWQ5OStippStYwKgvBiqLJq4RJ07uuKZoiyZ-gra7v9FOEMyoyQWDJaKkgacuMoSxBYqraAsRkOyj3PxVXrj69aZNywq8CagdF4a5TW5_lmvnMo8CdjWltRw7UuubO1x40DirYnKuJTvfrM56a2qxVTrL0qjk5pWBcM_bshk_8HN3Z_JVeoK3Vcq1fotvqfHV0tnzl-PkLPMC4wQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+feasibility+cachaca+type+recognition+using+computer+vision+and+pattern+recognition&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Rodrigues%2C+B.U.&rft.au=Soares%2C+A.S.&rft.au=Costa%2C+R.M.&rft.au=Van+Baalen%2C+J.&rft.date=2016-04-01&rft.issn=0168-1699&rft.volume=123&rft.spage=410&rft.epage=414&rft_id=info:doi/10.1016%2Fj.compag.2016.03.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2016_03_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon