Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica
Autoantibody specific for the aquaporin-4 astrocytic water channel is restricted to serum and CSF of patients with neuromyelitis optica (NMO) and related CNS inflammatory demyelinating disorders (relapsing optic neuritis and longitudinally extensive transverse myelitis). NMO-typical lesions are dist...
Uloženo v:
| Vydáno v: | Neurology Ročník 69; číslo 24; s. 2221 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
11.12.2007
|
| Témata: | |
| ISSN: | 1526-632X, 1526-632X |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Autoantibody specific for the aquaporin-4 astrocytic water channel is restricted to serum and CSF of patients with neuromyelitis optica (NMO) and related CNS inflammatory demyelinating disorders (relapsing optic neuritis and longitudinally extensive transverse myelitis). NMO-typical lesions are distinct from MS-typical lesions. Aquaporin-4 is lost selectively at vasculocentric sites of edema/inflammation coinciding with focal deposits of immunoglobulins (Ig) G, M, and terminal complement products, with and without myelin loss. Evidence for antigen-specific autoantibody pathogenicity is lacking.
We used confocal microscopy and flow cytometry to evaluate the selectivity and immunopathological consequences of Ig binding to surface epitopes of living target cells expressing aquaporin-4 fused at its cytoplasmic N-terminus with GFP. We tested serum, IgG-enriched and IgG-depleted serum fractions, and CSF from patients with NMO, neurologic control patients, and healthy subjects. We also analyzed aquaporin-4 immunoreactivity in myelinated adult mouse optic nerves and spinal cord, and plasma cell Ig isotypes in archived brain tissue from an NMO patient.
Serum IgG from patients with NMO binds to the extracellular domain of aquaporin-4; it is predominantly IgG(1), and it initiates two potentially competing outcomes, aquaporin-4 endocytosis/degradation and complement activation. Serum and CSF lack aquaporin-4-specific IgM, and plasma cells in CNS lesions of NMO contain only IgG. Paranodal astrocytic endfeet highly express aquaporin-4.
NMO patients' serum IgG has a selective pathologic effect on cell membranes expressing aquaporin-4. IgG targeting astrocytic processes around nodes of Ranvier could initiate demyelination. |
|---|---|
| AbstractList | Autoantibody specific for the aquaporin-4 astrocytic water channel is restricted to serum and CSF of patients with neuromyelitis optica (NMO) and related CNS inflammatory demyelinating disorders (relapsing optic neuritis and longitudinally extensive transverse myelitis). NMO-typical lesions are distinct from MS-typical lesions. Aquaporin-4 is lost selectively at vasculocentric sites of edema/inflammation coinciding with focal deposits of immunoglobulins (Ig) G, M, and terminal complement products, with and without myelin loss. Evidence for antigen-specific autoantibody pathogenicity is lacking.BACKGROUNDAutoantibody specific for the aquaporin-4 astrocytic water channel is restricted to serum and CSF of patients with neuromyelitis optica (NMO) and related CNS inflammatory demyelinating disorders (relapsing optic neuritis and longitudinally extensive transverse myelitis). NMO-typical lesions are distinct from MS-typical lesions. Aquaporin-4 is lost selectively at vasculocentric sites of edema/inflammation coinciding with focal deposits of immunoglobulins (Ig) G, M, and terminal complement products, with and without myelin loss. Evidence for antigen-specific autoantibody pathogenicity is lacking.We used confocal microscopy and flow cytometry to evaluate the selectivity and immunopathological consequences of Ig binding to surface epitopes of living target cells expressing aquaporin-4 fused at its cytoplasmic N-terminus with GFP. We tested serum, IgG-enriched and IgG-depleted serum fractions, and CSF from patients with NMO, neurologic control patients, and healthy subjects. We also analyzed aquaporin-4 immunoreactivity in myelinated adult mouse optic nerves and spinal cord, and plasma cell Ig isotypes in archived brain tissue from an NMO patient.METHODSWe used confocal microscopy and flow cytometry to evaluate the selectivity and immunopathological consequences of Ig binding to surface epitopes of living target cells expressing aquaporin-4 fused at its cytoplasmic N-terminus with GFP. We tested serum, IgG-enriched and IgG-depleted serum fractions, and CSF from patients with NMO, neurologic control patients, and healthy subjects. We also analyzed aquaporin-4 immunoreactivity in myelinated adult mouse optic nerves and spinal cord, and plasma cell Ig isotypes in archived brain tissue from an NMO patient.Serum IgG from patients with NMO binds to the extracellular domain of aquaporin-4; it is predominantly IgG(1), and it initiates two potentially competing outcomes, aquaporin-4 endocytosis/degradation and complement activation. Serum and CSF lack aquaporin-4-specific IgM, and plasma cells in CNS lesions of NMO contain only IgG. Paranodal astrocytic endfeet highly express aquaporin-4.RESULTSSerum IgG from patients with NMO binds to the extracellular domain of aquaporin-4; it is predominantly IgG(1), and it initiates two potentially competing outcomes, aquaporin-4 endocytosis/degradation and complement activation. Serum and CSF lack aquaporin-4-specific IgM, and plasma cells in CNS lesions of NMO contain only IgG. Paranodal astrocytic endfeet highly express aquaporin-4.NMO patients' serum IgG has a selective pathologic effect on cell membranes expressing aquaporin-4. IgG targeting astrocytic processes around nodes of Ranvier could initiate demyelination.CONCLUSIONSNMO patients' serum IgG has a selective pathologic effect on cell membranes expressing aquaporin-4. IgG targeting astrocytic processes around nodes of Ranvier could initiate demyelination. Autoantibody specific for the aquaporin-4 astrocytic water channel is restricted to serum and CSF of patients with neuromyelitis optica (NMO) and related CNS inflammatory demyelinating disorders (relapsing optic neuritis and longitudinally extensive transverse myelitis). NMO-typical lesions are distinct from MS-typical lesions. Aquaporin-4 is lost selectively at vasculocentric sites of edema/inflammation coinciding with focal deposits of immunoglobulins (Ig) G, M, and terminal complement products, with and without myelin loss. Evidence for antigen-specific autoantibody pathogenicity is lacking. We used confocal microscopy and flow cytometry to evaluate the selectivity and immunopathological consequences of Ig binding to surface epitopes of living target cells expressing aquaporin-4 fused at its cytoplasmic N-terminus with GFP. We tested serum, IgG-enriched and IgG-depleted serum fractions, and CSF from patients with NMO, neurologic control patients, and healthy subjects. We also analyzed aquaporin-4 immunoreactivity in myelinated adult mouse optic nerves and spinal cord, and plasma cell Ig isotypes in archived brain tissue from an NMO patient. Serum IgG from patients with NMO binds to the extracellular domain of aquaporin-4; it is predominantly IgG(1), and it initiates two potentially competing outcomes, aquaporin-4 endocytosis/degradation and complement activation. Serum and CSF lack aquaporin-4-specific IgM, and plasma cells in CNS lesions of NMO contain only IgG. Paranodal astrocytic endfeet highly express aquaporin-4. NMO patients' serum IgG has a selective pathologic effect on cell membranes expressing aquaporin-4. IgG targeting astrocytic processes around nodes of Ranvier could initiate demyelination. |
| Author | Roemer, S F Pittock, S J Kryzer, T J Lennon, V A Hinson, S R Fryer, J P Lucchinetti, C F |
| Author_xml | – sequence: 1 givenname: S R surname: Hinson fullname: Hinson, S R organization: Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA – sequence: 2 givenname: S J surname: Pittock fullname: Pittock, S J – sequence: 3 givenname: C F surname: Lucchinetti fullname: Lucchinetti, C F – sequence: 4 givenname: S F surname: Roemer fullname: Roemer, S F – sequence: 5 givenname: J P surname: Fryer fullname: Fryer, J P – sequence: 6 givenname: T J surname: Kryzer fullname: Kryzer, T J – sequence: 7 givenname: V A surname: Lennon fullname: Lennon, V A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17928579$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUE1LxDAQDbLifuhfkODBW2uSNmlzlEXXhQU9KHgrk3a6G2mTtU1Z999bcQWHGd7j8RjezJxMnHdIyA1nMRdc3DEeH1wTs7FErjPFY5XmSsQlnpEZl0JFKhHvk398SuZ9_8HYKGT6gkx5pkUuMz0j8AJh57fobEn3PqALFhrqa7rerqixrrJuS4OnBwjY0XIHzmFD8St0UGLTDA10tPItWEfHdjh0vj1iY4Ptqd8HW8IlOa-h6fHqhAvy9vjwunyKNs-r9fJ-E5VpmoaIS5nUWZWi5HwcprGqJCYsBamlBmYMGlA1JFWuDGgcL-aZUbqqDeQahViQ29-9-85_DtiHorX9T0Zw6Ie-UJpJxVQ6Gq9PxsG0WBX7zrbQHYu_p4hvL75qvQ |
| CitedBy_id | crossref_primary_10_1002_ana_22121 crossref_primary_10_1093_brain_awab394 crossref_primary_10_1212_NXI_0000000000000134 crossref_primary_10_1016_S1474_4422_13_70076_0 crossref_primary_10_1038_s41582_021_00568_8 crossref_primary_10_1016_j_jaut_2012_07_008 crossref_primary_10_1177_1352458508100837 crossref_primary_10_1111_j_1468_1331_2009_02897_x crossref_primary_10_1172_JCI134816 crossref_primary_10_1016_j_neuroscience_2009_08_019 crossref_primary_10_1111_bpa_12084 crossref_primary_10_1016_j_jocn_2017_10_030 crossref_primary_10_1074_jbc_M111_297275 crossref_primary_10_1073_pnas_1119288109 crossref_primary_10_1016_j_mam_2012_03_003 crossref_primary_10_1016_j_msard_2020_102277 crossref_primary_10_3389_fneur_2020_00389 crossref_primary_10_1007_s13311_022_01206_x crossref_primary_10_1016_j_jns_2012_06_002 crossref_primary_10_1111_bpa_12085 crossref_primary_10_1016_j_nrleng_2012_03_014 crossref_primary_10_1002_glia_22575 crossref_primary_10_1177_1352458510377908 crossref_primary_10_3389_fneur_2025_1559172 crossref_primary_10_1016_j_bbrc_2016_07_098 crossref_primary_10_1038_aps_2011_27 crossref_primary_10_1111_cei_12258 crossref_primary_10_1212_WNL_0b013e31825644ff crossref_primary_10_1172_JCI122942 crossref_primary_10_1159_000444530 crossref_primary_10_1038_ncpneuro0764 crossref_primary_10_1212_NXI_0000000000000121 crossref_primary_10_3390_jcm9113604 crossref_primary_10_1002_ana_21838 crossref_primary_10_1002_cmdc_201500546 crossref_primary_10_1016_j_ncl_2017_08_002 crossref_primary_10_1155_2012_460825 crossref_primary_10_12677_JPS_2014_24004 crossref_primary_10_1002_ana_21837 crossref_primary_10_1016_j_jns_2023_120825 crossref_primary_10_1007_s12035_024_04085_9 crossref_primary_10_2174_1381612829666230330090953 crossref_primary_10_1016_S1474_4422_12_70133_3 crossref_primary_10_1002_glia_22443 crossref_primary_10_1038_nrneurol_2010_72 crossref_primary_10_1016_j_jaut_2011_01_004 crossref_primary_10_3389_fimmu_2025_1665688 crossref_primary_10_1016_j_exer_2013_12_010 crossref_primary_10_1016_j_jneuroim_2020_577407 crossref_primary_10_1186_1742_2094_8_184 crossref_primary_10_1016_j_jneuroim_2014_07_001 crossref_primary_10_1016_j_ncl_2011_09_013 crossref_primary_10_1111_cns_14780 crossref_primary_10_1016_j_nic_2008_06_003 crossref_primary_10_1074_jbc_M114_582221 crossref_primary_10_1016_j_jaut_2016_11_005 crossref_primary_10_1007_s13311_012_0164_3 crossref_primary_10_1007_s13167_017_0123_5 crossref_primary_10_1016_j_biocel_2012_06_013 crossref_primary_10_1093_brain_awq177 crossref_primary_10_1097_WCO_0000000000000956 crossref_primary_10_1177_1352458511403958 crossref_primary_10_1111_nyas_12553 crossref_primary_10_1136_jnnp_2018_318556 crossref_primary_10_1002_cne_25118 crossref_primary_10_1016_j_jns_2010_07_011 crossref_primary_10_1111_nyas_12794 crossref_primary_10_1038_s41572_020_0214_9 crossref_primary_10_1097_WNO_0000000000000102 crossref_primary_10_1186_s12974_014_0206_3 crossref_primary_10_1007_s40259_020_00460_9 crossref_primary_10_1212_CON_0000000000000337 crossref_primary_10_1074_jbc_M111_227298 crossref_primary_10_3389_fimmu_2021_616301 crossref_primary_10_1111_cei_12271 crossref_primary_10_1212_NXI_0000000000200059 crossref_primary_10_1073_pnas_1109980108 crossref_primary_10_1016_j_jneuroim_2021_577581 crossref_primary_10_1007_s12035_021_02491_x crossref_primary_10_1136_jnnp_2012_302310 crossref_primary_10_1016_j_jns_2009_02_371 crossref_primary_10_3390_pathogens10050596 crossref_primary_10_1155_2016_4626593 crossref_primary_10_1177_1352458516669002 crossref_primary_10_1073_pnas_1204361109 crossref_primary_10_1111_j_1440_1789_2008_00915_x crossref_primary_10_1016_j_lfs_2020_118217 crossref_primary_10_1016_j_neurol_2008_08_005 crossref_primary_10_1177_1352458510382324 crossref_primary_10_1016_j_jneuroim_2013_03_008 crossref_primary_10_1177_1352458511431077 crossref_primary_10_1186_1742_2094_5_22 crossref_primary_10_1002_ar_23055 crossref_primary_10_1212_NXI_0000000000200340 crossref_primary_10_1371_journal_pone_0079185 crossref_primary_10_1016_j_bbrc_2009_06_085 crossref_primary_10_3389_fimmu_2022_1113406 crossref_primary_10_3390_ijms25158169 crossref_primary_10_1007_s00415_008_6013_y crossref_primary_10_1016_j_jneuroim_2011_03_007 crossref_primary_10_1016_j_jneuroim_2013_03_003 crossref_primary_10_1111_j_1468_1331_2008_02376_x crossref_primary_10_1212_WNL_0000000000003019 crossref_primary_10_1177_1352458508092811 crossref_primary_10_1016_j_jneuroim_2010_07_016 crossref_primary_10_3390_ijms131012970 crossref_primary_10_1016_j_msard_2019_04_008 crossref_primary_10_1111_j_1759_1961_2010_00011_x crossref_primary_10_1007_s40265_018_1039_7 crossref_primary_10_2217_imt_2020_0163 crossref_primary_10_1371_journal_pone_0143679 crossref_primary_10_1212_WNL_0b013e3181e2414b crossref_primary_10_1080_1744666X_2023_2151441 crossref_primary_10_1097_WCO_0000000000000093 crossref_primary_10_1177_1352458509103301 crossref_primary_10_1007_s10875_012_9796_7 crossref_primary_10_1212_NXI_0000000000000727 crossref_primary_10_4049_jimmunol_1301483 crossref_primary_10_1212_01_wnl_0000343001_36493_ae crossref_primary_10_1212_WNL_0000000000213903 crossref_primary_10_1038_nrneurol_2014_141 crossref_primary_10_1002_ana_22686 crossref_primary_10_1007_s00415_013_7019_7 crossref_primary_10_1016_j_yexcr_2024_114375 crossref_primary_10_1186_s12969_024_01045_4 crossref_primary_10_1080_14712598_2025_2491603 crossref_primary_10_1074_jbc_M112_408716 crossref_primary_10_1002_ana_26943 crossref_primary_10_1007_s00415_024_12452_8 crossref_primary_10_1007_s00415_017_8590_0 crossref_primary_10_1096_fj_11_201608 crossref_primary_10_1016_j_rdc_2017_06_007 crossref_primary_10_1016_j_jns_2011_01_002 crossref_primary_10_1111_febs_16717 crossref_primary_10_1212_WNL_0b013e318229e694 crossref_primary_10_1016_j_resinv_2022_06_008 crossref_primary_10_1038_nrneurol_2014_129 crossref_primary_10_1016_j_msard_2012_06_002 crossref_primary_10_1111_j_1749_6632_2009_04871_x crossref_primary_10_1371_journal_pone_0106824 crossref_primary_10_1002_ana_21802 crossref_primary_10_1186_s12891_019_2673_2 crossref_primary_10_1212_CON_0000000000000487 crossref_primary_10_1097_NEN_0000000000000173 crossref_primary_10_1084_jem_20081241 crossref_primary_10_1007_s42485_020_00036_9 crossref_primary_10_1016_j_neuron_2024_12_006 crossref_primary_10_1074_jbc_M109_071670 crossref_primary_10_1016_j_jneuroim_2008_03_009 crossref_primary_10_1016_S1474_4422_13_70089_9 crossref_primary_10_1007_s12026_018_9046_z crossref_primary_10_1016_j_msard_2019_01_036 crossref_primary_10_1111_cen3_70019 crossref_primary_10_1016_j_neurol_2018_01_373 crossref_primary_10_1038_nri2529 crossref_primary_10_1002_glia_22635 crossref_primary_10_1111_nyas_12118 crossref_primary_10_1016_j_jns_2009_07_002 crossref_primary_10_1155_2012_969657 crossref_primary_10_1007_s00415_010_5499_2 crossref_primary_10_1097_WNO_0b013e31823c9b6c crossref_primary_10_1007_s00415_019_09180_9 crossref_primary_10_3389_fimmu_2021_686466 crossref_primary_10_1016_j_jns_2013_05_035 crossref_primary_10_1007_s10633_012_9325_2 crossref_primary_10_1111_jnc_14271 crossref_primary_10_1177_0333102411434167 crossref_primary_10_4049_jimmunol_1801295 crossref_primary_10_1016_j_neulet_2012_03_075 crossref_primary_10_1111_bpa_12134 crossref_primary_10_1186_s43166_020_00018_1 crossref_primary_10_1136_jnnp_2017_316286 crossref_primary_10_1002_mus_21197 crossref_primary_10_3390_brainsci7070070 crossref_primary_10_3389_fneur_2021_816721 crossref_primary_10_1186_1742_2094_11_16 crossref_primary_10_3389_fimmu_2021_692051 crossref_primary_10_4103_ijo_IJO_3415_20 crossref_primary_10_1016_S2173_5808_10_70002_X crossref_primary_10_1016_j_jneuroim_2012_02_001 crossref_primary_10_1111_j_1600_065X_2012_01144_x crossref_primary_10_7759_cureus_56094 crossref_primary_10_1007_s11910_008_0066_2 crossref_primary_10_3389_fnagi_2024_1394738 crossref_primary_10_1016_j_jneuroim_2018_02_013 crossref_primary_10_1016_j_lssr_2025_05_006 crossref_primary_10_1002_jnr_22822 crossref_primary_10_1097_WNO_0b013e31825662f1 crossref_primary_10_1177_1352458510374340 crossref_primary_10_1038_nrd4226 crossref_primary_10_3390_jcto1020008 crossref_primary_10_1097_WNR_0b013e32832776f4 crossref_primary_10_1371_journal_pone_0016083 crossref_primary_10_1007_s00401_011_0876_1 crossref_primary_10_1016_j_msard_2012_03_003 crossref_primary_10_1136_jnnp_2013_305907 crossref_primary_10_1016_j_autrev_2009_04_004 crossref_primary_10_1002_wmts_86 crossref_primary_10_3390_biomedicines7020042 crossref_primary_10_1016_j_jneuroim_2021_577790 crossref_primary_10_1093_brain_awv328 crossref_primary_10_3389_fnins_2023_1014071 crossref_primary_10_1016_j_jneuroim_2012_09_002 crossref_primary_10_1155_2011_780712 crossref_primary_10_1080_00207454_2022_2153046 crossref_primary_10_1212_WNL_0000000000006392 crossref_primary_10_7861_clinmedicine_19_2_169 crossref_primary_10_3389_fimmu_2024_1423107 crossref_primary_10_1586_14737175_2014_896199 crossref_primary_10_1177_0883073812451495 crossref_primary_10_1016_S1773_035X_08_71573_9 crossref_primary_10_1016_j_lpm_2009_06_022 crossref_primary_10_1186_s12865_015_0087_y crossref_primary_10_1212_WNL_0b013e3181ea9f15 crossref_primary_10_1038_nrneurol_2011_154 crossref_primary_10_1371_journal_pone_0122000 crossref_primary_10_1007_s00401_013_1220_8 crossref_primary_10_1097_WCO_0000000000000455 crossref_primary_10_1080_1744666X_2022_2105205 crossref_primary_10_1111_j_1759_1961_2012_00030_x crossref_primary_10_1146_annurev_pathol_011811_132443 crossref_primary_10_1007_s10072_013_1481_y crossref_primary_10_1097_WNO_0000000000000404 crossref_primary_10_1146_annurev_immunol_020711_075041 crossref_primary_10_1074_jbc_M112_344325 crossref_primary_10_3389_fphar_2020_588757 crossref_primary_10_1212_NXI_0000000000000313 crossref_primary_10_1016_j_jneuroim_2016_06_002 crossref_primary_10_1177_20552173241257876 crossref_primary_10_1212_NXI_0000000000000311 crossref_primary_10_1007_s10875_010_9401_x crossref_primary_10_1212_NXI_0000000000000438 crossref_primary_10_1177_1352458515571446 crossref_primary_10_1212_WNL_0b013e318248dec1 crossref_primary_10_1016_j_neuint_2018_10_012 crossref_primary_10_1089_mab_2013_0007 crossref_primary_10_2174_1381612827666210329101335 crossref_primary_10_1016_j_bbapap_2014_02_023 crossref_primary_10_1177_1352458519887905 crossref_primary_10_1002_ana_22657 crossref_primary_10_1007_s10792_019_01090_z crossref_primary_10_1212_WNL_0b013e318214332c crossref_primary_10_1016_j_jaut_2009_09_013 crossref_primary_10_1007_s12264_020_00525_3 crossref_primary_10_1002_ana_22551 crossref_primary_10_1007_s13311_022_01223_w crossref_primary_10_1016_j_brainresbull_2017_02_011 crossref_primary_10_1016_j_jns_2011_02_018 crossref_primary_10_1111_cen3_12394 crossref_primary_10_1016_j_autrev_2011_05_018 crossref_primary_10_1080_14737175_2020_1764352 crossref_primary_10_1186_2051_5960_2_35 crossref_primary_10_1007_s00415_010_5553_0 crossref_primary_10_1016_j_clineuro_2019_105621 crossref_primary_10_3390_ijms21145021 crossref_primary_10_3389_fneur_2019_00608 crossref_primary_10_1007_s00401_013_1204_8 crossref_primary_10_1016_S1474_4422_10_70253_2 crossref_primary_10_1007_s12640_021_00373_7 crossref_primary_10_1177_1352458508099139 crossref_primary_10_1016_j_neurol_2018_02_084 crossref_primary_10_3389_fmed_2021_743798 crossref_primary_10_3390_biom12040591 crossref_primary_10_1186_s12974_020_01913_2 crossref_primary_10_1155_2012_787630 crossref_primary_10_4049_jimmunol_1600135 crossref_primary_10_1155_2012_862169 crossref_primary_10_1111_nan_12574 crossref_primary_10_1002_glia_21177 crossref_primary_10_1212_NXI_0000000000000334 crossref_primary_10_1080_14712598_2021_1884223 crossref_primary_10_1007_s11064_009_9958_z crossref_primary_10_1212_01_wnl_0000313843_78606_cd crossref_primary_10_1212_WNL_0b013e3181dd445b crossref_primary_10_3390_jcm11030734 crossref_primary_10_1016_j_genrep_2021_101061 crossref_primary_10_1007_s00401_013_1116_7 crossref_primary_10_1515_CCLM_2010_127 crossref_primary_10_1007_s00330_019_06506_z crossref_primary_10_4103_0028_3886_349679 crossref_primary_10_1002_mus_24298 crossref_primary_10_1016_j_chroma_2024_464701 crossref_primary_10_1212_WNL_0b013e31822f045b crossref_primary_10_1093_brain_awn240 crossref_primary_10_3390_ijms242216420 crossref_primary_10_1186_2051_5960_1_40 crossref_primary_10_3390_ijms23147908 crossref_primary_10_1134_S1819712420010171 crossref_primary_10_1155_2021_8692328 crossref_primary_10_1097_MD_0000000000001320 crossref_primary_10_1016_j_jneuroim_2021_577750 crossref_primary_10_1007_s00401_013_1128_3 crossref_primary_10_1007_s10384_018_0607_4 crossref_primary_10_1179_2045772313Y_0000000148 crossref_primary_10_1016_j_neurol_2020_07_019 crossref_primary_10_1080_14728222_2023_2240017 crossref_primary_10_1212_NXI_0000000000000561 crossref_primary_10_1093_jnen_nly121 crossref_primary_10_1186_s40478_015_0259_2 crossref_primary_10_1097_ICU_0b013e3283313d1d crossref_primary_10_1186_s12974_016_0642_3 crossref_primary_10_1016_j_autrev_2020_102727 crossref_primary_10_1093_brain_awp309 crossref_primary_10_1073_pnas_1701960114 crossref_primary_10_1097_ICU_0000000000000202 crossref_primary_10_1016_j_jneuroim_2021_577752 crossref_primary_10_1016_j_jns_2008_08_015 crossref_primary_10_1111_j_1600_065X_2012_01128_x crossref_primary_10_1007_s00401_012_0986_4 crossref_primary_10_3389_fncel_2016_00140 crossref_primary_10_1016_j_jns_2010_01_002 crossref_primary_10_1186_s12974_021_02249_1 crossref_primary_10_1007_s13311_015_0400_8 crossref_primary_10_1080_14737175_2025_2548947 crossref_primary_10_4049_jimmunol_181_8_5730 crossref_primary_10_1007_s11940_015_0378_x crossref_primary_10_1016_j_molimm_2013_09_010 crossref_primary_10_1016_j_neuropharm_2017_04_046 crossref_primary_10_1016_j_ymthe_2025_08_048 crossref_primary_10_1021_jacs_6b02954 crossref_primary_10_1007_s00415_016_8345_3 crossref_primary_10_1186_1471_2377_13_72 crossref_primary_10_1007_s00415_009_5274_4 crossref_primary_10_1177_1756285610382478 crossref_primary_10_3390_ijms17122050 crossref_primary_10_1016_j_jneuroim_2010_10_012 crossref_primary_10_1016_j_jneuroim_2017_07_006 crossref_primary_10_1111_j_1750_3639_2009_00365_x crossref_primary_10_1007_s00281_009_0178_z crossref_primary_10_1016_j_neuroscience_2009_08_032 crossref_primary_10_1038_nm_3407 crossref_primary_10_1007_s00330_023_10529_y crossref_primary_10_1038_s41583_019_0233_2 crossref_primary_10_1007_s11910_023_01287_x crossref_primary_10_1186_s12974_016_0577_8 crossref_primary_10_3390_cells8020090 crossref_primary_10_1093_glycob_cwab053 crossref_primary_10_1002_glia_20855 crossref_primary_10_1007_s40120_021_00298_5 crossref_primary_10_3389_fimmu_2018_01438 crossref_primary_10_1002_cti2_1316 crossref_primary_10_1212_01_wnl_0000314832_24682_c6 crossref_primary_10_3390_molecules28031412 crossref_primary_10_1007_s00415_013_6997_9 crossref_primary_10_1177_0961203312467669 crossref_primary_10_1007_s00415_025_13137_6 crossref_primary_10_4049_jimmunol_1200486 crossref_primary_10_1016_j_jneuroim_2011_01_007 crossref_primary_10_1111_cen3_12229 crossref_primary_10_1186_1471_2377_14_51 crossref_primary_10_1073_pnas_1017385108 crossref_primary_10_1186_1742_2094_7_52 crossref_primary_10_1111_cen3_12103 crossref_primary_10_1186_s12974_022_02661_1 crossref_primary_10_1111_j_1759_1961_2012_00031_x crossref_primary_10_1111_bpa_12099 crossref_primary_10_1007_s12264_015_1552_6 crossref_primary_10_1007_s12264_023_01166_y crossref_primary_10_1111_cei_12197 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1212/01.wnl.0000289761.64862.ce |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1526-632X |
| ExternalDocumentID | 17928579 |
| Genre | Journal Article Comparative Study |
| GroupedDBID | --- -~X .55 .XZ .Z2 01R 0R~ 123 1J1 1KJ 354 3PY 4Q1 4Q2 4Q3 53G 5RE 5VS 6PF 77Y AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAWTL AAXQO AAYEP AAYOK ABBLC ABIVO ABJNI ABOCM ABVCZ ABXYN ABZZY ACCJW ACDDN ACGFS ACIJW ACILI ACLDA ACOAL ACWRI ACXJB ACZKN ADGGA ADNKB AE6 AEBDS AENEX AFDTB AFEXH AFFNX AFNMH AFUWQ AGINI AHOMT AHQNM AHQVU AHVBC AIJEX AJCLO AKCTQ AKULP AKWKN ALMA_UNASSIGNED_HOLDINGS AMJPA AMKUR AMNEI AOHHW BOYCO BQLVK BYPQX C45 CGR CS3 CUY CVF DIWNM DU5 E.X EBS ECM EIF EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FW0 GQDEL HZ~ H~9 IKYAY IN~ J5H JF7 KD2 KMI L-C L7B N9A NEJ NPM N~7 N~B O9- OAG OAH OBH ODMTH OHH OHYEH OL1 OLB OLH OLU OLV OLY OLZ OPX OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P2P RLZ RXW SJN TEORI V2I VVN W3M WH7 WOQ WOW X7M XJT XOL XSW XXN XYM XYN YBU YCJ YFH ZKB ~9M 7X8 ABPXF ADKSD ADSXY |
| ID | FETCH-LOGICAL-c444t-1553f7d4e511e5109edd5e304a5959a0bbeba6fa3d86ba9e48617b69dfba89e22 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 405 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000251542000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1526-632X |
| IngestDate | Thu Oct 02 10:18:44 EDT 2025 Thu Apr 03 07:12:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c444t-1553f7d4e511e5109edd5e304a5959a0bbeba6fa3d86ba9e48617b69dfba89e22 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PMID | 17928579 |
| PQID | 69056064 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_69056064 pubmed_primary_17928579 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-12-11 |
| PublicationDateYYYYMMDD | 2007-12-11 |
| PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-11 day: 11 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neurology |
| PublicationTitleAlternate | Neurology |
| PublicationYear | 2007 |
| SSID | ssj0015279 |
| Score | 2.4495862 |
| Snippet | Autoantibody specific for the aquaporin-4 astrocytic water channel is restricted to serum and CSF of patients with neuromyelitis optica (NMO) and related CNS... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2221 |
| SubjectTerms | Animals Aquaporin 4 - immunology Aquaporin 4 - metabolism Binding Sites, Antibody Cell Line Endocytosis - immunology Extracellular Fluid - immunology Extracellular Fluid - metabolism Humans Immunoglobulin G - metabolism Mice Neuromyelitis Optica - immunology Neuromyelitis Optica - metabolism Neuromyelitis Optica - pathology Protein Binding - immunology |
| Title | Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/17928579 https://www.proquest.com/docview/69056064 |
| Volume | 69 |
| WOSCitedRecordID | wos000251542000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA7VinhxX-qag9e0s2SWgCAiVoW29OAytyGZJFKwk7Gtiv_el3SKJ_EgzEwuMxAe37z35a0InUcaSEFCPcLBVhEKnJUw5UdEitSTLE4od9nuT71kMEizjA0b6GJRC2PTKhc60SlqaQrrI-_AKQ6Mc0wvqzdiZ0bZ2Go9QGMJNUMgMhbTSfYTQ4gC12kP1pjEYZDVLUdBV3c8v_086LnehXDggJN8O6ZA7duF-p1oOoPT3fjfVjfRek008dUcGVuoocpttNqvQ-k7iA-B-xmAz6jAlZnZpCF43Wh8_3KLxcgVu-CZwZ9ARifY1geX6hWDKp9w6-y32atYmjEflRgu1xZz_KVsMt0Um8p6yHfRY_fm4fqO1PMWSEEpnRE7QkgnkiogYXB7TEkZqdCjPGIR454QSvBY81CmseBMgcj8RMRMasFTpoJgDy2XplQHCGsmeEgLloQcKJpWjKaejgpARuoFOqUtdLYQXQ54tvvmpTLv03whvBban0s_r-ZtN3JQHUEaJezwz2-P0JpzwfoB8f1j1NTwJ6sTtFJ8gAwmpw4m8BwM-99s_sch |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathogenic+potential+of+IgG+binding+to+water+channel+extracellular+domain+in+neuromyelitis+optica&rft.jtitle=Neurology&rft.au=Hinson%2C+S+R&rft.au=Pittock%2C+S+J&rft.au=Lucchinetti%2C+C+F&rft.au=Roemer%2C+S+F&rft.date=2007-12-11&rft.issn=1526-632X&rft.eissn=1526-632X&rft.volume=69&rft.issue=24&rft.spage=2221&rft_id=info:doi/10.1212%2F01.WNL.0000289761.64862.ce&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-632X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-632X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-632X&client=summon |