Convolutional-network models to predict wall-bounded turbulence from wall quantities

Two models based on convolutional neural networks are trained to predict the two-dimensional instantaneous velocity-fluctuation fields at different wall-normal locations in a turbulent open-channel flow, using the wall-shear-stress components and the wall pressure as inputs. The first model is a ful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics Jg. 928
Hauptverfasser: Guastoni, Luca, Güemes, Alejandro, Ianiro, Andrea, Discetti, Stefano, Schlatter, Philipp, Azizpour, Hossein, Vinuesa, Ricardo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge, UK Cambridge University Press 10.12.2021
Schlagworte:
ISSN:0022-1120, 1469-7645, 1469-7645
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Two models based on convolutional neural networks are trained to predict the two-dimensional instantaneous velocity-fluctuation fields at different wall-normal locations in a turbulent open-channel flow, using the wall-shear-stress components and the wall pressure as inputs. The first model is a fully convolutional neural network (FCN) which directly predicts the fluctuations, while the second one reconstructs the flow fields using a linear combination of orthonormal basis functions, obtained through proper orthogonal decomposition (POD), and is hence named FCN-POD. Both models are trained using data from direct numerical simulations at friction Reynolds numbers $Re_{\tau } = 180$ and 550. Being able to predict the nonlinear interactions in the flow, both models show better predictions than the extended proper orthogonal decomposition (EPOD), which establishes a linear relation between the input and output fields. The performance of the models is compared based on predictions of the instantaneous fluctuation fields, turbulence statistics and power-spectral densities. FCN exhibits the best predictions closer to the wall, whereas FCN-POD provides better predictions at larger wall-normal distances. We also assessed the feasibility of transfer learning for the FCN model, using the model parameters learned from the $Re_{\tau }=180$ dataset to initialize those of the model that is trained on the $Re_{\tau }=550$ dataset. After training the initialized model at the new $Re_{\tau }$, our results indicate the possibility of matching the reference-model performance up to $y^{+}=50$, with $50\,\%$ and $25\,\%$ of the original training data. We expect that these non-intrusive sensing models will play an important role in applications related to closed-loop control of wall-bounded turbulence.
AbstractList Two models based on convolutional neural networks are trained to predict the two-dimensional instantaneous velocity-fluctuation fields at different wall-normal locations in a turbulent open-channel flow, using the wall-shear-stress components and the wall pressure as inputs. The first model is a fully convolutional neural network (FCN) which directly predicts the fluctuations, while the second one reconstructs the flow fields using a linear combination of orthonormal basis functions, obtained through proper orthogonal decomposition (POD), and is hence named FCN-POD. Both models are trained using data from direct numerical simulations at friction Reynolds numbers $Re_{\tau } = 180$ and 550. Being able to predict the nonlinear interactions in the flow, both models show better predictions than the extended proper orthogonal decomposition (EPOD), which establishes a linear relation between the input and output fields. The performance of the models is compared based on predictions of the instantaneous fluctuation fields, turbulence statistics and power-spectral densities. FCN exhibits the best predictions closer to the wall, whereas FCN-POD provides better predictions at larger wall-normal distances. We also assessed the feasibility of transfer learning for the FCN model, using the model parameters learned from the $Re_{\tau }=180$ dataset to initialize those of the model that is trained on the $Re_{\tau }=550$ dataset. After training the initialized model at the new $Re_{\tau }$ , our results indicate the possibility of matching the reference-model performance up to $y^{+}=50$ , with $50\,\%$ and $25\,\%$ of the original training data. We expect that these non-intrusive sensing models will play an important role in applications related to closed-loop control of wall-bounded turbulence.
Two models based on convolutional neural networks are trained to predict the two-dimensional instantaneous velocity-fluctuation fields at different wall-normal locations in a turbulent open-channel flow, using the wall-shear-stress components and the wall pressure as inputs. The first model is a fully convolutional neural network (FCN) which directly predicts the fluctuations, while the second one reconstructs the flow fields using a linear combination of orthonormal basis functions, obtained through proper orthogonal decomposition (POD), and is hence named FCN-POD. Both models are trained using data from direct numerical simulations at friction Reynolds numbers \(Re_{\tau } = 180\) and 550. Being able to predict the nonlinear interactions in the flow, both models show better predictions than the extended proper orthogonal decomposition (EPOD), which establishes a linear relation between the input and output fields. The performance of the models is compared based on predictions of the instantaneous fluctuation fields, turbulence statistics and power-spectral densities. FCN exhibits the best predictions closer to the wall, whereas FCN-POD provides better predictions at larger wall-normal distances. We also assessed the feasibility of transfer learning for the FCN model, using the model parameters learned from the \(Re_{\tau }=180\) dataset to initialize those of the model that is trained on the \(Re_{\tau }=550\) dataset. After training the initialized model at the new \(Re_{\tau }\), our results indicate the possibility of matching the reference-model performance up to \(y^{+}=50\), with \(50\,\%\) and \(25\,\%\) of the original training data. We expect that these non-intrusive sensing models will play an important role in applications related to closed-loop control of wall-bounded turbulence.
Two models based on convolutional neural networks are trained to predict the two-dimensional instantaneous velocity-fluctuation fields at different wall-normal locations in a turbulent open-channel flow, using the wall-shear-stress components and the wall pressure as inputs. The first model is a fully convolutional neural network (FCN) which directly predicts the fluctuations, while the second one reconstructs the flow fields using a linear combination of orthonormal basis functions, obtained through proper orthogonal decomposition (POD), and is hence named FCN-POD. Both models are trained using data from direct numerical simulations at friction Reynolds numbers Re-tau = 180 and 550. Being able to predict the nonlinear interactions in the flow, both models show better predictions than the extended proper orthogonal decomposition (EPOD), which establishes a linear relation between the input and output fields. The performance of the models is compared based on predictions of the instantaneous fluctuation fields, turbulence statistics and power-spectral densities. FCN exhibits the best predictions closer to the wall, whereas FCN-POD provides better predictions at larger wall-normal distances. We also assessed the feasibility of transfer learning for the FCN model, using the model parameters learned from the Re-tau = 180 dataset to initialize those of the model that is trained on the Re-tau = 550 dataset. After training the initialized model at the new Ret, our results indicate the possibility of matching the reference-model performance up to y(+) = 50, with 50% and 25% of the original training data. We expect that these non-intrusive sensing models will play an important role in applications related to closed-loop control of wall-bounded turbulence.
ArticleNumber A27
Author Guastoni, Luca
Ianiro, Andrea
Vinuesa, Ricardo
Schlatter, Philipp
Güemes, Alejandro
Discetti, Stefano
Azizpour, Hossein
Author_xml – sequence: 1
  givenname: Luca
  orcidid: 0000-0002-8589-1572
  surname: Guastoni
  fullname: Guastoni, Luca
  email: guastoni@mech.kth.se
  organization: 1SimEx/FLOW, Engineering Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
– sequence: 2
  givenname: Alejandro
  orcidid: 0000-0002-1673-9956
  surname: Güemes
  fullname: Güemes, Alejandro
  organization: 3Aerospace Engineering Research Group, Universidad Carlos III de Madrid, 28911 Leganés, Spain
– sequence: 3
  givenname: Andrea
  orcidid: 0000-0001-7342-4814
  surname: Ianiro
  fullname: Ianiro, Andrea
  organization: 3Aerospace Engineering Research Group, Universidad Carlos III de Madrid, 28911 Leganés, Spain
– sequence: 4
  givenname: Stefano
  orcidid: 0000-0001-9025-1505
  surname: Discetti
  fullname: Discetti, Stefano
  organization: 3Aerospace Engineering Research Group, Universidad Carlos III de Madrid, 28911 Leganés, Spain
– sequence: 5
  givenname: Philipp
  orcidid: 0000-0001-9627-5903
  surname: Schlatter
  fullname: Schlatter, Philipp
  organization: 1SimEx/FLOW, Engineering Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
– sequence: 6
  givenname: Hossein
  orcidid: 0000-0001-5211-6388
  surname: Azizpour
  fullname: Azizpour, Hossein
  organization: 2Swedish e-Science Research Centre (SeRC), SE-100 44 Stockholm, Sweden
– sequence: 7
  givenname: Ricardo
  orcidid: 0000-0001-6570-5499
  surname: Vinuesa
  fullname: Vinuesa, Ricardo
  organization: 1SimEx/FLOW, Engineering Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-305768$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
BookMark eNp1kMtOwzAQRS1UJFpgxwdEYkuK7ThxskTlKSGxKWwt2xkXlyRubYeKvyelRUgIVrOYc0d3zgSNOtcBQmcETwkm_HJp2inFlExLQg_QmLCiSnnB8hEaY0xpSgjFR2gSwhJjkuGKj9F85rp31_TRuk42aQdx4_xb0roampBEl6w81FbHZCObJlWu72qok9h71TfQaUiMd-3XMln3sos2Wggn6NDIJsDpfh6j59ub-ew-fXy6e5hdPaaaMRZTWnEFrGSmYJUBMIoWlEqZ1YZLyHVmDKalyitOtDQ1EEWZrozRKiuhJlxlxyjd3Q0bWPVKrLxtpf8QTlpxbV-uhPML8RZfRYZzXpQDf77jV96tewhRLF3vh7-DoDmvqrygeTFQdEdp70LwYIS2UW4FRS9tIwgWW9tisC22tsVgewhd_Ap9l_kHn-5x2Spv6wX8VPkz8AmEA5Uw
CitedBy_id crossref_primary_10_3389_fphy_2022_888832
crossref_primary_10_3390_en15041513
crossref_primary_10_1016_j_physrep_2023_10_005
crossref_primary_10_1007_s40436_025_00545_0
crossref_primary_10_1016_j_buildenv_2025_113500
crossref_primary_10_1007_s11831_024_10145_z
crossref_primary_10_1017_jfm_2022_1088
crossref_primary_10_1140_epje_s10189_023_00286_7
crossref_primary_10_1038_s43588_022_00264_7
crossref_primary_10_1002_er_7879
crossref_primary_10_1017_jfm_2023_775
crossref_primary_10_1007_s11831_023_10033_y
crossref_primary_10_1017_jfm_2022_738
crossref_primary_10_1016_j_ijheatfluidflow_2022_109010
crossref_primary_10_1088_1873_7005_ade8a2
crossref_primary_10_1017_jfm_2022_908
crossref_primary_10_1017_jfm_2024_81
crossref_primary_10_1016_j_oceaneng_2023_116605
crossref_primary_10_1016_j_ast_2024_109345
crossref_primary_10_1016_j_cma_2023_116543
crossref_primary_10_1017_dce_2023_19
crossref_primary_10_1007_s00162_023_00657_y
crossref_primary_10_1017_jfm_2024_211
crossref_primary_10_1093_pnasnexus_pgad015
crossref_primary_10_1016_j_compfluid_2024_106417
crossref_primary_10_1017_jfm_2022_61
crossref_primary_10_1088_1361_6501_aca9eb
crossref_primary_10_1103_8t52_mtb9
crossref_primary_10_1061_JENMDT_EMENG_7558
crossref_primary_10_1016_j_compfluid_2021_105274
crossref_primary_10_1007_s00162_023_00663_0
crossref_primary_10_1007_s10494_024_00609_4
crossref_primary_10_1007_s10409_022_22315_x
crossref_primary_10_2514_1_J060919
crossref_primary_10_1088_1361_6501_ad3fd3
crossref_primary_10_1016_j_cma_2025_118254
crossref_primary_10_1016_j_paerosci_2025_101130
crossref_primary_10_1063_5_0190452
crossref_primary_10_1016_j_uclim_2025_102300
crossref_primary_10_1007_s40808_023_01851_x
crossref_primary_10_1016_j_eswa_2022_117038
crossref_primary_10_1017_jfm_2022_1069
crossref_primary_10_1017_jfm_2022_159
crossref_primary_10_1063_5_0256710
crossref_primary_10_1063_5_0211680
crossref_primary_10_1016_j_eswa_2023_122466
crossref_primary_10_1017_jfm_2025_240
crossref_primary_10_1209_0295_5075_acc88c
crossref_primary_10_3390_fluids10090226
crossref_primary_10_1088_1361_6501_acaffe
crossref_primary_10_1016_j_expthermflusci_2022_110647
crossref_primary_10_1017_dce_2021_16
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126149
crossref_primary_10_1017_jfm_2021_764
crossref_primary_10_1017_jfm_2024_432
crossref_primary_10_1088_1361_6501_ace8ad
crossref_primary_10_3389_frlct_2024_1328004
crossref_primary_10_1186_s42774_023_00148_y
crossref_primary_10_1103_bs9l_bhqz
crossref_primary_10_1016_j_coastaleng_2025_104874
crossref_primary_10_1016_j_physd_2022_133454
crossref_primary_10_1007_s00162_024_00732_y
crossref_primary_10_1016_j_ijheatfluidflow_2023_109200
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124900
crossref_primary_10_1016_j_cherd_2023_06_044
crossref_primary_10_1017_jfm_2021_697
crossref_primary_10_1038_s41467_024_47954_6
crossref_primary_10_3390_atmos15010060
crossref_primary_10_3390_fluids7020062
crossref_primary_10_1038_s42256_024_00810_0
crossref_primary_10_3390_jmse11071440
crossref_primary_10_1088_1742_6596_2753_1_012023
crossref_primary_10_1017_jfm_2022_770
crossref_primary_10_1017_jfm_2024_272
crossref_primary_10_1108_HFF_10_2023_0659
crossref_primary_10_1631_FITEE_2000435
crossref_primary_10_1016_j_buildenv_2021_108597
crossref_primary_10_1016_j_oceaneng_2024_119116
crossref_primary_10_1038_s41598_023_29525_9
crossref_primary_10_1017_jfm_2023_573
crossref_primary_10_1016_j_ast_2023_108354
crossref_primary_10_1016_j_jcp_2023_112253
crossref_primary_10_3390_app11146472
crossref_primary_10_1063_5_0058346
crossref_primary_10_1063_5_0256978
crossref_primary_10_1016_j_ijheatfluidflow_2021_108816
crossref_primary_10_1103_b36b_m5hd
crossref_primary_10_3390_act11120359
crossref_primary_10_1007_s00521_021_06633_z
crossref_primary_10_1017_jfm_2023_867
crossref_primary_10_1017_jfm_2024_46
crossref_primary_10_1016_j_rineng_2024_103597
crossref_primary_10_1063_5_0066077
crossref_primary_10_1007_s00466_023_02279_x
crossref_primary_10_1007_s00162_024_00718_w
crossref_primary_10_1038_s41598_022_07515_7
crossref_primary_10_1007_s00366_024_01987_z
crossref_primary_10_3390_s22062121
crossref_primary_10_1017_jfm_2024_521
crossref_primary_10_1063_5_0231805
crossref_primary_10_1140_epje_s10189_023_00285_8
crossref_primary_10_1016_j_engappai_2023_107483
crossref_primary_10_1017_jfm_2025_209
crossref_primary_10_1017_flo_2023_17
crossref_primary_10_2514_1_J061647
crossref_primary_10_1016_j_ijheatfluidflow_2023_109199
crossref_primary_10_1017_jfm_2023_154
crossref_primary_10_1016_j_cma_2024_117478
crossref_primary_10_3390_en14051310
crossref_primary_10_1016_j_compfluid_2024_106246
crossref_primary_10_1016_j_ijheatfluidflow_2024_109662
crossref_primary_10_1017_flo_2023_26
Cites_doi 10.1017/jfm.2013.494
10.1016/0893-6080(89)90014-2
10.1103/PhysRevFluids.4.114603
10.1126/sciadv.aay2631
10.1109/5.726791
10.1126/science.aaf7894
10.1017/jfm.2017.580
10.1103/PhysRevFluids.4.054603
10.1017/jfm.2011.524
10.1090/qam/910463
10.1017/S0022112088001442
10.1063/5.0058346
10.1017/S0022112001005808
10.1063/1.869290
10.1063/5.0006492
10.1016/j.expthermflusci.2019.02.001
10.1016/0893-6080(88)90014-7
10.1017/jfm.2016.803
10.1016/0893-6080(89)90020-8
10.1007/BF00332918
10.1038/s41467-019-14108-y
10.1126/science.aaw4741
10.1017/jfm.2019.822
10.1038/nature14539
10.1016/j.physd.2008.10.009
10.1017/jfm.2019.801
10.1017/jfm.2020.948
10.1080/14685248.2020.1757685
10.1016/j.jcp.2019.108910
10.1017/jfm.2019.27
10.1017/jfm.2014.553
10.1017/S0022112008003601
10.1017/jfm.2019.814
10.1073/pnas.1719367115
10.1016/j.combustflame.2019.02.019
10.1063/1.5128053
10.1017/jfm.2019.238
10.1006/jcph.2002.7146
10.1109/TKDE.2009.191
10.1016/j.ijheatfluidflow.2021.108816
10.1103/PhysRevLett.99.114504
10.1017/jfm.2019.62
10.1017/jfm.2016.615
10.1038/s41591-018-0107-6
10.1162/neco.1989.1.4.541
10.1007/BF00344251
10.1103/PhysRevLett.124.010508
10.1038/s41586-019-1559-7
10.1007/s00348-003-0656-3
10.1063/1.4879255
10.1017/jfm.2020.409
10.1103/PhysRevFluids.3.074602
10.1016/j.jcp.2018.10.045
10.1109/CVPR.2015.7298965
10.1017/jfm.2018.660
10.1109/TRPMS.2021.3066428
10.1016/j.expthermflusci.2017.12.011
10.1103/PhysRevFluids.2.034603
10.1017/jfm.2018.770
10.1007/s00348-006-0199-5
10.1088/1367-2630/6/1/056
10.1103/PhysRevFluids.4.064603
10.1088/1873-7005/aaca81
10.1017/jfm.2016.345
10.1017/S0022112094000431
10.1016/j.cpc.2017.05.023
10.1063/1.5127202
10.1146/annurev-fluid-010518-040547
10.1063/1.4873199
10.1126/science.1127647
10.1146/annurev-fluid-010719-060214
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press.
The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press.
– notice: The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1017/jfm.2021.812
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Research Library Prep


Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press Wholly Gold Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID oai_DiVA_org_kth_305768
10_1017_jfm_2021_812
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IKXGN
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
AAYXX
ABUFD
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFFHD
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
PQGLB
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
-1F
-2P
-2V
-~6
-~N
6TJ
6~7
8WZ
9M5
A6W
AATMM
ABDMP
ABDPE
ABFSI
ABKAW
ABVFV
ABZUI
ACETC
ACKIV
ACRPL
ADNMO
ADOVH
ADTPV
AEBPU
AEHGV
AEMFK
AENCP
AFDQA
AGLWM
AGQPQ
AI.
ALEEW
AOWAS
BESQT
BQFHP
CAG
CCUQV
CDIZJ
COF
D8T
D8V
EJD
H~9
I.7
I.9
KAFGG
LHUNA
NMFBF
VH1
VOH
ZE2
ZJOSE
ZMEZD
ZY4
ZZAVC
~V1
ID FETCH-LOGICAL-c444t-297be484f649feefb2622aa3df7ae5c3ff028b5971cafde1b24c9ffcb38ed17b3
IEDL.DBID IKXGN
ISICitedReferencesCount 141
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721246500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1120
1469-7645
IngestDate Tue Nov 04 16:55:11 EST 2025
Sat Aug 16 22:22:09 EDT 2025
Sat Nov 29 04:24:55 EST 2025
Tue Nov 18 21:32:48 EST 2025
Wed Mar 13 05:50:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords turbulence simulation
Language English
License https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c444t-297be484f649feefb2622aa3df7ae5c3ff028b5971cafde1b24c9ffcb38ed17b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5211-6388
0000-0002-1673-9956
0000-0001-9025-1505
0000-0001-6570-5499
0000-0001-9627-5903
0000-0002-8589-1572
0000-0001-7342-4814
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0022112021008120/type/journal_article
PQID 2579956256
PQPubID 34769
PageCount 37
ParticipantIDs swepub_primary_oai_DiVA_org_kth_305768
proquest_journals_2579956256
crossref_citationtrail_10_1017_jfm_2021_812
crossref_primary_10_1017_jfm_2021_812
cambridge_journals_10_1017_jfm_2021_812
PublicationCentury 2000
PublicationDate 2021-12-10
PublicationDateYYYYMMDD 2021-12-10
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-10
  day: 10
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2017; 2
2019; 51
1988; 190
2019; 203
2014; 26
2004; 6
2020; 882
2020; 124
2020; 367
2020; 11
1997; 9
2017; 830
2009; 238
2020; 6
1980; 36
1987; 45
2002; 182
2018; 3
2012; 694
2021; 33
2018; 854
2020; 52
1994; 262
2020; 897
2016; 353
2016; 798
2021; 909
2019; 870
2019; 398
2019; 475
1989; 2
2017; 219
2009; 22
2017; 814
2019; 4
2014; 758
1989; 1
2019; 31
2015; 521
2016; 807
1988; 59
2003; 35
2019; 104
2019; 864
2019; 865
2020; 32
2006; 313
2001; 448
2007; 99
2021; 90
2018; 24
1988; 1
2006; 41
2013; 736
2019; 858
2018; 115
2008; 615
2019; 378
2018; 93
2020; 476
2020; 21
2019; 573
2020; 1522
S0022112021008120_ref27
S0022112021008120_ref72
S0022112021008120_ref73
S0022112021008120_ref70
S0022112021008120_ref71
S0022112021008120_ref76
S0022112021008120_ref32
S0022112021008120_ref77
S0022112021008120_ref33
S0022112021008120_ref30
S0022112021008120_ref74
S0022112021008120_ref31
S0022112021008120_ref75
S0022112021008120_ref36
S0022112021008120_ref37
S0022112021008120_ref78
S0022112021008120_ref34
S0022112021008120_ref79
S0022112021008120_ref35
S0022112021008120_ref38
S0022112021008120_ref39
S0022112021008120_ref80
S0022112021008120_ref83
S0022112021008120_ref40
S0022112021008120_ref84
S0022112021008120_ref81
S0022112021008120_ref82
S0022112021008120_ref43
S0022112021008120_ref44
S0022112021008120_ref85
S0022112021008120_ref41
S0022112021008120_ref42
S0022112021008120_ref86
S0022112021008120_ref47
S0022112021008120_ref48
S0022112021008120_ref45
S0022112021008120_ref46
S0022112021008120_ref49
Guastoni (S0022112021008120_ref29) 2020; 1522
S0022112021008120_ref50
S0022112021008120_ref51
S0022112021008120_ref54
S0022112021008120_ref11
S0022112021008120_ref55
S0022112021008120_ref52
S0022112021008120_ref53
S0022112021008120_ref14
S0022112021008120_ref58
S0022112021008120_ref59
S0022112021008120_ref15
S0022112021008120_ref12
S0022112021008120_ref56
S0022112021008120_ref13
S0022112021008120_ref57
Goodfellow (S0022112021008120_ref28) 2016
S0022112021008120_ref18
S0022112021008120_ref19
S0022112021008120_ref16
S0022112021008120_ref17
Erichson (S0022112021008120_ref21) 2020; 476
S0022112021008120_ref2
S0022112021008120_ref1
S0022112021008120_ref61
S0022112021008120_ref62
S0022112021008120_ref60
S0022112021008120_ref65
S0022112021008120_ref22
S0022112021008120_ref66
S0022112021008120_ref9
S0022112021008120_ref8
S0022112021008120_ref63
S0022112021008120_ref7
S0022112021008120_ref64
S0022112021008120_ref20
S0022112021008120_ref6
S0022112021008120_ref69
S0022112021008120_ref25
S0022112021008120_ref26
S0022112021008120_ref5
S0022112021008120_ref23
S0022112021008120_ref67
S0022112021008120_ref4
S0022112021008120_ref24
Bucci (S0022112021008120_ref10) 2019; 475
S0022112021008120_ref68
S0022112021008120_ref3
References_xml – volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 573
  start-page: 568
  year: 2019
  end-page: 572
  article-title: Deep learning for multi-year ENSO forecasts
  publication-title: Nature
– volume: 882
  start-page: A13
  year: 2020
  article-title: Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
  publication-title: J. Fluid Mech.
– volume: 1522
  start-page: 012022
  year: 2020
  article-title: Prediction of wall-bounded turbulence from wall quantities using convolutional neural networks
  publication-title: J. Phys.: Conf. Ser.
– volume: 45
  start-page: 573
  issue: 3
  year: 1987
  end-page: 582
  article-title: Turbulence and the dynamics of coherent structures. II. Symmetries and transformations
  publication-title: Q. Appl. Maths
– volume: 11
  start-page: 233
  year: 2020
  article-title: The role of artificial intelligence in achieving the sustainable development goals
  publication-title: Nat. Commun.
– volume: 353
  start-page: 790
  year: 2016
  end-page: 794
  article-title: Combining satellite imagery and machine learning to predict poverty
  publication-title: Science
– volume: 694
  start-page: 100
  year: 2012
  end-page: 130
  article-title: The three-dimensional structure of momentum transfer in turbulent channels
  publication-title: J. Fluid Mech.
– volume: 238
  start-page: 290
  year: 2009
  end-page: 308
  article-title: Predictive flow-field estimation
  publication-title: Physica D
– volume: 475
  start-page: 20190351
  year: 2019
  article-title: Control of chaotic systems by deep reinforcement learning
  publication-title: Proc. R. Soc. Lond. A
– volume: 32
  start-page: 053605
  issue: 5
  year: 2020
  article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning
  publication-title: Phys. Fluids
– volume: 870
  start-page: 106
  year: 2019
  end-page: 120
  article-title: Super-resolution reconstruction of turbulent flows with machine learning
  publication-title: J. Fluid Mech.
– volume: 203
  start-page: 255
  year: 2019
  article-title: Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates
  publication-title: Combust. Flame
– volume: 6
  start-page: 1
  year: 2020
  end-page: 16
  article-title: AI Feynman: a physics-inspired method for symbolic regression
  publication-title: Sci. Adv.
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  end-page: 1359
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Engng
– volume: 41
  start-page: 763
  issue: 5
  year: 2006
  end-page: 775
  article-title: On spectral linear stochastic estimation
  publication-title: Exp. Fluids
– volume: 190
  start-page: 531
  year: 1988
  end-page: 559
  article-title: Stochastic estimation of organized turbulent structure: homogeneous shear flow
  publication-title: J. Fluid Mech.
– volume: 93
  start-page: 119
  year: 2018
  end-page: 130
  article-title: Estimation of time-resolved turbulent fields through correlation of non-time-resolved field measurements and time-resolved point measurements
  publication-title: Exp. Therm. Fluid Sci.
– volume: 909
  start-page: A9
  year: 2021
  article-title: Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows
  publication-title: J. Fluid Mech.
– volume: 26
  start-page: 045113
  issue: 4
  year: 2014
  article-title: A study of energetic large-scale structures in turbulent boundary layer
  publication-title: Phys. Fluids
– volume: 4
  start-page: 114603
  year: 2019
  article-title: Logarithmic-layer turbulence: a view from the wall
  publication-title: Phys. Rev. Fluids
– volume: 182
  start-page: 1
  issue: 1
  year: 2002
  end-page: 26
  article-title: Neural network modeling for near wall turbulent flow
  publication-title: J. Comput. Phys.
– volume: 21
  start-page: 567
  year: 2020
  end-page: 584
  article-title: A perspective on machine learning in turbulent flows
  publication-title: J. Turbul.
– volume: 24
  start-page: 1342
  year: 2018
  end-page: 1350
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat. Med.
– volume: 36
  start-page: 193
  issue: 4
  year: 1980
  end-page: 202
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
– volume: 448
  start-page: 53
  year: 2001
  end-page: 80
  article-title: Large-scale modes of turbulent channel flow: transport and structure
  publication-title: J. Fluid Mech.
– volume: 882
  start-page: A2
  year: 2020
  article-title: Causality of energy-containing eddies in wall turbulence
  publication-title: J. Fluid Mech.
– volume: 858
  start-page: 122
  year: 2019
  end-page: 144
  article-title: Subgrid modelling for two-dimensional turbulence using neural networks
  publication-title: J. Fluid Mech.
– volume: 104
  start-page: 1
  year: 2019
  end-page: 8
  article-title: Characterization of very-large-scale motions in high-Re pipe flows
  publication-title: Exp. Therm. Fluid Sci.
– volume: 35
  start-page: 188
  issue: 2
  year: 2003
  end-page: 192
  article-title: Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows
  publication-title: Exp. Fluids
– volume: 6
  start-page: 56
  year: 2004
  article-title: A low-dimensional model for turbulent shear flows
  publication-title: New J. Phys.
– volume: 2
  start-page: 53
  issue: 1
  year: 1989
  end-page: 58
  article-title: Neural networks and principal component analysis: learning from examples without local minima
  publication-title: Neural Networks
– volume: 115
  start-page: E5716
  year: 2018
  end-page: E5725
  article-title: Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 59
  start-page: 291
  issue: 4–5
  year: 1988
  end-page: 294
  article-title: Auto-association by multilayer perceptrons and singular value decomposition
  publication-title: Biol. Cybern.
– volume: 90
  start-page: 108816
  year: 2021
  article-title: Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence
  publication-title: Intl J. Heat Fluid Flow
– volume: 26
  start-page: 055112
  issue: 5
  year: 2014
  article-title: Proper orthogonal decomposition-based spectral higher-order stochastic estimation
  publication-title: Phys. Fluids
– volume: 476
  start-page: 20200097
  year: 2020
  article-title: Shallow neural networks for fluid flow reconstruction with limited sensors
  publication-title: Proc. R. Soc. Lond. A
– volume: 1
  start-page: 119
  issue: 2
  year: 1988
  end-page: 130
  article-title: Neocognitron: a hierarchical neural network capable of visual pattern recognition
  publication-title: Neural Networks
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  end-page: 551
  article-title: Backpropagation applied to handwritten ZIP code recognition
  publication-title: Neural Comput.
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 798
  start-page: 717
  year: 2016
  end-page: 750
  article-title: Modal energy flow analysis of a highly modulated wake behind a wall-mounted pyramid
  publication-title: J. Fluid Mech.
– volume: 615
  start-page: 53
  year: 2008
  end-page: 92
  article-title: Low-dimensional characteristics of a transonic jet. Part 2. Estimate and far-field prediction
  publication-title: J. Fluid Mech.
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– volume: 882
  start-page: A18
  year: 2020
  article-title: Prediction of turbulent heat transfer using convolutional neural networks
  publication-title: J. Fluid Mech.
– volume: 736
  start-page: 316
  year: 2013
  end-page: 350
  article-title: Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake
  publication-title: J. Fluid Mech.
– volume: 51
  start-page: 011408
  year: 2019
  article-title: Quantification of amplitude modulation in wall-bounded turbulence
  publication-title: Fluid Dyn. Res.
– volume: 4
  start-page: 064603
  year: 2019
  article-title: Synthetic turbulent inflow generator using machine learning
  publication-title: Phys. Rev. Fluids
– volume: 3
  start-page: 074602
  year: 2018
  article-title: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework
  publication-title: Phys. Rev. Fluids
– volume: 51
  start-page: 357
  year: 2019
  end-page: 377
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid Mech.
– volume: 99
  start-page: 114504
  year: 2007
  article-title: Reynolds number invariance of the structure inclination angle in wall turbulence
  publication-title: Phys. Rev. Lett.
– volume: 52
  start-page: 477
  year: 2020
  end-page: 508
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 897
  start-page: R1
  year: 2020
  article-title: Leveraging reduced-order models for state estimation using deep learning
  publication-title: J. Fluid Mech.
– volume: 865
  start-page: 281
  year: 2019
  end-page: 302
  article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
  publication-title: J. Fluid Mech.
– volume: 398
  start-page: 108910
  year: 2019
  article-title: Deep neural networks for data-driven LES closure models
  publication-title: J. Comput. Phys.
– volume: 2
  start-page: 034603
  issue: 3
  year: 2017
  article-title: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
  publication-title: Phys. Rev. Fluids
– volume: 854
  start-page: R1
  year: 2018
  article-title: Machine-aided turbulence theory
  publication-title: J. Fluid Mech.
– volume: 367
  start-page: 1026
  year: 2020
  end-page: 1030
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
– volume: 124
  start-page: 010508
  year: 2020
  article-title: Discovering physical concepts with neural networks
  publication-title: Phys. Rev. Lett.
– volume: 33
  start-page: 075121
  issue: 7
  year: 2021
  article-title: From coarse wall measurements to turbulent velocity fields through deep learning
  publication-title: Phys. Fluids
– volume: 219
  start-page: 236
  year: 2017
  end-page: 245
  article-title: A performance analysis of ensemble averaging for high fidelity turbulence simulations at the strong scaling limit
  publication-title: Comput. Phys. Commun.
– volume: 807
  start-page: 155
  year: 2016
  end-page: 166
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J. Fluid Mech.
– volume: 758
  start-page: 728
  year: 2014
  end-page: 753
  article-title: A dynamic observer to capture and control perturbation energy in noise amplifiers
  publication-title: J. Fluid Mech.
– volume: 864
  start-page: 708
  year: 2019
  end-page: 745
  article-title: Transfer functions for flow predictions in wall-bounded turbulence
  publication-title: J. Fluid Mech.
– volume: 4
  start-page: 054603
  issue: 5
  year: 2019
  article-title: Predictions of turbulent shear flows using deep neural networks
  publication-title: Phys. Rev. Fluids
– volume: 814
  start-page: 1
  year: 2017
  end-page: 4
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
– volume: 830
  start-page: 760
  year: 2017
  end-page: 796
  article-title: Estimation of turbulent channel flow at $Re_\theta =100$ based on the wall measurement using a simple sequential approach
  publication-title: J. Fluid Mech.
– volume: 262
  start-page: 75
  year: 1994
  end-page: 110
  article-title: Active turbulence control for drag reduction in wall-bounded flows
  publication-title: J. Fluid Mech.
– volume: 31
  start-page: 125112
  issue: 12
  year: 2019
  article-title: Sensing the turbulent large-scale motions with their wall signature
  publication-title: Phys. Fluids
– volume: 32
  start-page: 015108
  issue: 1
  year: 2020
  article-title: Machine learning strategies applied to the control of a fluidic pinball
  publication-title: Phys. Fluids
– volume: 9
  start-page: 1740
  year: 1997
  end-page: 1747
  article-title: Application of neural networks to turbulence control for drag reduction
  publication-title: Phys. Fluids
– ident: S0022112021008120_ref7
  doi: 10.1017/jfm.2013.494
– ident: S0022112021008120_ref66
– ident: S0022112021008120_ref4
  doi: 10.1016/0893-6080(89)90014-2
– ident: S0022112021008120_ref56
– ident: S0022112021008120_ref20
  doi: 10.1103/PhysRevFluids.4.114603
– ident: S0022112021008120_ref82
  doi: 10.1126/sciadv.aay2631
– ident: S0022112021008120_ref49
  doi: 10.1109/5.726791
– ident: S0022112021008120_ref41
  doi: 10.1126/science.aaf7894
– volume: 476
  start-page: 20200097
  year: 2020
  ident: S0022112021008120_ref21
  article-title: Shallow neural networks for fluid flow reconstruction with limited sensors
  publication-title: Proc. R. Soc. Lond. A
– ident: S0022112021008120_ref78
  doi: 10.1017/jfm.2017.580
– ident: S0022112021008120_ref77
  doi: 10.1103/PhysRevFluids.4.054603
– ident: S0022112021008120_ref55
  doi: 10.1017/jfm.2011.524
– ident: S0022112021008120_ref76
  doi: 10.1090/qam/910463
– ident: S0022112021008120_ref2
  doi: 10.1017/S0022112088001442
– ident: S0022112021008120_ref32
  doi: 10.1063/5.0058346
– ident: S0022112021008120_ref38
– ident: S0022112021008120_ref52
  doi: 10.1017/S0022112001005808
– ident: S0022112021008120_ref50
  doi: 10.1063/1.869290
– ident: S0022112021008120_ref79
  doi: 10.1063/5.0006492
– ident: S0022112021008120_ref14
  doi: 10.1016/j.expthermflusci.2019.02.001
– ident: S0022112021008120_ref27
  doi: 10.1016/0893-6080(88)90014-7
– ident: S0022112021008120_ref45
  doi: 10.1017/jfm.2016.803
– ident: S0022112021008120_ref36
  doi: 10.1016/0893-6080(89)90020-8
– ident: S0022112021008120_ref17
– ident: S0022112021008120_ref8
  doi: 10.1007/BF00332918
– ident: S0022112021008120_ref30
– ident: S0022112021008120_ref83
  doi: 10.1038/s41467-019-14108-y
– ident: S0022112021008120_ref1
– ident: S0022112021008120_ref74
  doi: 10.1126/science.aaw4741
– ident: S0022112021008120_ref64
  doi: 10.1017/jfm.2019.822
– ident: S0022112021008120_ref47
  doi: 10.1038/nature14539
– ident: S0022112021008120_ref63
  doi: 10.1016/j.physd.2008.10.009
– ident: S0022112021008120_ref54
  doi: 10.1017/jfm.2019.801
– ident: S0022112021008120_ref24
  doi: 10.1017/jfm.2020.948
– ident: S0022112021008120_ref70
  doi: 10.1080/14685248.2020.1757685
– ident: S0022112021008120_ref5
  doi: 10.1016/j.jcp.2019.108910
– ident: S0022112021008120_ref75
  doi: 10.1017/jfm.2019.27
– ident: S0022112021008120_ref33
  doi: 10.1017/jfm.2014.553
– ident: S0022112021008120_ref81
  doi: 10.1017/S0022112008003601
– ident: S0022112021008120_ref43
  doi: 10.1017/jfm.2019.814
– ident: S0022112021008120_ref67
  doi: 10.1073/pnas.1719367115
– ident: S0022112021008120_ref68
– volume-title: Deep Learning
  year: 2016
  ident: S0022112021008120_ref28
– ident: S0022112021008120_ref46
  doi: 10.1016/j.combustflame.2019.02.019
– ident: S0022112021008120_ref31
  doi: 10.1063/1.5128053
– ident: S0022112021008120_ref23
  doi: 10.1017/jfm.2019.238
– ident: S0022112021008120_ref61
  doi: 10.1006/jcph.2002.7146
– ident: S0022112021008120_ref69
  doi: 10.1109/TKDE.2009.191
– ident: S0022112021008120_ref19
  doi: 10.1016/j.ijheatfluidflow.2021.108816
– ident: S0022112021008120_ref59
  doi: 10.1103/PhysRevLett.99.114504
– ident: S0022112021008120_ref71
  doi: 10.1017/jfm.2019.62
– ident: S0022112021008120_ref51
  doi: 10.1017/jfm.2016.615
– ident: S0022112021008120_ref13
  doi: 10.1038/s41591-018-0107-6
– ident: S0022112021008120_ref48
  doi: 10.1162/neco.1989.1.4.541
– ident: S0022112021008120_ref26
  doi: 10.1007/BF00344251
– ident: S0022112021008120_ref39
  doi: 10.1103/PhysRevLett.124.010508
– ident: S0022112021008120_ref34
  doi: 10.1038/s41586-019-1559-7
– ident: S0022112021008120_ref6
  doi: 10.1007/s00348-003-0656-3
– ident: S0022112021008120_ref44
– ident: S0022112021008120_ref3
  doi: 10.1063/1.4879255
– ident: S0022112021008120_ref65
  doi: 10.1017/jfm.2020.409
– ident: S0022112021008120_ref40
– ident: S0022112021008120_ref85
  doi: 10.1103/PhysRevFluids.3.074602
– ident: S0022112021008120_ref73
  doi: 10.1016/j.jcp.2018.10.045
– ident: S0022112021008120_ref53
  doi: 10.1109/CVPR.2015.7298965
– volume: 475
  start-page: 20190351
  year: 2019
  ident: S0022112021008120_ref10
  article-title: Control of chaotic systems by deep reinforcement learning
  publication-title: Proc. R. Soc. Lond. A
– ident: S0022112021008120_ref42
  doi: 10.1017/jfm.2018.660
– ident: S0022112021008120_ref22
  doi: 10.1109/TRPMS.2021.3066428
– ident: S0022112021008120_ref15
  doi: 10.1016/j.expthermflusci.2017.12.011
– ident: S0022112021008120_ref84
  doi: 10.1103/PhysRevFluids.2.034603
– ident: S0022112021008120_ref60
  doi: 10.1017/jfm.2018.770
– ident: S0022112021008120_ref80
  doi: 10.1007/s00348-006-0199-5
– ident: S0022112021008120_ref57
– ident: S0022112021008120_ref62
  doi: 10.1088/1367-2630/6/1/056
– volume: 1522
  start-page: 012022
  year: 2020
  ident: S0022112021008120_ref29
  article-title: Prediction of wall-bounded turbulence from wall quantities using convolutional neural networks
  publication-title: J. Phys.: Conf. Ser.
– ident: S0022112021008120_ref25
  doi: 10.1103/PhysRevFluids.4.064603
– ident: S0022112021008120_ref11
– ident: S0022112021008120_ref16
  doi: 10.1088/1873-7005/aaca81
– ident: S0022112021008120_ref37
  doi: 10.1017/jfm.2016.345
– ident: S0022112021008120_ref12
  doi: 10.1017/S0022112094000431
– ident: S0022112021008120_ref58
  doi: 10.1016/j.cpc.2017.05.023
– ident: S0022112021008120_ref72
  doi: 10.1063/1.5127202
– ident: S0022112021008120_ref18
  doi: 10.1146/annurev-fluid-010518-040547
– ident: S0022112021008120_ref86
  doi: 10.1063/1.4873199
– ident: S0022112021008120_ref35
  doi: 10.1126/science.1127647
– ident: S0022112021008120_ref9
  doi: 10.1146/annurev-fluid-010719-060214
SSID ssj0013097
Score 2.6910615
Snippet Two models based on convolutional neural networks are trained to predict the two-dimensional instantaneous velocity-fluctuation fields at different wall-normal...
SourceID swepub
proquest
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial neural networks
Basis functions
Channel flow
Datasets
Decomposition
Direct numerical simulation
Feasibility studies
Fields
Fluid flow
Fluid mechanics
JFM Papers
Mathematical models
Neural networks
Open channel flow
Predictions
Proper Orthogonal Decomposition
Reynolds number
Statistical methods
Training
Transfer learning
Turbulence
turbulence simulation
Wall pressure
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BFiQ4UFioWCjIBz4OyJA4bhKfUCmtOK0qVFBvlu14oHSVbDfZ8vfxJN4PDuXCOZYd6c14xvbMewCvKjpzZXnJvUPHZR58TqFQ3JskV7mrsEhcLzZRTKfl-bk6jRdubSyrXO2J_UZdNY7uyD8E06ImzBChP86vOKlG0etqlNC4DTvEVCZHsPPpeHr6dfOOkKhixRceMosklr4TafQvpEZ0kb4vSY1yQ6zwd4Dayjq3mUT76HOy-7___RAexLyTHQ6G8ghu-XoMuzEHZdHD2zHc3yIoHMPdvkDUtY_h7Kipr6OZmhmvh-px1gvptKxr2HxBTz4d-21mM25JrCnMG-KZXfZtTYz6WPqP7GppIpHrE_h2cnx29IVHRQbupJQdF6qwXpYSc6nQe7QiF8KYLEBq_IHLEEO6YsMZJXUGK59aIZ1CdDYrfZUWNtuDUd3U_imwkAiKzOR4kHovsSgMmkQo70O6ZnNEO4G3a0h09KtWDzVphQ7gaQJPB_Am8G4FmHaR2Jz0NWY3jH69Hj0fCD1uGLe_wnOz_AbMCbwZ7GE9CfF0f774fqibxQ992f3UYScNZ7ln_57nOdyjFalAJk32YdQtlv4F3HHX3UW7eBnN-Q9sAAEO
  priority: 102
  providerName: ProQuest
Title Convolutional-network models to predict wall-bounded turbulence from wall quantities
URI https://www.cambridge.org/core/product/identifier/S0022112021008120/type/journal_article
https://www.proquest.com/docview/2579956256
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-305768
Volume 928
WOSCitedRecordID wos000721246500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB7ttiDBgYUCorBUOfA4oNDESePkuCy7gBClggVVXCzbsUWhSkuTLn-fGcd9cFiJCxcrSixHHk8838Qz3wA8KcnnSrI8NNrqMM3wmyssK0Ijo6zIdGl5pF2xCT4e59NpMTmA6SYXhsIqtxwH7iTf1UdbtvSnw1nZxtCYFeX4MvReGDktaNdYNKSflkO_BMIL_hC6iGAY60D33fvpm_HuhCEq-IZJnEbxQfFEJ_3DUoo6i1_mVKdyR7nwt-naw6P7HKPOLp0f_b8Z3YZbHqsGJ-2dO3Bgqh4cedwa-F2h7sHNPVLDHlx3QaW6vgsXp4vq0qu2nIdVG3EeuOI7ddAsguWKjoma4Lecz0NFBZ5wXLSBau1SoQLKfXEPg19r6clf78GX87OL07ehr-IQ6jRNm5AVXJk0T22WFtYYq1jGmJQJqoE0I51YixBHoV8Ta2lLEyuW6sJarZLclDFXyX3oVIvKPIAAwSNLZGZHsTGp5VxaGbHCGIR4KrNW9eH5VtLCi60WbRwbF7isgmQrULR9eLFZSqE9GTrV5Jhf0fvptveyJQG5ot_xRit2r8c9kbKHEVr24VmrKdtBiNv79ezriUC1ED-b7wJ3X_T_Hv7zPB7BDbqk-Jo4OoZOs1qbx3BNXzazejWA7quz8eTTwOv-AA4_sI-unVDLP2M7GX37A4rxGw0
linkProvider Cambridge University Press
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAqIcKCygbingA4UDMiSOm8QHhKqWqlXbVQ8L6s21HRtKV8l2k23Fn-I3Ms5jdzmUWw-cY43z-OYVz3wD8CbzOVcUp9QaZyiPUeeEY4JaFcQiNplLAlMPm0gGg_T0VJwswe-uF8aXVXY2sTbUWWH8P_KPCC3fhIke-vP4kvqpUf50tRuh0cDi0P66xpSt_HSwi993k7G9L8OdfdpOFaCGc15RJhJtecpdzIWz1mkWM6ZUhLel7JaJnEOXqzHODo1ymQ0140Y4Z3SU2ixMdIRy78BdjpmQ16tjdjI_tQhE0rGTYxwTtIX2nqL6p_Nt7yz8kPrZl3Mah7_d4UKMu8hbWvu6vdX_7S09hkdtVE22GzV4Aks278FqG2GT1n6VPXi4QL_Yg_t1-aspn8Jwp8ivWiVUI5o3tfGkHhNUkqog44k_0KrItRqNqPajqFAuems9rZu2iO_SqS-Sy6lqaWqfwddbeebnsJwXuV0DgmEui1TstkJruUsS5VTAhLUYjOrYOd2HdzMIyNZqlLKpuEskgkV6sEgESx_edwCRpqVt99NDRjes3pytHjd0JTes2-jwM99-Dp4-vG3wNxPiWch3z79ty2LyXV5UPyT6CcxU1_8t5zU82B8eH8mjg8HhC1jxu_tSoDDYgOVqMrUv4Z65qs7LyatakQic3TYm_wDgyGD7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional-network+models+to+predict+wall-bounded+turbulence+from+wall+quantities&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Guastoni%2C+Luca&rft.au=G%C3%BCemes%2C+Alejandro&rft.au=Ianiro%2C+Andrea&rft.au=Discetti%2C+Stefano&rft.date=2021-12-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=928&rft_id=info:doi/10.1017%2Fjfm.2021.812&rft.externalDocID=10_1017_jfm_2021_812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon