Personalized synthetic MR imaging with deep learning enhancements

Purpose Personalized synthetic MRI (syn‐MRI) uses MR images of an individual subject acquired at a few design parameters (echo time, repetition time, flip angle) to obtain underlying parametric (ρ,T1,T2)$$ \left(\rho, {\mathrm{T}}_1,{\mathrm{T}}_2\right) $$ maps, from where MR images of that individ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 89; H. 4; S. 1634 - 1643
Hauptverfasser: Pal, Subrata, Dutta, Somak, Maitra, Ranjan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.04.2023
John Wiley and Sons Inc
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose Personalized synthetic MRI (syn‐MRI) uses MR images of an individual subject acquired at a few design parameters (echo time, repetition time, flip angle) to obtain underlying parametric (ρ,T1,T2)$$ \left(\rho, {\mathrm{T}}_1,{\mathrm{T}}_2\right) $$ maps, from where MR images of that individual at other design parameter settings are synthesized. However, classical methods that use least‐squares (LS) or maximum likelihood estimators (MLE) are unsatisfactory at higher noise levels because the underlying inverse problem is ill‐posed. This article provides a pipeline to enhance the synthesis of such images in three‐dimensional (3D) using a deep learning (DL) neural network architecture for spatial regularization in a personalized setting where having more than a few training images is impractical. Methods Our DL enhancements employ a Deep Image Prior (DIP) with a U‐net type denoising architecture that includes situations with minimal training data, such as personalized syn‐MRI. We provide a general workflow for syn‐MRI from three or more training images. Our workflow, called DIPsyn‐MRI, uses DIP to enhance training images, then obtains parametric images using LS or MLE before synthesizing images at desired design parameter settings. DIPsyn‐MRI is implemented in our publicly available Python package DeepSynMRI available at: https://github.com/StatPal/DeepSynMRI. Results We demonstrate feasibility and improved performance of DIPsyn‐MRI on 3D datasets acquired using the Brainweb interface for spin‐echo and FLASH imaging sequences, at different noise levels. Our DL enhancements improve syn‐MRI in the presence of different intensity nonuniformity levels of the magnetic field, for all but very low noise levels. Conclusion This article provides recipes and software to realistically facilitate DL‐enhanced personalized syn‐MRI.
AbstractList Click here for author‐reader discussions
PurposePersonalized synthetic MRI (syn‐MRI) uses MR images of an individual subject acquired at a few design parameters (echo time, repetition time, flip angle) to obtain underlying parametric (ρ,T1,T2)$$ \left(\rho, {\mathrm{T}}_1,{\mathrm{T}}_2\right) $$ maps, from where MR images of that individual at other design parameter settings are synthesized. However, classical methods that use least‐squares (LS) or maximum likelihood estimators (MLE) are unsatisfactory at higher noise levels because the underlying inverse problem is ill‐posed. This article provides a pipeline to enhance the synthesis of such images in three‐dimensional (3D) using a deep learning (DL) neural network architecture for spatial regularization in a personalized setting where having more than a few training images is impractical.MethodsOur DL enhancements employ a Deep Image Prior (DIP) with a U‐net type denoising architecture that includes situations with minimal training data, such as personalized syn‐MRI. We provide a general workflow for syn‐MRI from three or more training images. Our workflow, called DIPsyn‐MRI, uses DIP to enhance training images, then obtains parametric images using LS or MLE before synthesizing images at desired design parameter settings. DIPsyn‐MRI is implemented in our publicly available Python package DeepSynMRI available at: https://github.com/StatPal/DeepSynMRI.ResultsWe demonstrate feasibility and improved performance of DIPsyn‐MRI on 3D datasets acquired using the Brainweb interface for spin‐echo and FLASH imaging sequences, at different noise levels. Our DL enhancements improve syn‐MRI in the presence of different intensity nonuniformity levels of the magnetic field, for all but very low noise levels.ConclusionThis article provides recipes and software to realistically facilitate DL‐enhanced personalized syn‐MRI.
Personalized synthetic MRI (syn-MRI) uses MR images of an individual subject acquired at a few design parameters (echo time, repetition time, flip angle) to obtain underlying parametric ( ρ , T 1 , T 2 ) $$ \left(\rho, {\mathrm{T}}_1,{\mathrm{T}}_2\right) $$ maps, from where MR images of that individual at other design parameter settings are synthesized. However, classical methods that use least-squares (LS) or maximum likelihood estimators (MLE) are unsatisfactory at higher noise levels because the underlying inverse problem is ill-posed. This article provides a pipeline to enhance the synthesis of such images in three-dimensional (3D) using a deep learning (DL) neural network architecture for spatial regularization in a personalized setting where having more than a few training images is impractical.PURPOSEPersonalized synthetic MRI (syn-MRI) uses MR images of an individual subject acquired at a few design parameters (echo time, repetition time, flip angle) to obtain underlying parametric ( ρ , T 1 , T 2 ) $$ \left(\rho, {\mathrm{T}}_1,{\mathrm{T}}_2\right) $$ maps, from where MR images of that individual at other design parameter settings are synthesized. However, classical methods that use least-squares (LS) or maximum likelihood estimators (MLE) are unsatisfactory at higher noise levels because the underlying inverse problem is ill-posed. This article provides a pipeline to enhance the synthesis of such images in three-dimensional (3D) using a deep learning (DL) neural network architecture for spatial regularization in a personalized setting where having more than a few training images is impractical.Our DL enhancements employ a Deep Image Prior (DIP) with a U-net type denoising architecture that includes situations with minimal training data, such as personalized syn-MRI. We provide a general workflow for syn-MRI from three or more training images. Our workflow, called DIPsyn-MRI, uses DIP to enhance training images, then obtains parametric images using LS or MLE before synthesizing images at desired design parameter settings. DIPsyn-MRI is implemented in our publicly available Python package DeepSynMRI available at: https://github.com/StatPal/DeepSynMRI.METHODSOur DL enhancements employ a Deep Image Prior (DIP) with a U-net type denoising architecture that includes situations with minimal training data, such as personalized syn-MRI. We provide a general workflow for syn-MRI from three or more training images. Our workflow, called DIPsyn-MRI, uses DIP to enhance training images, then obtains parametric images using LS or MLE before synthesizing images at desired design parameter settings. DIPsyn-MRI is implemented in our publicly available Python package DeepSynMRI available at: https://github.com/StatPal/DeepSynMRI.We demonstrate feasibility and improved performance of DIPsyn-MRI on 3D datasets acquired using the Brainweb interface for spin-echo and FLASH imaging sequences, at different noise levels. Our DL enhancements improve syn-MRI in the presence of different intensity nonuniformity levels of the magnetic field, for all but very low noise levels.RESULTSWe demonstrate feasibility and improved performance of DIPsyn-MRI on 3D datasets acquired using the Brainweb interface for spin-echo and FLASH imaging sequences, at different noise levels. Our DL enhancements improve syn-MRI in the presence of different intensity nonuniformity levels of the magnetic field, for all but very low noise levels.This article provides recipes and software to realistically facilitate DL-enhanced personalized syn-MRI.CONCLUSIONThis article provides recipes and software to realistically facilitate DL-enhanced personalized syn-MRI.
Personalized synthetic MRI (syn-MRI) uses MR images of an individual subject acquired at a few design parameters (echo time, repetition time, flip angle) to obtain underlying parametric maps, from where MR images of that individual at other design parameter settings are synthesized. However, classical methods that use least-squares (LS) or maximum likelihood estimators (MLE) are unsatisfactory at higher noise levels because the underlying inverse problem is ill-posed. This article provides a pipeline to enhance the synthesis of such images in three-dimensional (3D) using a deep learning (DL) neural network architecture for spatial regularization in a personalized setting where having more than a few training images is impractical. Our DL enhancements employ a Deep Image Prior (DIP) with a U-net type denoising architecture that includes situations with minimal training data, such as personalized syn-MRI. We provide a general workflow for syn-MRI from three or more training images. Our workflow, called DIPsyn-MRI, uses DIP to enhance training images, then obtains parametric images using LS or MLE before synthesizing images at desired design parameter settings. DIPsyn-MRI is implemented in our publicly available Python package DeepSynMRI available at: https://github.com/StatPal/DeepSynMRI. We demonstrate feasibility and improved performance of DIPsyn-MRI on 3D datasets acquired using the Brainweb interface for spin-echo and FLASH imaging sequences, at different noise levels. Our DL enhancements improve syn-MRI in the presence of different intensity nonuniformity levels of the magnetic field, for all but very low noise levels. This article provides recipes and software to realistically facilitate DL-enhanced personalized syn-MRI.
Purpose Personalized synthetic MRI (syn‐MRI) uses MR images of an individual subject acquired at a few design parameters (echo time, repetition time, flip angle) to obtain underlying parametric (ρ,T1,T2)$$ \left(\rho, {\mathrm{T}}_1,{\mathrm{T}}_2\right) $$ maps, from where MR images of that individual at other design parameter settings are synthesized. However, classical methods that use least‐squares (LS) or maximum likelihood estimators (MLE) are unsatisfactory at higher noise levels because the underlying inverse problem is ill‐posed. This article provides a pipeline to enhance the synthesis of such images in three‐dimensional (3D) using a deep learning (DL) neural network architecture for spatial regularization in a personalized setting where having more than a few training images is impractical. Methods Our DL enhancements employ a Deep Image Prior (DIP) with a U‐net type denoising architecture that includes situations with minimal training data, such as personalized syn‐MRI. We provide a general workflow for syn‐MRI from three or more training images. Our workflow, called DIPsyn‐MRI, uses DIP to enhance training images, then obtains parametric images using LS or MLE before synthesizing images at desired design parameter settings. DIPsyn‐MRI is implemented in our publicly available Python package DeepSynMRI available at: https://github.com/StatPal/DeepSynMRI. Results We demonstrate feasibility and improved performance of DIPsyn‐MRI on 3D datasets acquired using the Brainweb interface for spin‐echo and FLASH imaging sequences, at different noise levels. Our DL enhancements improve syn‐MRI in the presence of different intensity nonuniformity levels of the magnetic field, for all but very low noise levels. Conclusion This article provides recipes and software to realistically facilitate DL‐enhanced personalized syn‐MRI.
Author Maitra, Ranjan
Dutta, Somak
Pal, Subrata
AuthorAffiliation 1 Department of Statistics Iowa State University Ames Iowa USA
AuthorAffiliation_xml – name: 1 Department of Statistics Iowa State University Ames Iowa USA
Author_xml – sequence: 1
  givenname: Subrata
  orcidid: 0000-0002-3325-431X
  surname: Pal
  fullname: Pal, Subrata
  organization: Iowa State University
– sequence: 2
  givenname: Somak
  orcidid: 0000-0002-5613-8987
  surname: Dutta
  fullname: Dutta, Somak
  organization: Iowa State University
– sequence: 3
  givenname: Ranjan
  orcidid: 0000-0002-3515-8532
  surname: Maitra
  fullname: Maitra, Ranjan
  email: maitra@iastate.edu
  organization: Iowa State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36420834$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1rFDEUxYNU7Lb64D8gA77ow7Q3nzN5klL8gi5K0eeQydzdTZlJ1mTWsv71ZtxatKBPgeR3T84954QchRiQkOcUzigAOx_TeMa0ZM0jsqCSsZpJLY7IAhoBNadaHJOTnG8AQOtGPCHHXAkGLRcLcvEZU47BDv4H9lXeh2mDk3fV8rryo137sK5u_bSpesRtNaBNYb7CsLHB4Yhhyk_J45UdMj67O0_J13dvv1x-qK8-vf94eXFVOyFEU3MLILRQ1qqGa6a6vgMlkIOzdGU7RVdUOtlL1woJzHVMsxYVhdYWmgvNT8mbg-52143Yu_J3soPZpuIz7U203vz9EvzGrON3Q6GEBGxWeHWnkOK3HebJjD47HAYbMO6yYcVYIyhIVdCXD9CbuEslpplqQLaiUbxQL_60dO_ld7wFeH0AXIo5J1zdIxTMXJ0p1Zlf1RX2_AHr_GQnH-dt_PC_iVs_4P7f0mZ5vTxM_AQHF6ks
CitedBy_id crossref_primary_10_3390_bioengineering10091078
crossref_primary_10_1080_10618600_2023_2284208
crossref_primary_10_1016_j_apradiso_2025_112049
crossref_primary_10_1088_1361_6560_ad94c7
crossref_primary_10_1002_mp_16884
Cites_doi 10.1117/12.2293860
10.1103/PhysRev.69.37
10.1109/TMI.2019.2901750
10.1214/ss/1177013525
10.1016/j.neuroimage.2011.08.056
10.1109/TIP.2003.819861
10.1016/j.zemedi.2018.11.002
10.1117/12.2511653
10.1002/mrm.27786
10.1007/s13571‐012‐0055‐y
10.1002/(SICI)1522-2594(199912)42:6<1014::AID-MRM4>3.0.CO;2-F
10.1109/PROC.1983.12592
10.1002/j.1538-7305.1945.tb00453.x
10.1103/PhysRev.69.127
10.1016/j.neunet.2019.08.025
10.1148/radiology.155.3.4001377
10.1093/biomet/82.2.237
10.1103/PhysRev.70.474
10.1002/mrm.21635
10.1006/cbmr.1996.0014
10.1103/PhysRev.70.460
10.1109/CVPR.2018.00984
10.1109/TMI.2009.2039487
10.1007/978-3-030-00889-5_1
10.1088/1361-6560/ac46dd
10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
10.1007/978-3-319-24574-4_28
10.1002/mrm.20314
10.1002/mrm.1910030602
10.3174/ajnr.A5927
10.1148/radiology.155.2.3983396
10.1002/jmri.27440
10.1109/TMI.2021.3084288
10.1002/mrm.1910010304
10.1016/S0730-725X(97)00199-9
10.1109/TMI.2018.2888491
10.1109/TMI.2009.2024415
10.1118/1.595711
10.1002/j.1538-7305.1944.tb00874.x
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.29527
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Biochemistry Abstracts 1
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate PAL et al
EISSN 1522-2594
EndPage 1643
ExternalDocumentID PMC10100029
36420834
10_1002_mrm_29527
MRM29527
Genre technicalNote
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: R21EB034184
– fundername: NIBIB NIH HHS
  grantid: R21EB034184
– fundername: NIBIB NIH HHS
  grantid: R21 EB016212
– fundername: NIBIB NIH HHS
  grantid: R21 EB034184
– fundername: ;
  grantid: R21EB034184
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4447-3a004946aa673926bdb064e30ca1fab61f15c5d5c84502cb2928e6108a3923493
IEDL.DBID 24P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000889235700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Nov 04 02:06:45 EST 2025
Sun Nov 09 09:25:02 EST 2025
Tue Oct 07 06:47:26 EDT 2025
Mon Jul 21 06:02:30 EDT 2025
Sat Nov 29 06:34:36 EST 2025
Tue Nov 18 22:49:39 EST 2025
Wed Jan 22 16:20:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords denoising
deep-learning
Bloch transform
synthetic MRI
deep-image-prior
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4447-3a004946aa673926bdb064e30ca1fab61f15c5d5c84502cb2928e6108a3923493
Notes Funding information
National Institute of Biomedical Imaging and Bioengineering, Grant/Award Number: R21EB034184
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information National Institute of Biomedical Imaging and Bioengineering, Grant/Award Number: R21EB034184
ORCID 0000-0002-3325-431X
0000-0002-5613-8987
0000-0002-3515-8532
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29527
PMID 36420834
PQID 2770584763
PQPubID 1016391
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10100029
proquest_miscellaneous_2739741056
proquest_journals_2770584763
pubmed_primary_36420834
crossref_primary_10_1002_mrm_29527
crossref_citationtrail_10_1002_mrm_29527
wiley_primary_10_1002_mrm_29527_MRM29527
PublicationCentury 2000
PublicationDate April 2023
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1982; 16
2020; 121
1998
2022; 67
2019; 38
1983; 71
2019; 10949
1999; 42
2018; 10574
2018; 10573
1946; 69
1999
2009; 28
1998; 16
1986; 1
1995; 82
2019; 82
1996; 29
1946; 70
2019; 40
1997; 10
2010; 29
1984; 1
2020
1986; 3
1945; 24
2013; 75
2004; 13
2005; 53
2018
2019; 29
1982
2015
2014
2022; 55
1985; 12
2008; 60
2021; 40
2018; 38
1944; 23
1985; 155
2012; 62
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
Mansfield P (e_1_2_10_3_1) 1982
Maitra R (e_1_2_10_11_1) 1998
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
Katims LM (e_1_2_10_2_1) 1982; 16
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Haacke EM (e_1_2_10_40_1) 1999
e_1_2_10_29_1
Bermudez C (e_1_2_10_16_1) 2018
R Core Team (e_1_2_10_35_1) 2020
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – start-page: 9446
  year: 2018
  end-page: 9454
– start-page: 39
  year: 1998
  end-page: 47
– volume: 55
  start-page: 1013
  year: 2022
  end-page: 1025
  article-title: Synthetic MRI: technologies and applications in neuroradiology
  publication-title: J Magnet Reson Imaging
– volume: 38
  start-page: 1655
  year: 2018
  end-page: 1665
  article-title: PET image reconstruction using deep image prior
  publication-title: IEEE Trans Med Imaging
– volume: 53
  start-page: 237
  year: 2005
  end-page: 241
  article-title: High‐resolution and mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2
  publication-title: Magnet Reson Med
– volume: 82
  start-page: 237
  year: 1995
  end-page: 250
  article-title: A Bayesian approach to synthetic magnetic resonance imaging
  publication-title: Biometrika
– volume: 38
  start-page: 2375
  year: 2019
  end-page: 2388
  article-title: Image synthesis in multi‐contrast MRI with conditional generative adversarial networks
  publication-title: IEEE Trans Med Imaging
– volume: 24
  start-page: 46
  year: 1945
  end-page: 156
  article-title: Mathematical analysis of random noise
  publication-title: Bell Syst Techn J
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– volume: 67
  year: 2022
  article-title: Generation of quantification maps and weighted images from synthetic magnetic resonance imaging using deep learning network
  publication-title: Phys Med Biol
– volume: 82
  start-page: 1177
  year: 2019
  end-page: 1186
  article-title: Separation of water and fat signal in whole‐body gradient echo scans using convolutional neural networks
  publication-title: Magnet Reson Med
– volume: 12
  start-page: 232
  year: 1985
  end-page: 233
  article-title: Measurement of signal intensities in the presence of noise in MR images
  publication-title: Med Phys
– volume: 10573
  start-page: 840
  year: 2018
  end-page: 849
– volume: 70
  start-page: 474
  year: 1946
  end-page: 485
  article-title: The nuclear induction experiment
  publication-title: Phys Rev.
– volume: 71
  start-page: 3
  year: 1983
  article-title: An introduction to NMR imaging: from the Bloch equation to the imaging equation
  publication-title: Proc IEEE
– volume: 155
  start-page: 437
  year: 1985
  end-page: 442
  article-title: Multiple spin‐echo magnetic resonance imaging
  publication-title: Radiology
– start-page: 3
  year: 2018
  end-page: 11
– year: 2014
– volume: 29
  start-page: 895
  year: 2010
  end-page: 902
  article-title: Synthetic magnetic resonance imaging revisited
  publication-title: IEEE Trans Med Imaging
– volume: 42
  start-page: 1014
  year: 1999
  end-page: 1018
  article-title: Real‐time 3D image registration for functional MRI
  publication-title: Magnet Reson Med
– volume: 40
  start-page: 224
  year: 2019
  end-page: 230
  article-title: Improving the quality of synthetic FLAIR images with deep learning using a conditional generative adversarial network for pixel‐by‐pixel image translation
  publication-title: Am J Neuroradiol
– year: 1982
– volume: 10949
  start-page: 21
  year: 2019
  end-page: 27
– volume: 155
  start-page: 731
  year: 1985
  end-page: 738
  article-title: Synthesized MR images: comparison with acquired images
  publication-title: Radiology
– volume: 29
  start-page: 162
  year: 1996
  end-page: 173
  article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Comput Biomed Res Int J
– volume: 75
  start-page: 293
  year: 2013
  end-page: 318
  article-title: On the expectation‐maximization algorithm for Rice‐Rayleigh mixtures with application to estimating the noise parameter in magnitude MR datasets
  publication-title: Sankhyā Ind J Stat Ser B
– volume: 1
  start-page: 316
  year: 1984
  end-page: 338
  article-title: Signal to noise in derived NMR images
  publication-title: Magnet Reson Med
– volume: 1
  start-page: 502
  year: 1986
  end-page: 527
  article-title: A statistical perspective on Ill‐posed inverse problems
  publication-title: Stat Sci
– volume: 16
  start-page: 213
  year: 1982
  end-page: 216
  article-title: Nuclear magnetic resonance imaging: methods and current status
  publication-title: Med Instrum
– volume: 60
  start-page: 320
  year: 2008
  end-page: 329
  article-title: Rapid magnetic resonance quantification on the brain: optimization for clinical usage
  publication-title: Magnet Reson Med
– year: 2020
– volume: 70
  start-page: 460
  year: 1946
  end-page: 474
  article-title: Nuclear induction
  publication-title: Phys Rev
– volume: 10574
  start-page: 408
  year: 2018
  end-page: 414
– volume: 29
  start-page: 102
  year: 2019
  end-page: 127
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Zeitschrift für Medizinische Physik
– volume: 16
  start-page: 87
  year: 1998
  end-page: 90
  article-title: Estimation of the noise in magnitude MR images
  publication-title: Magnet Reson Imaging
– volume: 23
  start-page: 282
  year: 1944
  end-page: 332
  article-title: Mathematical analysis of random noise
  publication-title: Bell Syst Techn J
– volume: 10
  start-page: 171
  year: 1997
  end-page: 178
  article-title: Software tools for analysis and visualization of fMRI data
  publication-title: NMR Biomed
– volume: 69
  start-page: 37
  year: 1946
  end-page: 38
  article-title: Resonance absorption by nuclear magnetic moments in a solid
  publication-title: Phys. Rev.
– volume: 69
  start-page: 127
  year: 1946
  article-title: Nuclear induction
  publication-title: Phys Rev
– volume: 40
  start-page: 3337
  year: 2021
  end-page: 3348
  article-title: Time‐dependent deep image prior for dynamic MRI
  publication-title: IEEE Trans Med Imaging
– volume: 3
  start-page: 823
  year: 1986
  end-page: 833
  article-title: RARE imaging – A fast imaging method for clinical MR
  publication-title: Magnet Reson Med
– volume: 62
  start-page: 743
  year: 2012
  end-page: 747
  article-title: AFNI: what a long strange trip it has been
  publication-title: NeuroImage
– year: 2015
– volume: 121
  start-page: 74
  year: 2020
  end-page: 87
  article-title: MultiResUNet: rethinking the U‐Net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw
– volume: 28
  start-page: 1615
  year: 2009
  end-page: 1622
  article-title: Noise estimation in magnitude MR datasets
  publication-title: IEEE Trans Med Imaging
– year: 1999
– ident: e_1_2_10_14_1
  doi: 10.1117/12.2293860
– ident: e_1_2_10_36_1
  doi: 10.1103/PhysRev.69.37
– ident: e_1_2_10_24_1
  doi: 10.1109/TMI.2019.2901750
– ident: e_1_2_10_30_1
– ident: e_1_2_10_48_1
  doi: 10.1214/ss/1177013525
– ident: e_1_2_10_32_1
  doi: 10.1016/j.neuroimage.2011.08.056
– ident: e_1_2_10_49_1
  doi: 10.1109/TIP.2003.819861
– volume: 16
  start-page: 213
  year: 1982
  ident: e_1_2_10_2_1
  article-title: Nuclear magnetic resonance imaging: methods and current status
  publication-title: Med Instrum
– volume-title: NMR Imaging in Biomedicine
  year: 1982
  ident: e_1_2_10_3_1
– ident: e_1_2_10_17_1
  doi: 10.1016/j.zemedi.2018.11.002
– ident: e_1_2_10_26_1
  doi: 10.1117/12.2511653
– ident: e_1_2_10_29_1
  doi: 10.1002/mrm.27786
– ident: e_1_2_10_47_1
  doi: 10.1007/s13571‐012‐0055‐y
– ident: e_1_2_10_33_1
  doi: 10.1002/(SICI)1522-2594(199912)42:6<1014::AID-MRM4>3.0.CO;2-F
– ident: e_1_2_10_4_1
  doi: 10.1109/PROC.1983.12592
– ident: e_1_2_10_45_1
  doi: 10.1002/j.1538-7305.1945.tb00453.x
– ident: e_1_2_10_38_1
  doi: 10.1103/PhysRev.69.127
– ident: e_1_2_10_21_1
– ident: e_1_2_10_22_1
  doi: 10.1016/j.neunet.2019.08.025
– ident: e_1_2_10_8_1
  doi: 10.1148/radiology.155.3.4001377
– ident: e_1_2_10_10_1
  doi: 10.1093/biomet/82.2.237
– ident: e_1_2_10_39_1
  doi: 10.1103/PhysRev.70.474
– ident: e_1_2_10_6_1
  doi: 10.1002/mrm.21635
– ident: e_1_2_10_31_1
  doi: 10.1006/cbmr.1996.0014
– ident: e_1_2_10_37_1
  doi: 10.1103/PhysRev.70.460
– ident: e_1_2_10_28_1
  doi: 10.1109/CVPR.2018.00984
– start-page: 39
  volume-title: Bayesian Inference in Inverse Problems. Volume 3459 of Proceedings of the Society of Photo‐Optical Instrumentation Engineers (SPIE) Meetings
  year: 1998
  ident: e_1_2_10_11_1
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2020
  ident: e_1_2_10_35_1
– ident: e_1_2_10_12_1
  doi: 10.1109/TMI.2009.2039487
– volume-title: Magnetic Resonance Imaging: Physical Principles and Sequence Design
  year: 1999
  ident: e_1_2_10_40_1
– start-page: 408
  volume-title: Medical Imaging 2018: Image Processing
  year: 2018
  ident: e_1_2_10_16_1
– ident: e_1_2_10_19_1
  doi: 10.1007/978-3-030-00889-5_1
– ident: e_1_2_10_23_1
  doi: 10.1088/1361-6560/ac46dd
– ident: e_1_2_10_34_1
  doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
– ident: e_1_2_10_18_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_10_5_1
  doi: 10.1002/mrm.20314
– ident: e_1_2_10_15_1
  doi: 10.1002/mrm.1910030602
– ident: e_1_2_10_20_1
  doi: 10.3174/ajnr.A5927
– ident: e_1_2_10_42_1
– ident: e_1_2_10_9_1
  doi: 10.1148/radiology.155.2.3983396
– ident: e_1_2_10_13_1
  doi: 10.1002/jmri.27440
– ident: e_1_2_10_25_1
  doi: 10.1109/TMI.2021.3084288
– ident: e_1_2_10_7_1
  doi: 10.1002/mrm.1910010304
– ident: e_1_2_10_43_1
  doi: 10.1016/S0730-725X(97)00199-9
– ident: e_1_2_10_27_1
  doi: 10.1109/TMI.2018.2888491
– ident: e_1_2_10_46_1
  doi: 10.1109/TMI.2009.2024415
– ident: e_1_2_10_41_1
  doi: 10.1118/1.595711
– ident: e_1_2_10_44_1
  doi: 10.1002/j.1538-7305.1944.tb00874.x
SSID ssj0009974
Score 2.452884
Snippet Purpose Personalized synthetic MRI (syn‐MRI) uses MR images of an individual subject acquired at a few design parameters (echo time, repetition time, flip...
Click here for author‐reader discussions
Personalized synthetic MRI (syn-MRI) uses MR images of an individual subject acquired at a few design parameters (echo time, repetition time, flip angle) to...
PurposePersonalized synthetic MRI (syn‐MRI) uses MR images of an individual subject acquired at a few design parameters (echo time, repetition time, flip...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1634
SubjectTerms Bloch transform
Computer architecture
Customization
Deep Learning
deep‐image‐prior
denoising
Design parameters
Image acquisition
Image enhancement
Image Processing, Computer-Assisted - methods
Inverse problems
Low noise
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Maximum likelihood estimators
Neural networks
Neural Networks, Computer
Noise levels
Noise reduction
Nonuniformity
Regularization
Signal-To-Noise Ratio
Software
Synthesis
synthetic MRI
Technical Note
Technical Note—Computer Processing and Modeling
Training
Workflow
Title Personalized synthetic MR imaging with deep learning enhancements
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29527
https://www.ncbi.nlm.nih.gov/pubmed/36420834
https://www.proquest.com/docview/2770584763
https://www.proquest.com/docview/2739741056
https://pubmed.ncbi.nlm.nih.gov/PMC10100029
Volume 89
WOSCitedRecordID wos000889235700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VFioutBQKgVK5iAOX0MR2_CFOFe2KSt3VakXF3iLH8dKV2LTatEjw6_E4H2VVkJB6iRJ5nDi2x36yx-8BvLNMGKecim1S8Bi1HGLtUhtbwc3MmkSWzgSxCTkaqelUj9fgY3cWpuGH6Bfc0DPCeI0Obor68JY0dLFcfKA6o_IBbKQpU6jbQPn4lnFXNxTMkuNAo3lHK5TQwz7r6mR0B2HeDZT8E8CGGWiwda-yb8OTFniSo6anPIU1V-3A5rDdWt-BRyEW1NbP4GjcAfRfriT1z8pjRJ-JDCdkvgiiRgRXb0np3BVpVSe-EVddYAcKJ-aew_ng5Munz3GrtBBbzrkfZUzgiRHGCOkBkyjKwkMVxxJr0pkpRDpLM5uVmVU8S6gtqKbKeeCljLdmXLNdWK8uK_cSiPWAraBMJEbgG7QuU2ksylZZIxNZRPC-q_LctjTkqIbxPW8IlGnuKycPlRPB2970quHe-JvRXtdueet-dU6lTHD_V7AIDvpk7zi4G2Iqd3mDNh6KYZCriOBF08z9V5jAqAPGI1ArHaA3QFLu1ZRqfhHIuf0Qh7OM9v8ZesC_S54PJ8Nw8-r_TV_DY9S7b0KH9mD9ennj3sBD--N6Xi_3gwP4q5yqfdg4ngzOz_zT19PRb1TGDEw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RpQUuUCiP8DRVD1xSEsexY6kXhIpAkBVCVOUWOY4XVmID2l2Q4NfjcR50RStV4hbJ48SxZ-xP9vj7AL7piCuTmMTXQc581HLwpQm1rzlTPa0CURjlxCZEt5tcXcnzKfjR3IWp-CHaDTeMDDdfY4DjhvT-K2voYDj4TmVMxQeYZhZooHDD75PuK-WurDiYBcOZRrKGVyig-23VydXoDcR8myn5J4J1S9DRwvsa_xnma-hJDipfWYQpUy7BTFofri_BJ5cNqkdf4OC8gejPpiCjp9KiRFuJpBekP3CyRgT3b0lhzD2pdSeuiSlv0IXcnbll-HX08_Lw2K-1FnzNGLPzjHJMMVwpLixk4nmRW7BiokCrsKdyHvbCWMdFrBMWB1TnVNLEWOiVKGsdMRmtQKe8K80aEG0hW04jHiiOb5CyCIXSKFyllQhE7sFe0-eZronIUQ_jNqsolGlmOydznePB19b0vmLf-JvRZjNwWR2Ao4wKEeAJMI882G2LbejgeYgqzd0D2lgwhmmu3IPVapzbr0Qc8w4i5kEy4QGtAdJyT5aU_RtHz20nOVxnpP1P5wL_bnmWXqTuYf3_TXdg9vgyPcvOTrqnGzBHLeaqEok2oTMePpgt-Kgfx_3RcNtFwwvtsA0N
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL2CMhAvsDE-Amzzpj3sJZA4jh1LvCCg2jRaVdWQeIscx4VKNFQtIMGvx9f5gIohIfEWydeJY99rH9nX5wD81BFXJjGJr4OM-ajl4EsTal9zpgZaBSI3yolNiG43OT-XvTk4qO_ClPwQzYYbRoabrzHAzTgf7D-xho4moz0qYyrmYYGhiEwLFo777bPTJ9JdWbIwC4ZzjWQ1s1BA95vKs-vRC5D5MlfyOYZ1i1B79X3N_wgrFfgkh6W3fII5U6zBUqc6Xl-DRZcPqqef4bBXg_QHk5PpfWFxoq1EOn0yHDlhI4I7uCQ3Zkwq5YkLYopLdCJ3a24dzton_45--5Xagq8ZY3amUY4rhivFhQVNPMszC1dMFGgVDlTGw0EY6ziPdcLigOqMSpoYC74SZa0jJqMNaBXXhdkCoi1oy2jEA8XxDVLmoVAapau0EoHIPPhV93mqKypyVMS4SksSZZrazkld53jwozEdl_wb_zParQcurUJwmlIhAjwD5pEH35tiGzx4IqIKc32LNhaOYaIr92CzHOfmKxHHzIOIeZDMeEBjgMTcsyXF8NIRdNtpDlcaaf_TucDrLU87_Y572H676TdY6h2309M_3b87sEwt6CqTC3ehdTO5NV_gg767GU4nX6tweASpLA2z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+synthetic+MR+imaging+with+deep+learning+enhancements&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Pal%2C+Subrata&rft.au=Dutta%2C+Somak&rft.au=Maitra%2C+Ranjan&rft.date=2023-04-01&rft.eissn=1522-2594&rft.volume=89&rft.issue=4&rft.spage=1634&rft_id=info:doi/10.1002%2Fmrm.29527&rft_id=info%3Apmid%2F36420834&rft.externalDocID=36420834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon