Effect of subject‐specific head morphometry on specific absorption rate estimates in parallel‐transmit MRI at 7 T

Purpose To assess the accuracy of morphing an established reference electromagnetic head model to a subject‐specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel‐transmit (pTx) MRI. Methods Synthetic T1‐weighted MR images were created from three high‐resolution ope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 89; H. 6; S. 2376 - 2390
Hauptverfasser: Jeong, Hongbae, Andersson, Jesper, Hess, Aaron, Jezzard, Peter
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.06.2023
John Wiley and Sons Inc
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose To assess the accuracy of morphing an established reference electromagnetic head model to a subject‐specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel‐transmit (pTx) MRI. Methods Synthetic T1‐weighted MR images were created from three high‐resolution open‐source electromagnetic head voxel models. The accuracy of morphing a “reference” (multimodal image‐based detailed anatomical [MIDA]) electromagnetic model into a different subject's native space (Duke and Ella) was compared. Both linear and nonlinear registration methods were evaluated. Maximum 10‐g averaged SAR was estimated for circularly polarized mode and for 5000 random RF shim sets in an eight‐channel transmit head coil, and comparison made between the morphed MIDA electromagnetic models and the native Duke and Ella electromagnetic models, respectively. Results The averaged error in maximum 10‐g averaged SAR estimation across pTx MRI shim sets between the MIDA and the Duke target model was reduced from 17.5% with only rigid‐body registration, to 11.8% when affine linear registration was used, and further reduced to 10.7% when nonlinear registration was used. The corresponding figures for the Ella model were 16.7%, 11.2%, and 10.1%. Conclusion We found that morphometry accounts for up to half of the subject‐specific differences in pTx SAR. Both linear and nonlinear morphing of an electromagnetic model into a target subject improved SAR agreement by better matching head size, morphometry, and position. However, differences remained, likely arising from details in tissue composition estimation. Thus, the uncertainty of the head morphometry and tissue composition may need to be considered separately to achieve personalized SAR estimation.
AbstractList Click here for author‐reader discussions
PurposeTo assess the accuracy of morphing an established reference electromagnetic head model to a subject‐specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel‐transmit (pTx) MRI.MethodsSynthetic T1‐weighted MR images were created from three high‐resolution open‐source electromagnetic head voxel models. The accuracy of morphing a “reference” (multimodal image‐based detailed anatomical [MIDA]) electromagnetic model into a different subject's native space (Duke and Ella) was compared. Both linear and nonlinear registration methods were evaluated. Maximum 10‐g averaged SAR was estimated for circularly polarized mode and for 5000 random RF shim sets in an eight‐channel transmit head coil, and comparison made between the morphed MIDA electromagnetic models and the native Duke and Ella electromagnetic models, respectively.ResultsThe averaged error in maximum 10‐g averaged SAR estimation across pTx MRI shim sets between the MIDA and the Duke target model was reduced from 17.5% with only rigid‐body registration, to 11.8% when affine linear registration was used, and further reduced to 10.7% when nonlinear registration was used. The corresponding figures for the Ella model were 16.7%, 11.2%, and 10.1%.ConclusionWe found that morphometry accounts for up to half of the subject‐specific differences in pTx SAR. Both linear and nonlinear morphing of an electromagnetic model into a target subject improved SAR agreement by better matching head size, morphometry, and position. However, differences remained, likely arising from details in tissue composition estimation. Thus, the uncertainty of the head morphometry and tissue composition may need to be considered separately to achieve personalized SAR estimation.
Click here for author‐reader discussions
Purpose To assess the accuracy of morphing an established reference electromagnetic head model to a subject‐specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel‐transmit (pTx) MRI. Methods Synthetic T1‐weighted MR images were created from three high‐resolution open‐source electromagnetic head voxel models. The accuracy of morphing a “reference” (multimodal image‐based detailed anatomical [MIDA]) electromagnetic model into a different subject's native space (Duke and Ella) was compared. Both linear and nonlinear registration methods were evaluated. Maximum 10‐g averaged SAR was estimated for circularly polarized mode and for 5000 random RF shim sets in an eight‐channel transmit head coil, and comparison made between the morphed MIDA electromagnetic models and the native Duke and Ella electromagnetic models, respectively. Results The averaged error in maximum 10‐g averaged SAR estimation across pTx MRI shim sets between the MIDA and the Duke target model was reduced from 17.5% with only rigid‐body registration, to 11.8% when affine linear registration was used, and further reduced to 10.7% when nonlinear registration was used. The corresponding figures for the Ella model were 16.7%, 11.2%, and 10.1%. Conclusion We found that morphometry accounts for up to half of the subject‐specific differences in pTx SAR. Both linear and nonlinear morphing of an electromagnetic model into a target subject improved SAR agreement by better matching head size, morphometry, and position. However, differences remained, likely arising from details in tissue composition estimation. Thus, the uncertainty of the head morphometry and tissue composition may need to be considered separately to achieve personalized SAR estimation.
To assess the accuracy of morphing an established reference electromagnetic head model to a subject-specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel-transmit (pTx) MRI. Synthetic T -weighted MR images were created from three high-resolution open-source electromagnetic head voxel models. The accuracy of morphing a "reference" (multimodal image-based detailed anatomical [MIDA]) electromagnetic model into a different subject's native space (Duke and Ella) was compared. Both linear and nonlinear registration methods were evaluated. Maximum 10-g averaged SAR was estimated for circularly polarized mode and for 5000 random RF shim sets in an eight-channel transmit head coil, and comparison made between the morphed MIDA electromagnetic models and the native Duke and Ella electromagnetic models, respectively. The averaged error in maximum 10-g averaged SAR estimation across pTx MRI shim sets between the MIDA and the Duke target model was reduced from 17.5% with only rigid-body registration, to 11.8% when affine linear registration was used, and further reduced to 10.7% when nonlinear registration was used. The corresponding figures for the Ella model were 16.7%, 11.2%, and 10.1%. We found that morphometry accounts for up to half of the subject-specific differences in pTx SAR. Both linear and nonlinear morphing of an electromagnetic model into a target subject improved SAR agreement by better matching head size, morphometry, and position. However, differences remained, likely arising from details in tissue composition estimation. Thus, the uncertainty of the head morphometry and tissue composition may need to be considered separately to achieve personalized SAR estimation.
To assess the accuracy of morphing an established reference electromagnetic head model to a subject-specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel-transmit (pTx) MRI.PURPOSETo assess the accuracy of morphing an established reference electromagnetic head model to a subject-specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel-transmit (pTx) MRI.Synthetic T1 -weighted MR images were created from three high-resolution open-source electromagnetic head voxel models. The accuracy of morphing a "reference" (multimodal image-based detailed anatomical [MIDA]) electromagnetic model into a different subject's native space (Duke and Ella) was compared. Both linear and nonlinear registration methods were evaluated. Maximum 10-g averaged SAR was estimated for circularly polarized mode and for 5000 random RF shim sets in an eight-channel transmit head coil, and comparison made between the morphed MIDA electromagnetic models and the native Duke and Ella electromagnetic models, respectively.METHODSSynthetic T1 -weighted MR images were created from three high-resolution open-source electromagnetic head voxel models. The accuracy of morphing a "reference" (multimodal image-based detailed anatomical [MIDA]) electromagnetic model into a different subject's native space (Duke and Ella) was compared. Both linear and nonlinear registration methods were evaluated. Maximum 10-g averaged SAR was estimated for circularly polarized mode and for 5000 random RF shim sets in an eight-channel transmit head coil, and comparison made between the morphed MIDA electromagnetic models and the native Duke and Ella electromagnetic models, respectively.The averaged error in maximum 10-g averaged SAR estimation across pTx MRI shim sets between the MIDA and the Duke target model was reduced from 17.5% with only rigid-body registration, to 11.8% when affine linear registration was used, and further reduced to 10.7% when nonlinear registration was used. The corresponding figures for the Ella model were 16.7%, 11.2%, and 10.1%.RESULTSThe averaged error in maximum 10-g averaged SAR estimation across pTx MRI shim sets between the MIDA and the Duke target model was reduced from 17.5% with only rigid-body registration, to 11.8% when affine linear registration was used, and further reduced to 10.7% when nonlinear registration was used. The corresponding figures for the Ella model were 16.7%, 11.2%, and 10.1%.We found that morphometry accounts for up to half of the subject-specific differences in pTx SAR. Both linear and nonlinear morphing of an electromagnetic model into a target subject improved SAR agreement by better matching head size, morphometry, and position. However, differences remained, likely arising from details in tissue composition estimation. Thus, the uncertainty of the head morphometry and tissue composition may need to be considered separately to achieve personalized SAR estimation.CONCLUSIONWe found that morphometry accounts for up to half of the subject-specific differences in pTx SAR. Both linear and nonlinear morphing of an electromagnetic model into a target subject improved SAR agreement by better matching head size, morphometry, and position. However, differences remained, likely arising from details in tissue composition estimation. Thus, the uncertainty of the head morphometry and tissue composition may need to be considered separately to achieve personalized SAR estimation.
Author Andersson, Jesper
Jeong, Hongbae
Jezzard, Peter
Hess, Aaron
AuthorAffiliation 3 Centre for Clinical Magnetic Resonance Research, Department of Cardiovascular Medicine University of Oxford Oxford UK
1 Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital Boston Massachusetts USA
4 British Heart Foundation Centre for Research Excellence Oxford UK
AuthorAffiliation_xml – name: 4 British Heart Foundation Centre for Research Excellence Oxford UK
– name: 1 Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
– name: 3 Centre for Clinical Magnetic Resonance Research, Department of Cardiovascular Medicine University of Oxford Oxford UK
– name: 2 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital Boston Massachusetts USA
Author_xml – sequence: 1
  givenname: Hongbae
  orcidid: 0000-0003-4908-2070
  surname: Jeong
  fullname: Jeong, Hongbae
  organization: Massachusetts General Hospital
– sequence: 2
  givenname: Jesper
  surname: Andersson
  fullname: Andersson, Jesper
  organization: University of Oxford
– sequence: 3
  givenname: Aaron
  orcidid: 0000-0002-9289-5619
  surname: Hess
  fullname: Hess, Aaron
  organization: British Heart Foundation Centre for Research Excellence
– sequence: 4
  givenname: Peter
  orcidid: 0000-0001-7912-2251
  surname: Jezzard
  fullname: Jezzard, Peter
  email: peter.jezzard@univ.ox.ac.uk
  organization: University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36656151$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAQhi1URLeFAy-ALHGBQ1o7seP1CaGqQKWukKq9W44zYb1K7GAnoL3xCDwjT8IsW1ZQCU4eeb759c_8Z-QkxACEPOfsgjNWXg5puCi1XOpHZMFlWRal1OKELJgSrKi4FqfkLOctY0xrJZ6Q06quZc0lX5D5uuvATTR2NM_NFssf377nEZzvvKMbsC0dYho3cYAp7WgM9Ni0TcbO5PEv2Qko5MkPWGTqAx1tsn0PPapNyYY8-Imu7m6onaii66fkcWf7DM_u33Oyfne9vvpQ3H58f3P19rZwQghdNI1sRVt3lYZOs7ZRaskVSLBatXYJZS0aJyT6bxUooRSXmkvEXclbKUR1Tt4cZMe5GaB1ENBLb8aEPtPOROvN353gN-ZT_GI403hGplDh1b1Cip9n3NAMPjvoexsgztmUqla81ktVIfryAbqNcwq4HlIaFXXN94Iv_rR09PI7EQReHwCXYs4JuiPCmdmnbTBt8yttZC8fsM5Pdp8IbuP7_0189T3s_i1tVnerw8RPO62_CA
CitedBy_id crossref_primary_10_1109_JTEHM_2025_3559693
Cites_doi 10.1002/mrm.26468
10.1109/TMTT.2017.2708707
10.1016/j.mri.2020.12.013
10.1093/jrr/rry024
10.1109/APS.2012.6348855
10.1002/mrm.20939
10.1038/s41598-020-59471-9
10.1002/mrm.1092
10.1097/00004032-200005000-00003
10.1088/0031-9155/59/18/5287
10.3390/brainsci10120974
10.1002/mrm.26261
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2012.02.018
10.1371/journal.pone.0124126
10.1002/mrm.22948
10.1016/S1470-2045(02)00818-5
10.1002/mrm.24907
10.1016/j.mri.2010.03.029
10.1002/mrm.28398
10.1088/0031-9155/57/24/8153
10.1002/mrm.24329
10.1002/mrm.26244
10.1109/TBME.2017.2725140
10.1016/j.neuroimage.2018.03.001
10.1371/journal.pone.0241682
10.3390/cancers13081867
10.1002/mrm.28467
10.1038/nn.4393
10.1007/s10334-020-00890-0
10.1038/s41598-017-05493-9
10.1002/mrm.25356
10.1002/mrm.28693
10.1002/mrm.22927
10.1016/S1361-8415(01)00036-6
10.1016/j.neuroimage.2020.116946
10.1002/mrm.25596
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.29589
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Biochemistry Abstracts 1


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Jeong et al
EISSN 1522-2594
EndPage 2390
ExternalDocumentID PMC10952207
36656151
10_1002_mrm_29589
MRM29589
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: BHF Center of Research Excellence, Oxford
  funderid: RE/13/1/30181
– fundername: NIHR Oxford Biomedical Research Center
– fundername: Dunhill Medical Trust
– fundername: Wellcome Trust
  funderid: 203139/Z/16/Z
– fundername: Wellcome Trust
  grantid: 203139/Z/16/Z
– fundername: British Heart Foundation
  grantid: RE/13/1/30181
– fundername: Department of Health
– fundername: BHF Center of Research Excellence, Oxford
  grantid: RE/13/1/30181
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4449-bb5d4d6f39ef90db77817e5ea97da8e264bc45fecd7e7477159156f3c21d5443
IEDL.DBID 24P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000917750900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Nov 04 02:06:07 EST 2025
Thu Jul 10 17:25:56 EDT 2025
Sat Nov 29 14:37:48 EST 2025
Mon Jul 21 05:23:08 EDT 2025
Tue Nov 18 22:45:30 EST 2025
Sat Nov 29 06:34:36 EST 2025
Wed Jan 22 16:21:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords RF transmit
nonlinear registration
parallel transmit
electromagnetic body models
SAR
MRI safety
Language English
License Attribution
2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4449-bb5d4d6f39ef90db77817e5ea97da8e264bc45fecd7e7477159156f3c21d5443
Notes Funding information
Wellcome Trust, Grant/Award Number: 203139/Z/16/Z; BHF Center of Research Excellence, Oxford, Grant/Award Number: RE/13/1/30181; Dunhill Medical Trust, NIHR Oxford Biomedical Research Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Wellcome Trust, Grant/Award Number: 203139/Z/16/Z; BHF Center of Research Excellence, Oxford, Grant/Award Number: RE/13/1/30181; Dunhill Medical Trust, NIHR Oxford Biomedical Research Center
Click here for author‐reader discussions
ORCID 0000-0003-4908-2070
0000-0002-9289-5619
0000-0001-7912-2251
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29589
PMID 36656151
PQID 2791099617
PQPubID 1016391
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10952207
proquest_miscellaneous_2767169873
proquest_journals_2791099617
pubmed_primary_36656151
crossref_primary_10_1002_mrm_29589
crossref_citationtrail_10_1002_mrm_29589
wiley_primary_10_1002_mrm_29589_MRM29589
PublicationCentury 2000
PublicationDate June 2023
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 7
2017; 64
2021; 86
2013; 69
2016; 19
2006; 56
2012
2010
2015; 73
2015; 10
2016; 75
2002; 3
2020; 10
2018; 66
2012; 57
2001; 45
2018; 174
2021; 13
2021; 16
2021; 34
2021; 77
2000; 78
2001; 5
2010; 28
2017; 77
2017; 78
2014; 59
2011; 66
2017
2014
2014; 72
2021; 85
2020; 218
2018; 59
2012; 62
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 69
  start-page: 1157
  year: 2013
  end-page: 1168
  article-title: SAR simulations for high‐field MRI: how much detail, effort, and accuracy is needed?
  publication-title: Magn Reson Med.
– volume: 86
  start-page: 543
  year: 2021
  end-page: 550
  article-title: Temperature‐based MRI safety simulations with a limited number of tissues
  publication-title: Magn Reson Med
– volume: 10
  start-page: 1
  year: 2020
  end-page: 11
  article-title: Patient semi‐specific computational modeling of electromagnetic stimulation applied to neuroprotective treatments in acute ischemic stroke
  publication-title: Sci Rep.
– volume: 13
  start-page: 1867
  year: 2021
  article-title: Patient‐specific planning for thermal magnetic resonance of glioblastoma multiforme
  publication-title: Cancers (Basel).
– volume: 75
  start-page: 1366
  year: 2016
  end-page: 1374
  article-title: The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla
  publication-title: Magn Reson Med.
– volume: 64
  start-page: 2515
  year: 2017
  end-page: 2530
  article-title: Electrical properties tomography based on B1 maps in MRI: principles, applications, and challenges
  publication-title: IEEE Trans Biomed Eng
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med Image Anal.
– start-page: 1
  year: 2012
  end-page: 2
– volume: 3
  start-page: 487
  year: 2002
  end-page: 497
  article-title: Hyperthermia in combined treatment of cancer
  publication-title: Lancet Oncol.
– volume: 85
  start-page: 1114
  year: 2021
  end-page: 1122
  article-title: An investigation into the minimum number of tissue groups required for 7T in‐silico parallel transmit electromagnetic safety simulations in the human head
  publication-title: Magn Reson Med.
– volume: 28
  start-page: 1014
  year: 2010
  end-page: 1021
  article-title: Simulating the effects of time‐varying magnetic fields with a realistic simulated scanner
  publication-title: Magn Reson Imaging.
– volume: 66
  start-page: 1468
  year: 2011
  end-page: 1476
  article-title: Local specific absorption rate control for parallel transmission by virtual observation points
  publication-title: Magn Reson Med.
– volume: 77
  start-page: 2040
  year: 2017
  end-page: 2047
  article-title: Improving peak local SAR prediction in parallel transmit using in situ S‐matrix measurements
  publication-title: Magn Reson Med.
– volume: 56
  start-page: 364
  year: 2006
  end-page: 380
  article-title: Development of a functional magnetic resonance imaging simulator for modeling realistic rigid‐body motion artifacts
  publication-title: Magn Reson Med.
– volume: 10
  year: 2015
  article-title: MIDA: a multimodal imaging‐based detailed anatomical model of the human head and neck
  publication-title: PLoS One
– volume: 66
  start-page: 1767
  year: 2011
  end-page: 1776
  article-title: Toward individualized SAR models and in vivo validation
  publication-title: Magn Reson Med.
– volume: 59
  start-page: 338
  year: 2018
  end-page: 380
  article-title: VK‐phantom male with 583 structures and female with 459 structures, based on the sectioned images of a male and a female, for computational dosimetry
  publication-title: J Radiat Res.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 22
  article-title: Split‐attention u‐net: a fully convolutional network for robust multi‐label segmentation from brain MRI
  publication-title: Brain Sci.
– volume: 78
  start-page: 476
  year: 2000
  end-page: 486
  article-title: VIP‐man: an image‐based whole‐body adult male model constructed from color photographs of the visible human project for multi‐particle Monte Carlo calculations
  publication-title: Health Phys.
– volume: 77
  start-page: 1691
  year: 2017
  end-page: 1700
  article-title: Validating subject‐specific RF and thermal simulations in the calf muscle using MR‐based temperature measurements
  publication-title: Magn Reson Med.
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  article-title: Review FSL
  publication-title: Neuroimage.
– year: 2014
– volume: 174
  start-page: 587
  year: 2018
  end-page: 598
  article-title: Automatic skull segmentation from MR images for realistic volume conductor models of the head: assessment of the state‐of‐the‐art
  publication-title: Neuroimage.
– volume: 77
  start-page: 57
  year: 2021
  end-page: 68
  article-title: Assessment of radio‐frequency heating of a parallel transmit coil in a phantom using multi‐echo proton resonance frequency shift thermometry
  publication-title: Magn Reson Imaging
– year: 2010
– volume: 78
  start-page: 1217
  year: 2017
  end-page: 1223
  article-title: Probabilistic analysis of the specific absorption rate intersubject variability safety factor in parallel transmission MRI
  publication-title: Magn Reson Med.
– volume: 66
  start-page: 540
  year: 2018
  end-page: 555
  article-title: RF shimming and improved SAR safety for MRI at 7 T with combined eight‐element stepped impedance resonators and traveling‐wave antenna
  publication-title: IEEE Trans Microw Theory Tech.
– volume: 59
  start-page: 5287
  year: 2014
  end-page: 5303
  article-title: Development of a new generation of high‐resolution anatomical models for medical device evaluation: the Virtual Population 3.0
  publication-title: Phys Med Biol.
– volume: 72
  start-page: 237
  year: 2014
  end-page: 247
  article-title: Bloch‐based MRI system simulator considering realistic electromagnetic fields for calculation of signal, noise, and specific absorption rate
  publication-title: Magn Reson Med.
– volume: 218
  year: 2020
  article-title: Infant FreeSurfer: an automated segmentation and surface extraction pipeline for T1‐weighted neuroimaging data of infants 0–2 years
  publication-title: Neuroimage.
– volume: 57
  start-page: 8153
  year: 2012
  end-page: 8171
  article-title: Improving SAR estimations in MRI using subject‐specific models
  publication-title: Phys Med Biol.
– volume: 16
  year: 2021
  article-title: Development, validation, and pilot MRI safety study of a high‐resolution, open source, whole body pediatric numerical simulation model
  publication-title: PLoS One
– volume: 73
  start-page: 2390
  year: 2015
  end-page: 2397
  article-title: Automated tuning of an eight‐channel cardiac transceive array at 7 Tesla using piezoelectric actuators
  publication-title: Magn Reson Med.
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage.
– volume: 45
  start-page: 692
  year: 2001
  end-page: 699
  article-title: Calculations of B1 distribution, SNR, and SAR for a surface coil adjacent to an anatomically‐accurate human body model
  publication-title: Magn Reson Med
– volume: 34
  start-page: 153
  year: 2021
  end-page: 163
  article-title: Local SAR compression with overestimation control to reduce maximum relative SAR overestimation and improve multi‐channel RF array performance
  publication-title: Magn Reson Mater Physics, Biol Med.
– year: 2017
– volume: 7
  start-page: 1
  year: 2017
  end-page: 14
  article-title: Predicting magnetostimulation thresholds in the peripheral nervous system using realistic body models
  publication-title: Sci Rep.
– volume: 85
  start-page: 429
  year: 2021
  end-page: 443
  article-title: Individualized SAR calculations using computer vision‐based MR segmentation and a fast electromagnetic solver
  publication-title: Magn Reson Med.
– volume: 19
  start-page: 1523
  year: 2016
  end-page: 1536
  article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study
  publication-title: Nat Neurosci.
– ident: e_1_2_9_36_1
  doi: 10.1002/mrm.26468
– ident: e_1_2_9_8_1
  doi: 10.1109/TMTT.2017.2708707
– ident: e_1_2_9_9_1
  doi: 10.1016/j.mri.2020.12.013
– ident: e_1_2_9_22_1
  doi: 10.1093/jrr/rry024
– ident: e_1_2_9_25_1
  doi: 10.1109/APS.2012.6348855
– ident: e_1_2_9_5_1
  doi: 10.1002/mrm.20939
– ident: e_1_2_9_33_1
  doi: 10.1038/s41598-020-59471-9
– ident: e_1_2_9_27_1
  doi: 10.1002/mrm.1092
– ident: e_1_2_9_10_1
  doi: 10.1097/00004032-200005000-00003
– ident: e_1_2_9_11_1
  doi: 10.1088/0031-9155/59/18/5287
– ident: e_1_2_9_38_1
  doi: 10.3390/brainsci10120974
– ident: e_1_2_9_41_1
  doi: 10.1002/mrm.26261
– ident: e_1_2_9_13_1
– ident: e_1_2_9_23_1
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: e_1_2_9_32_1
  doi: 10.1016/j.neuroimage.2012.02.018
– ident: e_1_2_9_12_1
  doi: 10.1371/journal.pone.0124126
– ident: e_1_2_9_15_1
  doi: 10.1002/mrm.22948
– ident: e_1_2_9_2_1
– ident: e_1_2_9_34_1
  doi: 10.1016/S1470-2045(02)00818-5
– ident: e_1_2_9_3_1
  doi: 10.1002/mrm.24907
– ident: e_1_2_9_6_1
  doi: 10.1016/j.mri.2010.03.029
– ident: e_1_2_9_17_1
  doi: 10.1002/mrm.28398
– ident: e_1_2_9_21_1
  doi: 10.1088/0031-9155/57/24/8153
– ident: e_1_2_9_37_1
  doi: 10.1002/mrm.24329
– ident: e_1_2_9_16_1
  doi: 10.1002/mrm.26244
– ident: e_1_2_9_14_1
  doi: 10.1109/TBME.2017.2725140
– ident: e_1_2_9_18_1
  doi: 10.1016/j.neuroimage.2018.03.001
– ident: e_1_2_9_20_1
  doi: 10.1371/journal.pone.0241682
– ident: e_1_2_9_35_1
  doi: 10.3390/cancers13081867
– ident: e_1_2_9_30_1
– ident: e_1_2_9_39_1
  doi: 10.1002/mrm.28467
– ident: e_1_2_9_26_1
– ident: e_1_2_9_31_1
  doi: 10.1038/nn.4393
– ident: e_1_2_9_29_1
  doi: 10.1007/s10334-020-00890-0
– ident: e_1_2_9_7_1
  doi: 10.1038/s41598-017-05493-9
– ident: e_1_2_9_40_1
  doi: 10.1002/mrm.25356
– ident: e_1_2_9_4_1
  doi: 10.1002/mrm.28693
– ident: e_1_2_9_28_1
  doi: 10.1002/mrm.22927
– ident: e_1_2_9_24_1
  doi: 10.1016/S1361-8415(01)00036-6
– ident: e_1_2_9_19_1
  doi: 10.1016/j.neuroimage.2020.116946
– ident: e_1_2_9_42_1
  doi: 10.1002/mrm.25596
SSID ssj0009974
Score 2.4365478
Snippet Purpose To assess the accuracy of morphing an established reference electromagnetic head model to a subject‐specific morphometry for the estimation of specific...
Click here for author‐reader discussions
To assess the accuracy of morphing an established reference electromagnetic head model to a subject-specific morphometry for the estimation of specific...
PurposeTo assess the accuracy of morphing an established reference electromagnetic head model to a subject‐specific morphometry for the estimation of specific...
Click here for author‐reader discussions
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2376
SubjectTerms Absorption
Circular polarization
Composition
Computer Processing and Modeling
electromagnetic body models
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Model accuracy
Morphing
Morphometry
MRI safety
nonlinear registration
parallel transmit
Phantoms, Imaging
Registration
RF transmit
SAR
Title Effect of subject‐specific head morphometry on specific absorption rate estimates in parallel‐transmit MRI at 7 T
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29589
https://www.ncbi.nlm.nih.gov/pubmed/36656151
https://www.proquest.com/docview/2791099617
https://www.proquest.com/docview/2767169873
https://pubmed.ncbi.nlm.nih.gov/PMC10952207
Volume 89
WOSCitedRecordID wos000917750900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tu4C48FhegWVlEIe9ZLdJnNgWJwRUrESrVVVEb1Ec26JSk6AmReLGT-A38kuYSdIs1YKExMVK5EnGsmc8n1-fAV46o6MEw4If2Jz7PLGhr0NMjDPSCaFsoLP2sgkxncrFQl3swavtWZiOH2KYcCPPaPtrcvBM12eXpKHFujgNVSzVNTgIgkjSvQ0hv7hk3FUdBbPg1NEovqUVGoVnw6e7wegKwry6UfJ3ANtGoPGd_yr7XbjdA0_2urOUe7Bny0O4OemX1g_hRrsXNK_vw6ZjNGaVY_VG0zzNz-8_6EQm7Spi2HkbVlTYPFVhm_U3VpVsyET9mENtzYiCghGFR0Foli1LRizjq5Vd4d8aipDFsmGT2TnLGibY_AHMx-_mb977_e0Mfs45V77WseEmcZGyTo2MFkIGwsY2U8Jk0iLQ0jmPsbxGWByzCMRNOFZ0UR4Ghkj3HsJ-WZX2MbDMorFEbiRUHHFng0zqODO5TpI4jjGIe3CybaU075nL6QKNVdpxLocp1mfa1qcHLwbRLx1dx5-EjrZNnfYeW6ehULRIiIDOg-dDNvoaLaBkpa02JJMQuZAUkQePOssYtERYWkKHHsgdmxkEiMd7N6dcfm75vFEvouARKj5pjebvJU8ns0n78OTfRZ_CrRCBWbe97Qj2m_XGPoPr-ddmWa-PW5_BVCzkMRy8nY0_fsC3T-fTX_JHIlU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V8rzwaHkEChjEoZfQTWLHscQFIaquaFaoWoneIjt2xEqbBG2ySNz4CfxGfgkzSTZlVZCQuESRPIktz4zn8-sbgFeFNVGMYcEPXM59HrvQNyE-bGGTQkrlAqO7ZBNyNkvOz9XHHXizuQvT80OMC27kGd14TQ5OC9JHF6yh5ap8HSqRqCtwlSPQoMQNn6azC8pd1XMwS04jjeIbXqFJeDR-uh2NLkHMyyclf0ewXQg6vvN_jb8Ltwfoyd72tnIPdly1BzfSYXN9D653p0HzZh_WPacxqwvWrA2t1Pz8_oPuZNK5IobDt2VljQqqS9euvrG6YmOhNg2WkLYZkVAwIvEoCc-yRcWIZ3y5dEv8W0sxsly0LD2bMt0yyeb3YX78fv7uxB_yM_g551z5xgjLbVxEyhVqYo2USSCdcFpJqxOHUMvkXGB7rXQ4a5GInHC2WER5GFii3XsAu1VduUfAtENziYqJVCLihQt0YoS2uYljIQSGcQ8ON2rK8oG7nFJoLLOedTnMsD-zrj89eDmKfukJO_4kdLDRdTb4bJOFUtE2IUI6D16MxehttIWiK1evSSYmeqFERh487E1jrCXC1hI-9CDZMppRgJi8t0uqxeeO0RvrRRw8wYoPO6v5e8uz9CztXh7_u-hzuHkyT0-z0-nswxO4FSJM6w-7HcBuu1q7p3At_9oumtWzzoF-ARhWIxY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7STRt66SN9uU1btfSQi5O1LVsW9BKaLg3NLmHZQm7GsiS6sLbD2lvorT-hvzG_JDO218mSFgq9GIPG1qCZ0Xx6fQL4YLUKIkwLrmcy7vLI-K7y8aGtjq0Q0ngqbS6bEJNJfH4uz7bg4_osTMsP0U-4UWQ0_TUFuLnQ9vCaNTRf5ge-DGN5B7Y5XSIzgO3j6ejb6TXprmxZmAWnvkbyNbPQ0D_sP97MR7dA5u29kjcxbJOERg__T_1H8KADn-yo9ZbHsGWKXdgZd8vru3Cv2Q-aVU9g1bIas9KyaqVoruby1286lUk7ixh24JrlJZqozE29_MnKgvWFqaqwhOzNiIaCEY1HToiWzQtGTOOLhVng32rKkvm8ZuPpCUtrJtjsKcxGn2efvrjdDQ1uxjmXrlKh5jqygTRWDrUSIvaECU0qhU5jg2BLZTxEfbUwOG4RiJ1wvGiDzPc0Ee89g0FRFuYFsNSgwwR2KGQYcGu8NFZhqjMVRWEYYiJ3YH9tpiTr2MvpEo1F0vIu-wm2Z9K0pwPve9GLlrLjT0J7a1snXdRWiS8kLRQiqHPgXV-M8UaLKGlhyhXJREQwFIvAgeeta_S1BKgtIUQH4g2n6QWIy3uzpJh_bzi9sV5EwkOseL_xmr9rnoyn4-bl5b-LvoWds-NRcnoy-foK7vuI09rdbnswqJcr8xruZj_qebV800XQFQEAI78
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+subject%E2%80%90specific+head+morphometry+on+specific+absorption+rate+estimates+in+parallel%E2%80%90transmit+MRI+at+7+T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Jeong%2C+Hongbae&rft.au=Andersson%2C+Jesper&rft.au=Hess%2C+Aaron&rft.au=Jezzard%2C+Peter&rft.date=2023-06-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=89&rft.issue=6&rft.spage=2376&rft.epage=2390&rft_id=info:doi/10.1002%2Fmrm.29589&rft.externalDBID=10.1002%252Fmrm.29589&rft.externalDocID=MRM29589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon