Tensor denoising of multidimensional MRI data

Purpose To develop a denoising strategy leveraging redundancy in high‐dimensional data. Theory and Methods The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so‐called MPPCA: principal component...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 89; no. 3; pp. 1160 - 1172
Main Authors: Olesen, Jonas L., Ianus, Andrada, Østergaard, Leif, Shemesh, Noam, Jespersen, Sune N.
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.03.2023
John Wiley and Sons Inc
Subjects:
ISSN:0740-3194, 1522-2594, 1522-2594
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose To develop a denoising strategy leveraging redundancy in high‐dimensional data. Theory and Methods The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so‐called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko‐Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor‐structure to better characterize noise, and to recursively estimate signal components. Results Relative to matrix‐based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi‐TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases. Conclusions The MPPCA denoising technique can be extended to high‐dimensional data with improved performance for smaller patch sizes.
AbstractList To develop a denoising strategy leveraging redundancy in high-dimensional data. The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so-called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko-Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor-structure to better characterize noise, and to recursively estimate signal components. Relative to matrix-based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi-TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases. The MPPCA denoising technique can be extended to high-dimensional data with improved performance for smaller patch sizes.
PurposeTo develop a denoising strategy leveraging redundancy in high‐dimensional data.Theory and MethodsThe SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so‐called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko‐Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor‐structure to better characterize noise, and to recursively estimate signal components.ResultsRelative to matrix‐based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi‐TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases.ConclusionsThe MPPCA denoising technique can be extended to high‐dimensional data with improved performance for smaller patch sizes.
Click here for author‐reader discussions
Purpose To develop a denoising strategy leveraging redundancy in high‐dimensional data. Theory and Methods The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so‐called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko‐Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor‐structure to better characterize noise, and to recursively estimate signal components. Results Relative to matrix‐based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi‐TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases. Conclusions The MPPCA denoising technique can be extended to high‐dimensional data with improved performance for smaller patch sizes.
To develop a denoising strategy leveraging redundancy in high-dimensional data.PURPOSETo develop a denoising strategy leveraging redundancy in high-dimensional data.The SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so-called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko-Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor-structure to better characterize noise, and to recursively estimate signal components.THEORY AND METHODSThe SNR fundamentally limits the information accessible by MRI. This limitation has been addressed by a host of denoising techniques, recently including the so-called MPPCA: principal component analysis of the signal followed by automated rank estimation, exploiting the Marchenko-Pastur distribution of noise singular values. Operating on matrices comprised of data patches, this popular approach objectively identifies noise components and, ideally, allows noise to be removed without introducing artifacts such as image blurring, or nonlocal averaging. The MPPCA rank estimation, however, relies on a large number of noise singular values relative to the number of signal components to avoid such ill effects. This condition is unlikely to be met when data patches and therefore matrices are small, for example due to spatially varying noise. Here, we introduce tensor MPPCA (tMPPCA) for the purpose of denoising multidimensional data, such as from multicontrast acquisitions. Rather than combining dimensions in matrices, tMPPCA uses each dimension of the multidimensional data's inherent tensor-structure to better characterize noise, and to recursively estimate signal components.Relative to matrix-based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi-TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases.RESULTSRelative to matrix-based MPPCA, tMPPCA requires no additional assumptions, and comparing the two in a numerical phantom and a multi-TE diffusion MRI data set, tMPPCA dramatically improves denoising performance. This is particularly true for small data patches, suggesting that tMPPCA can be especially beneficial in such cases.The MPPCA denoising technique can be extended to high-dimensional data with improved performance for smaller patch sizes.CONCLUSIONSThe MPPCA denoising technique can be extended to high-dimensional data with improved performance for smaller patch sizes.
Author Østergaard, Leif
Jespersen, Sune N.
Olesen, Jonas L.
Shemesh, Noam
Ianus, Andrada
AuthorAffiliation 3 Champalimaud Research Champalimaud Foundation Lisbon Portugal
1 Center of Functionally Integrative Neuroscience, Department of Clinical Medicine Aarhus University Aarhus Denmark
2 Department of Physics and Astronomy Aarhus University Aarhus Denmark
AuthorAffiliation_xml – name: 1 Center of Functionally Integrative Neuroscience, Department of Clinical Medicine Aarhus University Aarhus Denmark
– name: 3 Champalimaud Research Champalimaud Foundation Lisbon Portugal
– name: 2 Department of Physics and Astronomy Aarhus University Aarhus Denmark
Author_xml – sequence: 1
  givenname: Jonas L.
  orcidid: 0000-0003-4624-9816
  surname: Olesen
  fullname: Olesen, Jonas L.
  organization: Aarhus University
– sequence: 2
  givenname: Andrada
  orcidid: 0000-0001-9893-1724
  surname: Ianus
  fullname: Ianus, Andrada
  organization: Champalimaud Foundation
– sequence: 3
  givenname: Leif
  orcidid: 0000-0003-2930-6997
  surname: Østergaard
  fullname: Østergaard, Leif
  organization: Aarhus University
– sequence: 4
  givenname: Noam
  orcidid: 0000-0001-6681-5876
  surname: Shemesh
  fullname: Shemesh, Noam
  organization: Champalimaud Foundation
– sequence: 5
  givenname: Sune N.
  orcidid: 0000-0003-3146-4329
  surname: Jespersen
  fullname: Jespersen, Sune N.
  email: sune@cfin.au.dk
  organization: Aarhus University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36219475$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1KxDAUhYMoOjO68AWk4EYX1fQ2aZqVyOAfOAgyrkOaphppE01aZd7e6IyioqvAvd85nJw7RuvWWY3QboaPMozhuPPdEXDCyjU0yihACpSTdTTCjOA0zzjZQuMQHjHGnDOyibbyAuKU0RFK59oG55NaW2eCsfeJa5JuaHtTmy6ujLOyTWa3V0kte7mNNhrZBr2zeifo7vxsPr1Mr28urqan16kihJQpqzKpVIOhqEBjTjOqCS7KmueYKh7nVVXJpiG4BiVxIRlXuQJZSlBZ0zCaT9DJ0vdpqDpdK217L1vx5E0n_UI4acTPjTUP4t69iFgHB5yz6HCwcvDuedChF50JSrettNoNQQCDvMwAyiKi-7_QRzf4-O13ikaIUYIjtfc90leWzyojcLwElHcheN0IZXrZxwJjQtPGaO_pQMRjiY9jRcXhL8Wn6V_syv3VtHrxPyhmt7Ol4g09ZKLf
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106452
crossref_primary_10_1038_s41598_024_75007_x
crossref_primary_10_1002_mrm_30365
crossref_primary_10_1002_nbm_5288
crossref_primary_10_1002_nbm_5264
crossref_primary_10_1002_nbm_70125
crossref_primary_10_1162_imag_a_00060
crossref_primary_10_1002_nbm_5107
crossref_primary_10_1162_imag_a_00049
crossref_primary_10_1162_imag_a_00544
crossref_primary_10_1097_RLI_0000000000000979
crossref_primary_10_7554_eLife_100570
crossref_primary_10_1007_s10334_024_01190_7
crossref_primary_10_1002_mrm_29817
crossref_primary_10_1038_s41598_023_49023_2
crossref_primary_10_1002_mrm_30050
crossref_primary_10_1002_mrm_30197
crossref_primary_10_1109_TMI_2025_3552611
crossref_primary_10_7554_eLife_100570_3
crossref_primary_10_1002_hbm_26697
crossref_primary_10_3389_fnins_2024_1499762
crossref_primary_10_1002_mrm_29763
crossref_primary_10_1002_mrm_30312
crossref_primary_10_1002_nbm_70139
crossref_primary_10_1016_j_dsp_2024_104472
crossref_primary_10_1111_jon_70029
crossref_primary_10_1002_ima_70106
crossref_primary_10_1162_imag_a_00193
crossref_primary_10_1002_mrm_29985
crossref_primary_10_1002_hbm_70142
Cites_doi 10.1002/mrm.28395
10.1016/j.media.2014.08.004
10.1038/s41598-019-38981-1
10.1016/j.neuroimage.2015.08.075
10.1016/j.neuroimage.2022.119135
10.1097/RMR.0b013e31821e56ac
10.1002/mrm.25901
10.1002/mrm.22595
10.1016/j.neuroimage.2020.116793
10.1002/mrm.27658
10.1109/ACCESS.2017.2780985
10.1371/journal.pone.0073021
10.1002/mrm.22258
10.3389/fonc.2020.01640
10.1109/TMI.2007.906087
10.1002/mrm.26059
10.1103/PhysRevE.60.3389
10.1016/j.media.2010.03.001
10.1002/nbm.1396
10.1148/radiol.2020200822
10.1002/mrm.28328
10.1016/j.media.2011.04.003
10.1016/j.neuroimage.2019.06.039
10.1007/s11263-009-0272-7
10.1002/mrm.1910340618
10.1070/SM1967v001n04ABEH001994
10.1002/mrm.28216
10.1002/nbm.3998
10.1016/j.neuroimage.2016.08.016
10.1002/mrm.1910390317
10.1016/j.neuroimage.2017.04.017
10.1016/j.neuroimage.2020.116852
10.1002/mrm.28887
10.1016/j.neuroimage.2022.119033
10.1109/TIT.2017.2653801
10.1002/mrm.23198
10.1016/j.neuroimage.2017.09.030
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.29478
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Biochemistry Abstracts 1
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Olesen et al
EISSN 1522-2594
EndPage 1172
ExternalDocumentID PMC10092037
36219475
10_1002_mrm_29478
MRM29478
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: H2020 European Research Council
  funderid: 100010434; agreement 679058
– fundername: European Regional Development Fund
  funderid: LISBOA‐01‐0145‐FEDER‐02217
– fundername: Danish National Research Foundation
  funderid: CFIN
– fundername: Lisboa Regional Operational Programme
  funderid: LISBOA‐01‐0145‐FEDER‐02217
– fundername: Danish Ministry of Science, Innovation, and Education
  funderid: MINDLab
– fundername: “la Caixa” Foundation
  funderid: 100010434
– fundername: Fundação para a Ciência e Tecnologia
– fundername: Velux Fonden
  funderid: ARCADIA; grant 00015963
– fundername: NIBIB NIH HHS
  grantid: R01 EB019980
– fundername: ;
  grantid: CFIN
– fundername: Danish Ministry of Science, Innovation, and Education
  grantid: MINDLab
– fundername: ;
  grantid: ARCADIA; grant 00015963
– fundername: ;
  grantid: LISBOA‐01‐0145‐FEDER‐02217
– fundername: ;
  grantid: 100010434; agreement 679058
– fundername: Lisboa Regional Operational Programme
  grantid: LISBOA‐01‐0145‐FEDER‐02217
– fundername: ;
  grantid: 100010434
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4448-7b1accf026b2e09515e4068d9305c9f02bbbaff40d2ca06a79c3c2a8a2c1ff753
IEDL.DBID 24P
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865809300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Nov 04 02:06:49 EST 2025
Sun Nov 09 11:53:13 EST 2025
Sat Nov 29 14:42:05 EST 2025
Thu Apr 03 07:06:53 EDT 2025
Sat Nov 29 06:34:36 EST 2025
Tue Nov 18 22:30:52 EST 2025
Sun Jul 06 04:45:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords denoising
random matrix theory
diffusion
principal component analysis
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4448-7b1accf026b2e09515e4068d9305c9f02bbbaff40d2ca06a79c3c2a8a2c1ff753
Notes Funding information
“la Caixa” Foundation, Grant/Award Number: 100010434; Danish Ministry of Science, Innovation, and Education, Grant/Award Number: MINDLab; Danish National Research Foundation, Grant/Award Number: CFIN; European Regional Development Fund, Grant/Award Number: LISBOA‐01‐0145‐FEDER‐02217; Fundação para a Ciência e Tecnologia, H2020 European Research Council, Grant/Award Numbers: 100010434; agreement 679058; Lisboa Regional Operational Programme, Grant/Award Number: LISBOA‐01‐0145‐FEDER‐02217; Velux Fonden, Grant/Award Numbers: ARCADIA; grant 00015963
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information “la Caixa” Foundation, Grant/Award Number: 100010434; Danish Ministry of Science, Innovation, and Education, Grant/Award Number: MINDLab; Danish National Research Foundation, Grant/Award Number: CFIN; European Regional Development Fund, Grant/Award Number: LISBOA‐01‐0145‐FEDER‐02217; Fundação para a Ciência e Tecnologia, H2020 European Research Council, Grant/Award Numbers: 100010434; agreement 679058; Lisboa Regional Operational Programme, Grant/Award Number: LISBOA‐01‐0145‐FEDER‐02217; Velux Fonden, Grant/Award Numbers: ARCADIA; grant 00015963
ORCID 0000-0001-6681-5876
0000-0003-2930-6997
0000-0003-3146-4329
0000-0003-4624-9816
0000-0001-9893-1724
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29478
PMID 36219475
PQID 2758127540
PQPubID 1016391
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10092037
proquest_miscellaneous_2723812286
proquest_journals_2758127540
pubmed_primary_36219475
crossref_citationtrail_10_1002_mrm_29478
crossref_primary_10_1002_mrm_29478
wiley_primary_10_1002_mrm_29478_MRM29478
PublicationCentury 2000
PublicationDate March 2023
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2022; 254
2009; 22
2022; 253
2019; 9
2017; 63
2018; 182
2021; 86
2015; 19
2010; 14
2009; 86
2011
2010
2020; 84
2019; 32
1995; 34
2016; 124
2016; 76
2016; 75
2012; 16
2020; 10
1999; 60
2013; 8
2017; 156
2016; 142
2010; 63
2019; 200
2018; 6
2010; 21
1998; 39
2019; 81
2016; 9902
1967; 1
2008; 27
2020; 215
2019; 27
2020; 217
2011; 65
2020; 298
2012; 68
2021; 85
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Lemberskiy G (e_1_2_9_21_1) 2019; 27
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
Foi A (e_1_2_9_42_1) 2011
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Chen G (e_1_2_9_9_1) 2016; 9902
Jones DK (e_1_2_9_2_1) 2010
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 81
  start-page: 3503
  year: 2019
  end-page: 3514
  article-title: Evaluation of principal component analysis image denoising on multi‐exponential MRI relaxometry
  publication-title: Magn Reson Med
– volume: 86
  start-page: 1
  year: 2009
  end-page: 32
  article-title: From local kernel to nonlocal multiple‐model image denoising
  publication-title: Int J Comput Vis
– volume: 27
  start-page: 425
  year: 2008
  end-page: 441
  article-title: An optimized blockwise nonlocal means denoising filter for 3‐D magnetic resonance images
  publication-title: IEEE Trans Med Imaging
– volume: 200
  start-page: 391
  year: 2019
  end-page: 404
  article-title: Complex diffusion‐weighted image estimation via matrix recovery under general noise models
  publication-title: Neuroimage
– volume: 85
  start-page: 413
  year: 2021
  end-page: 428
  article-title: Training a neural network for Gibbs and noise removal in diffusion MRI
  publication-title: Magn Reson Med
– volume: 27
  start-page: 0770
  year: 2019
  article-title: Achieving sub‐mm clinical diffusion MRI resolution by removing noise during reconstruction using random matrix theory
  publication-title: In: Proceedings of the 27th Annual Meeting of ISMRM, Montréal, Canada
– volume: 10
  start-page: 1640
  year: 2020
  article-title: A modified higher‐order singular value decomposition framework with adaptive multilinear tensor rank approximation for three‐dimensional magnetic resonance Rician noise removal
  publication-title: Front Oncol
– volume: 9
  start-page: 1
  year: 2019
  end-page: 14
  article-title: Dynamic imaging of glucose and lactate metabolism by 13 C‐MRS without hyperpolarization
  publication-title: Sci Rep
– volume: 124
  start-page: 1108
  year: 2016
  end-page: 1114
  article-title: MGH–USC human connectome project datasets with ultra‐high b‐value diffusion MRI
  publication-title: Neuroimage
– volume: 142
  start-page: 394
  year: 2016
  end-page: 406
  article-title: Denoising of diffusion MRI using random matrix theory
  publication-title: Neuroimage
– volume: 75
  start-page: 82
  year: 2016
  end-page: 87
  article-title: Conventions and nomenclature for double diffusion encoding NMR and MRI
  publication-title: Magn Reson Med
– volume: 19
  start-page: 75
  year: 2015
  end-page: 86
  article-title: Denoising of 3D magnetic resonance images by using higher‐order singular value decomposition
  publication-title: Med Image Anal
– volume: 63
  start-page: 2137
  year: 2017
  end-page: 2152
  article-title: Optimal shrinkage of singular values
  publication-title: IEEE Trans Inf Theory.
– volume: 39
  start-page: 462
  year: 1998
  end-page: 473
  article-title: Ultimate intrinsic signal‐to‐noise ratio in MRI
  publication-title: Magn Reson Med
– start-page: 1809
  year: 2011
  end-page: 1814
  article-title: Noise estimation and removal in MR imaging: the variance‐stabilization approach
  publication-title: In: Proceedings of the International Symposium on Biomedical Imaging, Chicago, Illinois, USA
– volume: 22
  start-page: 834
  year: 2009
  end-page: 842
  article-title: Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe
  publication-title: NMR Biomed
– volume: 86
  start-page: 2497
  year: 2021
  end-page: 2511
  article-title: Denoising of hyperpolarized 13C MR images of the human brain using patch‐based higher‐order singular value decomposition
  publication-title: Magn Reson Med
– volume: 217
  year: 2020
  article-title: Strong diffusion gradients allow the separation of intra‐ and extra‐axonal gradient‐echo signals in the human brain
  publication-title: Neuroimage
– volume: 16
  start-page: 18
  year: 2012
  end-page: 27
  article-title: New methods for MRI denoising based on sparseness and self‐similarity
  publication-title: Med Image Anal
– volume: 84
  start-page: 1605
  year: 2020
  end-page: 1623
  article-title: Towards unconstrained compartment modeling in white matter using diffusion‐relaxation MRI with tensor‐valued diffusion encoding
  publication-title: Magn Reson Med
– volume: 21
  start-page: 87
  year: 2010
  end-page: 99
  article-title: Precision and accuracy in diffusion tensor magnetic resonance imaging
  publication-title: Top Magn Reson Imaging
– volume: 298
  start-page: 365
  year: 2020
  end-page: 373
  article-title: Improved task‐based functional MRI language mapping in patients with brain tumors through marchenko‐pastur principal component analysis denoising
  publication-title: Radiology
– volume: 156
  start-page: 128
  year: 2017
  end-page: 145
  article-title: Denoise diffusion‐weighted images using higher‐order singular value decomposition
  publication-title: Neuroimage
– year: 2010
– volume: 34
  start-page: 910
  year: 1995
  end-page: 914
  article-title: The rician distribution of noisy mri data
  publication-title: Magn Reson Med
– volume: 9902
  start-page: 587
  year: 2016
  end-page: 595
  article-title: XQ‐NLM: denoising diffusion MRI data via x‐q space non‐local patch matching
  publication-title: Med Image Comput Comput Assist Interv
– volume: 182
  start-page: 360
  year: 2018
  end-page: 369
  article-title: TE dependent diffusion imaging (TEdDI) distinguishes between compartmental T2 relaxation times
  publication-title: Neuroimage
– volume: 63
  start-page: 782
  year: 2010
  end-page: 789
  article-title: A method to assess spatially variant noise in dynamic MR image series
  publication-title: Magn Reson Med
– volume: 253
  year: 2022
  article-title: SDnDTI: self‐supervised deep learning‐based denoising for diffusion tensor MRI
  publication-title: Neuroimage
– volume: 84
  start-page: 3351
  year: 2020
  end-page: 3365
  article-title: Tensor image enhancement and optimal multichannel receiver combination analyses for human hyperpolarized 13C MRSI
  publication-title: Magn Reson Med
– volume: 8
  year: 2013
  article-title: Diffusion weighted image denoising using overcomplete local PCA
  publication-title: PLoS One
– volume: 1
  start-page: 457
  year: 1967
  end-page: 483
  article-title: Distribution of eigenvalues for some sets of random matrices
  publication-title: Math USSR‐Sbornik
– volume: 14
  start-page: 483
  year: 2010
  end-page: 493
  article-title: Robust Rician noise estimation for MR images
  publication-title: Med Image Anal
– volume: 60
  start-page: 3389
  year: 1999
  end-page: 3392
  article-title: Distributions of singular values for some random matrices
  publication-title: Phys Rev E
– volume: 76
  start-page: 1582
  year: 2016
  end-page: 1593
  article-title: Diffusion MRI noise mapping using random matrix theory
  publication-title: Magn Reson Med
– volume: 68
  start-page: 286
  year: 2012
  end-page: 304
  article-title: Ideal current patterns yielding optimal signal‐to‐noise ratio and specific absorption rate in magnetic resonance imaging: computational methods and physical insights
  publication-title: Magn Reson Med
– volume: 215
  year: 2020
  article-title: Denoise magnitude diffusion magnetic resonance images via variance‐stabilizing transformation and optimal singular‐value manipulation
  publication-title: Neuroimage
– volume: 254
  start-page: 119135
  year: 2022
  article-title: Soma and Neurite density MRI (SANDI) of the in‐vivo mouse brain and comparison with the Allen Brain Atlas
  publication-title: NeuroImage
– volume: 32
  year: 2019
  article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation
  publication-title: NMR Biomed
– volume: 6
  start-page: 6303
  year: 2018
  end-page: 6315
  article-title: Detail‐preserving image denoising via adaptive clustering and progressive PCA thresholding
  publication-title: IEEE Access
– volume: 65
  start-page: 480
  year: 2011
  end-page: 491
  article-title: Second order total generalized variation (TGV) for MRI
  publication-title: Magn Reson Med
– volume: 27
  start-page: 0770
  year: 2019
  ident: e_1_2_9_21_1
  article-title: Achieving sub‐mm clinical diffusion MRI resolution by removing noise during reconstruction using random matrix theory
  publication-title: In: Proceedings of the 27th Annual Meeting of ISMRM, Montréal, Canada
– volume: 9902
  start-page: 587
  year: 2016
  ident: e_1_2_9_9_1
  article-title: XQ‐NLM: denoising diffusion MRI data via x‐q space non‐local patch matching
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_9_13_1
  doi: 10.1002/mrm.28395
– ident: e_1_2_9_33_1
  doi: 10.1016/j.media.2014.08.004
– ident: e_1_2_9_31_1
  doi: 10.1038/s41598-019-38981-1
– ident: e_1_2_9_6_1
  doi: 10.1016/j.neuroimage.2015.08.075
– ident: e_1_2_9_27_1
  doi: 10.1016/j.neuroimage.2022.119135
– ident: e_1_2_9_4_1
  doi: 10.1097/RMR.0b013e31821e56ac
– ident: e_1_2_9_39_1
  doi: 10.1002/mrm.25901
– ident: e_1_2_9_12_1
  doi: 10.1002/mrm.22595
– ident: e_1_2_9_38_1
  doi: 10.1016/j.neuroimage.2020.116793
– ident: e_1_2_9_23_1
  doi: 10.1002/mrm.27658
– ident: e_1_2_9_24_1
  doi: 10.1109/ACCESS.2017.2780985
– ident: e_1_2_9_15_1
  doi: 10.1371/journal.pone.0073021
– ident: e_1_2_9_19_1
  doi: 10.1002/mrm.22258
– ident: e_1_2_9_29_1
  doi: 10.3389/fonc.2020.01640
– ident: e_1_2_9_10_1
  doi: 10.1109/TMI.2007.906087
– ident: e_1_2_9_17_1
  doi: 10.1002/mrm.26059
– ident: e_1_2_9_20_1
  doi: 10.1103/PhysRevE.60.3389
– ident: e_1_2_9_41_1
  doi: 10.1016/j.media.2010.03.001
– ident: e_1_2_9_8_1
  doi: 10.1002/nbm.1396
– ident: e_1_2_9_26_1
  doi: 10.1148/radiol.2020200822
– ident: e_1_2_9_30_1
  doi: 10.1002/mrm.28328
– ident: e_1_2_9_11_1
  doi: 10.1016/j.media.2011.04.003
– ident: e_1_2_9_22_1
  doi: 10.1016/j.neuroimage.2019.06.039
– ident: e_1_2_9_35_1
  doi: 10.1007/s11263-009-0272-7
– ident: e_1_2_9_40_1
  doi: 10.1002/mrm.1910340618
– ident: e_1_2_9_18_1
  doi: 10.1070/SM1967v001n04ABEH001994
– ident: e_1_2_9_37_1
  doi: 10.1002/mrm.28216
– ident: e_1_2_9_3_1
  doi: 10.1002/nbm.3998
– volume-title: Diffusion MRI Theory, Methods, and Applications
  year: 2010
  ident: e_1_2_9_2_1
– ident: e_1_2_9_16_1
  doi: 10.1016/j.neuroimage.2016.08.016
– ident: e_1_2_9_7_1
  doi: 10.1002/mrm.1910390317
– ident: e_1_2_9_32_1
  doi: 10.1016/j.neuroimage.2017.04.017
– ident: e_1_2_9_25_1
  doi: 10.1016/j.neuroimage.2020.116852
– ident: e_1_2_9_28_1
  doi: 10.1002/mrm.28887
– start-page: 1809
  year: 2011
  ident: e_1_2_9_42_1
  article-title: Noise estimation and removal in MR imaging: the variance‐stabilization approach
  publication-title: In: Proceedings of the International Symposium on Biomedical Imaging, Chicago, Illinois, USA
– ident: e_1_2_9_14_1
  doi: 10.1016/j.neuroimage.2022.119033
– ident: e_1_2_9_34_1
  doi: 10.1109/TIT.2017.2653801
– ident: e_1_2_9_5_1
  doi: 10.1002/mrm.23198
– ident: e_1_2_9_36_1
  doi: 10.1016/j.neuroimage.2017.09.030
SSID ssj0009974
Score 2.5785818
Snippet Purpose To develop a denoising strategy leveraging redundancy in high‐dimensional data. Theory and Methods The SNR fundamentally limits the information...
Click here for author‐reader discussions
To develop a denoising strategy leveraging redundancy in high-dimensional data. The SNR fundamentally limits the information accessible by MRI. This limitation...
PurposeTo develop a denoising strategy leveraging redundancy in high‐dimensional data.Theory and MethodsThe SNR fundamentally limits the information accessible...
To develop a denoising strategy leveraging redundancy in high-dimensional data.PURPOSETo develop a denoising strategy leveraging redundancy in high-dimensional...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1160
SubjectTerms Algorithms
Blurring
Brain - diagnostic imaging
denoising
diffusion
Diffusion Magnetic Resonance Imaging - methods
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical analysis
Multidimensional data
Noise reduction
Patches (structures)
Phantoms, Imaging
Principal Component Analysis
Principal components analysis
random matrix theory
Redundancy
Signal-To-Noise Ratio
s—Computer Processing and Modeling
Tensors
Title Tensor denoising of multidimensional MRI data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29478
https://www.ncbi.nlm.nih.gov/pubmed/36219475
https://www.proquest.com/docview/2758127540
https://www.proquest.com/docview/2723812286
https://pubmed.ncbi.nlm.nih.gov/PMC10092037
Volume 89
WOSCitedRecordID wos000865809300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6Zit92Uf3Ubdd8cYe9uLWUpRIYk9lXVihCSWkLG9GPksssNolaff39yQ7zkI2GPTF-ONsy7o73Z10_h3AJ6sVM4XuJtz1KUARPUxyp1hilC5UIVNUGHBmL-VopKZTfbUFX5b_wtT4EO2Em9eMMF57BTf54nQFGnozvznhWkj1BDqMdaUXaS6uVoi7uoZglsIPNFosYYVSftreum6MNjzMzUTJPx3YYIEGLx7V9pfwvHE847NaUl7Bli33YGfYLK3vwbOQC4qL15BMKLSt5jGNSNXMTyXElYtD4mHhSwHUMB7xcHwR-_TSN3A9-Db5-j1pqiokKCgWS2TODKKj2Cvn1jtYPUtGXRG_0h5qOp_nuXFOpAVHk_aN1NhFbpThyJyj6OYtbJdVafchVrlB1leWXAArjDbGoiOHizFNz0mxiODzsnszbCDHfeWLX1kNlswz6ogsdEQEH1vS2xpn429ER0seZY2qLTJOEY9HqRdpBB_ay6QkfuXDlLa69zTeM-Fc9SN4V7O0fQtZcJIO2YtArTG7JfAA3OtXytnPAMTNPGJV2pX0nYHb_255NhwPw87B_5Mewq6vbV8nvB3B9t383r6Hp_j7braYHwdhp62cqmPonI8H15d09ONi9ACxwgWm
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xsgEv--AzwLYM8cBLIHGdxpZ4Qdsq0JpqqorEW-RcbFEJEtQCfz9nJw1UbNKkvUXxJbF9d747-_I7gEMtRaQK2Q2Y6VGAwmMMciOiQAlZiCIJUaDDmR0kw6G4upK_l-B0_i9MjQ_RbrhZzXDrtVVwuyF98owaeju9PWaSJ-INLHMSo7gDyz9G_cvBM-iurFGYE27XGsnnyEIhO2kfXrRHr5zM17mSL31YZ4T6H_6v-x_hfeN8-me1tHyCJV2uw0raHK-vwzuXD4qzDQjGFN5WU59WpWpitxP8yvgu-bCw5QBqKA8_HV34NsV0Ey77P8ffz4OmskKAnOKxIMkjhWgo_sqZtk5WrMmwC-JZGKOk-3meK2N4WDBUYU8lErvIlFAMI2MowtmCTlmVegd8kSuMekKTG6C5kkppNOR0RZGk94RYeHA0n98MG9hxW_3iJqsBk1lGE5G5ifDgoCW9q7E2_kS0P2dS1qjbLGMU9Vikeh568K1tJkWxpx-q1NWDpbHeCWOi58F2zdP2K2TFSTyS2AOxwO2WwIJwL7aUk2sHxh1Z1Kqwm9A4Hbv_3vMsHaXuYvffSb_C6vk4HWSDi-GvPVizte7rBLh96NxPH_RneIuP95PZ9Esj-090VQeM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-ybAt96bZubd2PzRt72IsbW5FjCfpStoaVJSGUFvpm5LPEAo0dkrZ_f0-y4yy0g8HejHW2JZ3uSzr_DuCrliJSuewFzPQpQOExBpkRUaCEzEWehCjQ4cwOk_FY3NzISQtOV__CVPgQzYablQynr62A63luumvU0NlidsIkT8QLeMlj0rEW15lP1pC7ssJgTrjVNJKvcIVC1m0e3bRGT1zMp5mSf3qwzgQN3vxf59_Cdu16-mfVWnkHLV3sQGdUH67vwGuXDYrL9xBcUXBbLnzSSeXUbib4pfFd6mFuiwFUQB7-6PLCtwmmH-B6cH71_WdQ11UIkFM0FiRZpBANRV8Z09bFijWZdUEcC2OUdD_LMmUMD3OGKuyrRGIPmRKKYWQMxTe70C7KQu-DLzKFUV9ocgI0V1IpjYZcriiS9J4Qcw--reY3xRp03Na-uE0ruGSW0kSkbiI8-NKQziukjeeIjlZMSmthW6aMYh6LU89DDz43zSQm9uxDFbq8tzTWN2FM9D3Yq3jafIVsOC2PJPZAbHC7IbAQ3JstxfS3g-KOLGZV2EtonI7df-95OrocuYuDfyf9BJ3Jj0E6vBj_OoQtW-i-yn47gvbd4l4fwyt8uJsuFx_dwn8ES28FdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+denoising+of+multidimensional+MRI+data&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Olesen%2C+Jonas+L&rft.au=Ianus%2C+Andrada&rft.au=%C3%98stergaard%2C+Leif&rft.au=Shemesh%2C+Noam&rft.date=2023-03-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=89&rft.issue=3&rft.spage=1160&rft_id=info:doi/10.1002%2Fmrm.29478&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon