Hybrid multi-swarm particle swarm optimisation based multi-objective reactive power dispatch

Most of the real-world optimisation problems are subject to different types of constraints and are known as constrained optimisation problems. Reactive power dispatch (RPD) in electrical power system is also a non-linear, multi-objective or a single objective constrained optimisation problem. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET generation, transmission & distribution Jg. 9; H. 8; S. 727 - 739
Hauptverfasser: Srivastava, Laxmi, Singh, Himmat
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 21.05.2015
Schlagworte:
ISSN:1751-8687, 1751-8695
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Most of the real-world optimisation problems are subject to different types of constraints and are known as constrained optimisation problems. Reactive power dispatch (RPD) in electrical power system is also a non-linear, multi-objective or a single objective constrained optimisation problem. In this study, hybrid multi-swarm particle swarm optimisation (HMPSO) algorithm has been proposed to solve the RPD problem. HMPSO is one of the recently proposed population based search algorithm, in which the existing swarm is partitioned into several sub-swarms. Particle swarm optimisation is applied as the search engine for each sub-swarm. In addition, to explore more promising regions of the search space, differential evolution (DE) algorithm is implemented to improve the personal best of each particle. The RPD problem is formulated as non-linear, constrained multi-objective optimisation problem with equality and inequality constraints for minimisation of power losses and improvement of voltage profile simultaneously. To find the Pareto optimal set for RPD problem, weighted sum method has been applied. Afterwards, for finding the preferred solution out of the Pareto-optimal set, fuzzy membership function has been used. Effectiveness of the HMPSO algorithm has been verified on the standard IEEE 30-bus and a practical 75-bus Indian systems.
AbstractList Most of the real-world optimisation problems are subject to different types of constraints and are known as constrained optimisation problems. Reactive power dispatch (RPD) in electrical power system is also a non-linear, multi-objective or a single objective constrained optimisation problem. In this study, hybrid multi-swarm particle swarm optimisation (HMPSO) algorithm has been proposed to solve the RPD problem. HMPSO is one of the recently proposed population based search algorithm, in which the existing swarm is partitioned into several sub-swarms. Particle swarm optimisation is applied as the search engine for each sub-swarm. In addition, to explore more promising regions of the search space, differential evolution (DE) algorithm is implemented to improve the personal best of each particle. The RPD problem is formulated as non-linear, constrained multi-objective optimisation problem with equality and inequality constraints for minimisation of power losses and improvement of voltage profile simultaneously. To find the Pareto optimal set for RPD problem, weighted sum method has been applied. Afterwards, for finding the preferred solution out of the Pareto-optimal set, fuzzy membership function has been used. Effectiveness of the HMPSO algorithm has been verified on the standard IEEE 30-bus and a practical 75-bus Indian systems.
Author Singh, Himmat
Srivastava, Laxmi
Author_xml – sequence: 1
  givenname: Laxmi
  surname: Srivastava
  fullname: Srivastava, Laxmi
  email: laxmigwl@gmail.com
  organization: Department of Electrical Engineering, Madhav Institute of Technology and Science, Gwalior, M.P., India
– sequence: 2
  givenname: Himmat
  surname: Singh
  fullname: Singh, Himmat
  organization: Department of Electrical Engineering, Madhav Institute of Technology and Science, Gwalior, M.P., India
BookMark eNqFkEFLwzAYhoMo6KY_wFuPeuhM0qRtvOncVBC8zJsQ0vSrZnRNTTLH_r2tVRERPeULvM_3fjwjtNvYBhA6JnhCMBNnBkL8FMoJxYRNMEvFDjogGSdxngq--zXn2T4aeb_EmPOUZQfo8WZbOFNGq3UdTOw3yq2iVrlgdA3R8LVtMCvjVTC2iQrl4TNtiyXoYF4hcqCGobUbcFFpfKuCfj5Ee5WqPRx9vGP0MJ8tpjfx3f317fTiLtaMsTSuGC3yinOhFeeYF7QohVBFjqFMEkxZQbM8z3SGFQaR85KBIBWpuk6WY06TZIxOhr2tsy9r8EF292qoa9WAXXtJMpHQRDBMuigZotpZ7x1UsnVmpdxWEix7k7IzKTuTsjcpe5Mdk_1gtAnvOoJTpv6TPB_Ijalh-3-VvF5c0cs5xoymHRwPcB9b2rVrOod_lp3-kr-dLfqt3zraskreAPYtrMs
CitedBy_id crossref_primary_10_29328_journal_jairi_1001003
crossref_primary_10_3390_en13215679
crossref_primary_10_1016_j_swevo_2018_04_011
crossref_primary_10_3390_s21155246
crossref_primary_10_1016_j_eswa_2017_06_009
crossref_primary_10_1155_2018_7276585
crossref_primary_10_1155_2019_8418369
crossref_primary_10_3390_en12030395
crossref_primary_10_1016_j_epsr_2019_106031
crossref_primary_10_1016_j_asoc_2018_04_051
crossref_primary_10_3390_en11123499
crossref_primary_10_1016_j_energy_2019_116790
crossref_primary_10_1080_15567036_2021_1957043
crossref_primary_10_1016_j_energy_2017_12_005
crossref_primary_10_1016_j_epsr_2021_107467
crossref_primary_10_1049_iet_gtd_2018_6669
crossref_primary_10_1108_JEDT_08_2018_0130
crossref_primary_10_1080_15567249_2021_1942595
crossref_primary_10_1080_15325008_2017_1311387
crossref_primary_10_3390_en14102831
crossref_primary_10_1007_s12065_025_01081_3
crossref_primary_10_1109_TSTE_2019_2914063
crossref_primary_10_1155_2022_8256908
crossref_primary_10_3390_computers11040048
crossref_primary_10_1088_1757_899X_643_1_012089
crossref_primary_10_1007_s00202_024_02396_7
crossref_primary_10_1007_s40031_021_00636_z
crossref_primary_10_1007_s11831_025_10326_4
crossref_primary_10_1007_s10489_018_1167_5
crossref_primary_10_1109_ACCESS_2020_2974961
crossref_primary_10_1007_s00202_023_01778_7
crossref_primary_10_1016_j_asoc_2017_02_010
crossref_primary_10_26634_jee_16_1_19099
crossref_primary_10_1016_j_ref_2022_07_001
crossref_primary_10_1109_ACCESS_2021_3075777
Cites_doi 10.1109/CEC.2006.1688284
10.1016/S0378‐7796(02)00209‐2
10.1016/j.ijepes.2012.04.020
10.1109/TPAS.1985.323466
10.1016/S0142‐0615(01)00067‐9
10.1016/j.ijepes.2012.03.030
10.1109/TSMCB.2006.886164
10.1109/59.317674
10.1109/59.466531
10.1109/TPAS.1968.292150
10.1016/j.ijepes.2012.11.002
10.1016/j.ijepes.2004.07.006
10.1109/4235.985692
10.1016/j.epsr.2010.10.005
10.1049/ip‐gtd:19952216
10.1016/j.ijepes.2013.03.016
10.1016/j.ijepes.2013.10.015
10.1007/978-3-540-78297-1_1
10.1109/59.898095
10.1016/j.cie.2011.06.024
10.1109/TPAS.1984.318223
10.1016/j.ijepes.2012.05.032
10.1109/59.574940
10.1007/s11704‐009‐0010‐x
10.1016/j.ijepes.2008.03.003
10.1109/TPAS.1981.316646
10.1109/TSMCB.2006.873185
10.1109/59.317548
10.1109/TPWRS.2005.846049
10.1016/j.ijepes.2011.09.003
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2015 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2015 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
KR7
L7M
DOI 10.1049/iet-gtd.2014.0469
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList

Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8695
EndPage 739
ExternalDocumentID 10_1049_iet_gtd_2014_0469
GTD2BF00426
Genre article
GrantInformation_xml – fundername: University Grants Commission (UGC), New Delhi, India
  funderid: 41–657/2012(SR)
GroupedDBID 0R
24P
29I
4IJ
6IK
8VB
AAJGR
ABPTK
ACIWK
ALMA_UNASSIGNED_HOLDINGS
BFFAM
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
LOTEE
LXI
M43
MS
NADUK
NXXTH
O9-
OCL
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IGS
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
AAYXX
AFFHD
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
7SP
7TB
8FD
F28
FR3
KR7
L7M
ID FETCH-LOGICAL-c4446-f42b8f559ca5505b2bd99ab80ed33024b27887c70a0e985d4e91f1feac4805233
IEDL.DBID 24P
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354245900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8687
IngestDate Thu Sep 04 16:19:18 EDT 2025
Tue Nov 18 21:51:39 EST 2025
Wed Oct 29 21:17:41 EDT 2025
Wed Jan 22 16:32:13 EST 2025
Tue Jan 05 21:52:51 EST 2021
Thu May 09 18:26:39 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Pareto optimisation
multiobjective optimisation problem
particle swarm optimisation
search engine
power losses minimisation
fuzzy set theory
hybrid multiswarm particle swarm optimisation
RPD
fuzzy membership function
load dispatching
evolutionary computation
population based search algorithm
differential evolution algorithm
multiobjective reactive power dispatch
constrained optimisation problems
Pareto optimal set
search problems
HMPSO algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4446-f42b8f559ca5505b2bd99ab80ed33024b27887c70a0e985d4e91f1feac4805233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-gtd.2014.0469
PQID 1793239401
PQPubID 23500
PageCount 13
ParticipantIDs iet_journals_10_1049_iet_gtd_2014_0469
wiley_primary_10_1049_iet_gtd_2014_0469_GTD2BF00426
proquest_miscellaneous_1793239401
crossref_primary_10_1049_iet_gtd_2014_0469
crossref_citationtrail_10_1049_iet_gtd_2014_0469
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2015-05-21
PublicationDateYYYYMMDD 2015-05-21
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-21
  day: 21
PublicationDecade 2010
PublicationTitle IET generation, transmission & distribution
PublicationYear 2015
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Wu, Q.H.; Ma, J.T. (C9) 1995; 10
Abido, M.A.; Bakhashwain, J.M. (C32) 2005; 27
Lai, L.L.; Ma, J.T. (C10) 1997; 12
Lee, K.Y.; Park, Y.M.; Ortiz, J.L. (C3) 1985; 104
Esmin, A.A.A.; Lambert-Torres, G.; de Souza, A.C.Z. (C17) 2005; 20
Wang, Y.; Cai, Z.; Guo, G. (C25) 2007; 37
Singh, H.; Srivastava, L. (C15) 2014; 55
Clerc, M.; Kennedy, J. (C29) 2002; 6
Roy, P.K.; Ghoshal, S.P.; Thakur, S.S. (C7) 2012; 43
Mansour, M.O.; Abdel-Rahman, T.M. (C5) 1984; 103
Saber, A.Y. (C21) 2012; 34
Araújo, T.F.; Uturbey, W. (C20) 2013; 47
Dommel, H.W.; Tinney, W.F. (C2) 1968; 87
Granville, S. (C4) 1994; 9
Wang, Y.; Cai, Z. (C24) 2009; 3
Yoshida, H.; Kawata, K.; Fukuyama, Y. (C11) 2000; 15
Krohling, R.A.; Coelho, L.S. (C30) 2006; 36
Abido, M.A. (C1) 2002; 24
Abou, El Ela; Abido, M.A.; Spea, S.R. (C12) 2011; 81
Bhagwan Das, D.; Patvardhan, C. (C16) 2003; 65
Singh, S.N.; Srivastava, S.C. (C26) 1995; 142
Iba, K. (C8) 1994; 9
Badar Altaf, Q.H.; Umre, B.S.; Junghare, A.S. (C14) 2012; 41
Jia, D.; Zheng, G.; Qu, B.; Khan, M.K. (C23) 2011; 61
Varadarajan, M.; Swarup, K.S. (C13) 2008; 30
Farahmand, H.; Rashidinejad, M.; Mousavi, A. (C22) 2012; 42
Mamandur, K.R.C.; Chenoweth, R.D. (C6) 1981; 100
Li, Y.; Wang, Y.; Li, B. (C18) 2013; 52
2013; 47
1984; 103
2010
2011; 81
2002; 6
1981; 100
2006; 36
1995; 10
2011; 61
2005; 20
1985; 104
2006
2008; 30
2005; 27
2012; 34
1968; 87
2007; 37
1994; 9
2000; 15
2002; 24
1997; 12
2013; 52
2008; 116
2009; 3
1995; 142
2012; 43
2014; 55
2003; 65
2012; 42
2012; 41
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
Deb K. (e_1_2_8_28_2) 2010
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – volume: 24
  start-page: 563
  issue: 7
  year: 2002
  end-page: 571
  ident: C1
  article-title: Optimal power flow using particle swarm optimization
  publication-title: Electr. Power Energy Syst.
– volume: 41
  start-page: 133
  year: 2012
  end-page: 136
  ident: C14
  article-title: Reactive power control using dynamic particle swarm optimization for real power loss minimization
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 55
  start-page: 731
  year: 2014
  end-page: 740
  ident: C15
  article-title: Modified differential evolution algorithm for multi-objective VAR management
  publication-title: Int. J.Electr. Power Energy Syst.
– volume: 34
  start-page: 38
  year: 2012
  end-page: 46
  ident: C21
  article-title: Economic dispatch using particle swarm optimization with bacterial foraging effect
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 100
  start-page: 3185
  issue: 7
  year: 1981
  end-page: 3193
  ident: C6
  article-title: Optimal control of reactive power flow for improvements in voltage profiles and for real power loss minimization
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 87
  start-page: 1866
  year: 1968
  end-page: 1876
  ident: C2
  article-title: Optimal power flow solutions
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 103
  start-page: 246
  issue: 2
  year: 1984
  end-page: 255
  ident: C5
  article-title: Non-linear VAR optimization using decomposition and coordination
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 30
  start-page: 435
  year: 2008
  end-page: 441
  ident: C13
  article-title: Differential evolutionary algorithm for optimal reactive power dispatch
  publication-title: Electr. Power Energy Syst.
– volume: 42
  start-page: 240
  year: 2012
  end-page: 249
  ident: C22
  article-title: Hybrid mutation particle swarm optimisation method for available transfer capability enhancement
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 43
  start-page: 830
  year: 2012
  end-page: 838
  ident: C7
  article-title: Optimal VAR control for improvements in voltage profiles and for real power loss minimization using Biogeography Based Optimization
  publication-title: Electr. Power Energy Syst.
– volume: 65
  start-page: 83
  year: 2003
  end-page: 90
  ident: C16
  article-title: A new hybrid evolutionary strategy for reactive power dispatch
  publication-title: Electr. Power Syt. Res.
– volume: 20
  start-page: 859
  issue: 2
  year: 2005
  end-page: 866
  ident: C17
  article-title: A hybrid particle swarm optimization applied to loss power minimization
  publication-title: IEEE Trans. Power Syst.
– volume: 27
  start-page: 13
  year: 2005
  end-page: 20
  ident: C32
  article-title: Optimal VAR dispatch using a multiobjective evolutionary algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 15
  start-page: 1232
  issue: 4
  year: 2000
  end-page: 1239
  ident: C11
  article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment
  publication-title: IEEE Trans. Power Syst.
– volume: 52
  start-page: 25
  year: 2013
  end-page: 33
  ident: C18
  article-title: A hybrid artificial bee colony assisted differential evolution algorithm for optimal reactive power flow
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 61
  start-page: 1117
  issue: 4
  year: 2011
  end-page: 1122
  ident: C23
  article-title: A hybrid particle swarm optimization algorithm for high-dimensional problems
  publication-title: Comput. Ind. Eng.
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  end-page: 73
  ident: C29
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 9
  start-page: 98
  issue: 1
  year: 1994
  end-page: 105
  ident: C4
  article-title: Optimal reactive power dispatch through interior point methods
  publication-title: IEEE Trans. Power Syst.
– volume: 10
  start-page: 1243
  issue: 3
  year: 1995
  end-page: 1249
  ident: C9
  article-title: Power system optimal reactive power dispatch using evolutionary programming
  publication-title: IEEE Trans. Power. Syst.
– volume: 81
  start-page: 458
  year: 2011
  end-page: 464
  ident: C12
  article-title: Differential evolution algorithm for optimal reactive power dispatch
  publication-title: Electr. Power Syst. Res.
– volume: 47
  start-page: 205
  year: 2013
  end-page: 217
  ident: C20
  article-title: Performance assessment of PSO, DE and hybrid PSO–DE algorithms when applied to the dispatch of generation and demand
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 104
  start-page: 1147
  issue: 5
  year: 1985
  end-page: 1153
  ident: C3
  article-title: A united approach to optimal real and reactive power dispatch
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 3
  start-page: 38
  issue: 1
  year: 2009
  end-page: 52
  ident: C24
  article-title: A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems
  publication-title: Front. Comput. Sci. China
– volume: 142
  start-page: 576
  issue: 6
  year: 1995
  end-page: 582
  ident: C26
  article-title: Corrective action planning to achieve a feasible optimum power flow solution
  publication-title: Proc. Inst. Electr. Eng., Gen., Transm., Distrib.
– volume: 9
  start-page: 685
  issue: 2
  year: 1994
  end-page: 692
  ident: C8
  article-title: Reactive power optimization by genetic algorithms
  publication-title: IEEE Trans. Power Syst.
– volume: 36
  start-page: 1407
  issue: 6
  year: 2006
  end-page: 1416
  ident: C30
  article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern.
– volume: 12
  start-page: 198
  issue: 1
  year: 1997
  end-page: 206
  ident: C10
  article-title: Application of evolutionary programming to reactive power planning-comparison with nonlinear programming approach
  publication-title: IEEE Trans. Power Syst.
– volume: 37
  start-page: 560
  issue: 3
  year: 2007
  end-page: 575
  ident: C25
  article-title: Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern.
– volume: 100
  start-page: 3185
  issue: 7
  year: 1981
  end-page: 3193
  article-title: Optimal control of reactive power flow for improvements in voltage profiles and for real power loss minimization
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 15
  start-page: 1232
  issue: 4
  year: 2000
  end-page: 1239
  article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment
  publication-title: IEEE Trans. Power Syst.
– volume: 142
  start-page: 576
  issue: 6
  year: 1995
  end-page: 582
  article-title: Corrective action planning to achieve a feasible optimum power flow solution
  publication-title: Proc. Inst. Electr. Eng., Gen., Transm., Distrib.
– volume: 9
  start-page: 685
  issue: 2
  year: 1994
  end-page: 692
  article-title: Reactive power optimization by genetic algorithms
  publication-title: IEEE Trans. Power Syst.
– volume: 30
  start-page: 435
  year: 2008
  end-page: 441
  article-title: Differential evolutionary algorithm for optimal reactive power dispatch
  publication-title: Electr. Power Energy Syst.
– volume: 104
  start-page: 1147
  issue: 5
  year: 1985
  end-page: 1153
  article-title: A united approach to optimal real and reactive power dispatch
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 34
  start-page: 38
  year: 2012
  end-page: 46
  article-title: Economic dispatch using particle swarm optimization with bacterial foraging effect
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  end-page: 73
  article-title: The particle swarm‐explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 9
  year: 2006
  end-page: 16
  article-title: Dynamic multi‐swarm particle swarm optimizer with a novel constraint‐handling mechanism
– volume: 61
  start-page: 1117
  issue: 4
  year: 2011
  end-page: 1122
  article-title: A hybrid particle swarm optimization algorithm for high‐dimensional problems
  publication-title: Comput. Ind. Eng.
– volume: 36
  start-page: 1407
  issue: 6
  year: 2006
  end-page: 1416
  article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern.
– volume: 37
  start-page: 560
  issue: 3
  year: 2007
  end-page: 575
  article-title: Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern.
– volume: 87
  start-page: 1866
  year: 1968
  end-page: 1876
  article-title: Optimal power flow solutions
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 3
  start-page: 38
  issue: 1
  year: 2009
  end-page: 52
  article-title: A hybrid multi‐swarm particle swarm optimization to solve constrained optimization problems
  publication-title: Front. Comput. Sci. China
– volume: 27
  start-page: 13
  year: 2005
  end-page: 20
  article-title: Optimal VAR dispatch using a multiobjective evolutionary algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 65
  start-page: 83
  year: 2003
  end-page: 90
  article-title: A new hybrid evolutionary strategy for reactive power dispatch
  publication-title: Electr. Power Syt. Res.
– volume: 42
  start-page: 240
  year: 2012
  end-page: 249
  article-title: Hybrid mutation particle swarm optimisation method for available transfer capability enhancement
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2010
– volume: 103
  start-page: 246
  issue: 2
  year: 1984
  end-page: 255
  article-title: Non‐linear VAR optimization using decomposition and coordination
  publication-title: IEEE Trans. Power Appar. Syst.
– start-page: 69
  end-page: 73
  article-title: A modified particle swarm optimizer
– volume: 24
  start-page: 563
  issue: 7
  year: 2002
  end-page: 571
  article-title: Optimal power flow using particle swarm optimization
  publication-title: Electr. Power Energy Syst.
– volume: 9
  start-page: 98
  issue: 1
  year: 1994
  end-page: 105
  article-title: Optimal reactive power dispatch through interior point methods
  publication-title: IEEE Trans. Power Syst.
– volume: 12
  start-page: 198
  issue: 1
  year: 1997
  end-page: 206
  article-title: Application of evolutionary programming to reactive power planning‐comparison with nonlinear programming approach
  publication-title: IEEE Trans. Power Syst.
– volume: 20
  start-page: 859
  issue: 2
  year: 2005
  end-page: 866
  article-title: A hybrid particle swarm optimization applied to loss power minimization
  publication-title: IEEE Trans. Power Syst.
– volume: 116
  start-page: 1
  year: 2008
  end-page: 38
  article-title: Particle swarm optimization and differential evolution algorithms: Technical analysis, appications and hybridization perspectives
– volume: 81
  start-page: 458
  year: 2011
  end-page: 464
  article-title: Differential evolution algorithm for optimal reactive power dispatch
  publication-title: Electr. Power Syst. Res.
– volume: 52
  start-page: 25
  year: 2013
  end-page: 33
  article-title: A hybrid artificial bee colony assisted differential evolution algorithm for optimal reactive power flow
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 55
  start-page: 731
  year: 2014
  end-page: 740
  article-title: Modified differential evolution algorithm for multi‐objective VAR management
  publication-title: Int. J.Electr. Power Energy Syst.
– volume: 43
  start-page: 830
  year: 2012
  end-page: 838
  article-title: Optimal VAR control for improvements in voltage profiles and for real power loss minimization using Biogeography Based Optimization
  publication-title: Electr. Power Energy Syst.
– volume: 10
  start-page: 1243
  issue: 3
  year: 1995
  end-page: 1249
  article-title: Power system optimal reactive power dispatch using evolutionary programming
  publication-title: IEEE Trans. Power. Syst.
– volume: 41
  start-page: 133
  year: 2012
  end-page: 136
  article-title: Reactive power control using dynamic particle swarm optimization for real power loss minimization
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 47
  start-page: 205
  year: 2013
  end-page: 217
  article-title: Performance assessment of PSO, DE and hybrid PSO–DE algorithms when applied to the dispatch of generation and demand
  publication-title: Int. J. Electr. Power Energy Syst.
– ident: e_1_2_8_32_2
  doi: 10.1109/CEC.2006.1688284
– ident: e_1_2_8_17_2
  doi: 10.1016/S0378‐7796(02)00209‐2
– ident: e_1_2_8_23_2
  doi: 10.1016/j.ijepes.2012.04.020
– ident: e_1_2_8_4_2
  doi: 10.1109/TPAS.1985.323466
– ident: e_1_2_8_2_2
  doi: 10.1016/S0142‐0615(01)00067‐9
– ident: e_1_2_8_15_2
  doi: 10.1016/j.ijepes.2012.03.030
– ident: e_1_2_8_26_2
  doi: 10.1109/TSMCB.2006.886164
– ident: e_1_2_8_9_2
  doi: 10.1109/59.317674
– ident: e_1_2_8_10_2
  doi: 10.1109/59.466531
– ident: e_1_2_8_3_2
  doi: 10.1109/TPAS.1968.292150
– ident: e_1_2_8_21_2
  doi: 10.1016/j.ijepes.2012.11.002
– ident: e_1_2_8_29_2
– ident: e_1_2_8_33_2
  doi: 10.1016/j.ijepes.2004.07.006
– ident: e_1_2_8_30_2
  doi: 10.1109/4235.985692
– ident: e_1_2_8_13_2
  doi: 10.1016/j.epsr.2010.10.005
– ident: e_1_2_8_27_2
  doi: 10.1049/ip‐gtd:19952216
– ident: e_1_2_8_19_2
  doi: 10.1016/j.ijepes.2013.03.016
– ident: e_1_2_8_16_2
  doi: 10.1016/j.ijepes.2013.10.015
– ident: e_1_2_8_20_2
  doi: 10.1007/978-3-540-78297-1_1
– ident: e_1_2_8_12_2
  doi: 10.1109/59.898095
– ident: e_1_2_8_24_2
  doi: 10.1016/j.cie.2011.06.024
– ident: e_1_2_8_6_2
  doi: 10.1109/TPAS.1984.318223
– ident: e_1_2_8_8_2
  doi: 10.1016/j.ijepes.2012.05.032
– ident: e_1_2_8_11_2
  doi: 10.1109/59.574940
– ident: e_1_2_8_25_2
  doi: 10.1007/s11704‐009‐0010‐x
– ident: e_1_2_8_14_2
  doi: 10.1016/j.ijepes.2008.03.003
– ident: e_1_2_8_7_2
  doi: 10.1109/TPAS.1981.316646
– ident: e_1_2_8_31_2
  doi: 10.1109/TSMCB.2006.873185
– volume-title: Multi‐objective optimization using eolutionary algorithm
  year: 2010
  ident: e_1_2_8_28_2
– ident: e_1_2_8_5_2
  doi: 10.1109/59.317548
– ident: e_1_2_8_18_2
  doi: 10.1109/TPWRS.2005.846049
– ident: e_1_2_8_22_2
  doi: 10.1016/j.ijepes.2011.09.003
SSID ssj0055647
Score 2.3494618
Snippet Most of the real-world optimisation problems are subject to different types of constraints and are known as constrained optimisation problems. Reactive power...
Most of the real‐world optimisation problems are subject to different types of constraints and are known as constrained optimisation problems. Reactive power...
SourceID proquest
crossref
wiley
iet
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 727
SubjectTerms Algorithms
constrained optimisation problems
Constraints
differential evolution algorithm
evolutionary computation
Fuzzy
fuzzy membership function
fuzzy set theory
HMPSO algorithm
hybrid multiswarm particle swarm optimisation
load dispatching
multiobjective optimisation problem
multiobjective reactive power dispatch
Nonlinearity
Optimization
Pareto optimal set
Pareto optimisation
particle swarm optimisation
population based search algorithm
power losses minimisation
Reactive power
RPD
search engine
Search engines
search problems
Searching
Title Hybrid multi-swarm particle swarm optimisation based multi-objective reactive power dispatch
URI http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2014.0469
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2014.0469
https://www.proquest.com/docview/1793239401
Volume 9
WOSCitedRecordID wos000354245900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LThsxcERCD-2hhVLU9IEWhHqotBCvvQ8fW5qUSCjKIVVzM_auF6UqSZRHK258Qr-RL2HGu3kJKUgVl9Wud-y1Zudpj2cAjiW3IkiZ9LkI0UExsfW1NsaXNrNG6jA2RZKki7jdTno92dmCs_lZmCI_xGLBjTjDyWticG2KKiRo1OJP7NupfzWlZJ9MnJCXV4FtxnhC9RsC0ZmL4zCMXJUxVJPMT6IkXmxtytMHQ6wppwq-XrM7V61Xp36ar55k4jvwsrQ-vS8FuezClh28hhcrOQn34PL8hg5xeS7S8O723-SvHl97o5LCvOJxiILmugwE8kgRLuGH5lchQz00R4ubEVVi87I-Ci-kkTfwo9nonp37ZRkGPxXoLPq5CEySo-eRanJnTGAyKbVJ6jbjHFW8CSgiMY3rum5lEmbCSpazHL8hqF4C5_tQHQwH9i14aAvlEa265ozy2sc6s0mkNddMopYM8xrU5_hXaZmjnEpl_FZur1xIhchTiDxFyFOEvBp8XnQZFQk6NgF_oraSTSebAI_WAFuNrvre_bYEUKMMZ3s4Jw6FOKedFj2wwxmOi1LP1ZxnNeCOFh6fG40ffG06p_bdf_V6D8-xPaTYhoB9gOp0PLMf4Vn6Z9qfjA8cV-D1Z6t9D-UdEtI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB7xkoADsDxEeWYR4rBSoE6cJj7y6rbaUnEogpuxEwcVQVu1BcSNn8Bv5Jcw46SFaiWQVnvLY-xYk_E87PE3ALvCN9yLmXB9HmCAokPjKqW1K0xitFBBqDOQpFpYr0dXV-J8DE4GZ2EyfIjhghvNDKuvaYLTgnQWcHICyWyavnvTJ7RPxvcpzBuHSY4OBxVwuKzWB_o4CEq2zBjaSeZGpSgc7m2Kg7-6GLFO4_h6xPH87L5a-1Oe_z8jX4C53P90DjOB-QFjprUIs59QCZfguvJMx7gcm2v49vLae1Lde6eTy5iT3bZR1dznqUAOmcIP-ra-zbSogw5pdtGhWmxO0kT1hVKyDBfl08Zxxc0LMbgxx3DRTbmnoxRjj1hRQKM9nQihdFQ0ie-jkdce5STGYVEVjYiChBvBUpbiNzhVTPD9FZhotVtmFRz0htISrbumjJDtQ5WYqKSUr5hAOxmkBSgOfoCMc5RyKpZxJ-1uORcSmSeReZKYJ4l5Bfg1bNLJIDq-It6jZ_lE7X1FuDNCWD1tyN-Nkw8C2UlwtD8H0iGR57TXolqm_YD9ot6zVedZAXwrDN-Pjfr3jso2rF37p1bbMF1pnNVkrVr_sw4zSBNQpoPHNmCi330wmzAVP_abve6WnSLvbD8WGw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED8VmBA8wDZAFAbLpmkPSIE6cZr4cVvpioaqPnQSb8ZOHFREm6otIN74E_gb-Uu4c9IvIYGEeMvHxbHO5_uwz78D-CF8w72YCdfnAQYoOjSuUlq7wiRGCxWEOgdJOg2bzejsTLRKUBufhcnxISYLbjQzrL6mCW76SZoHnJxAMjtm5F6MCO2T8UMK8xZgiQchI9n2eGusj4OgasuMoZ1kblSNwsnepjh61sScdVrA13OO56z7au1Pff19ev4R1gr_0_mVC8wnKJneZ1idQSXcgPPGHR3jcmyu4eP9w_BWDbpOv5AxJ7_NUNV0i1Qgh0zhlD7Tl7kWddAhzS_6VIvNSTqovlBKNuF__bj9p-EWhRjcmGO46Kbc01GKsUesKKDRnk6EUDqqmMT30chrj3IS47CiKkZEQcKNYClL8R-cKib4_hYs9rKe2QYHvaG0SuuuKSNk-1AlJqoq5Ssm0E4GaRkq4wGQcYFSTsUyrqTdLedCIvMkMk8S8yQxrwwHk0_6OUTHS8Q_6VkxUYcvEX6fIzw5bsu_7dqUQOKYluHbWDok8pz2WlTPZNfYLuo9W3WelcG3wvB636h973fdhrU7b_rqKyy3anV5etL8twsrSBJQooPHvsDiaHBt9uBDfDPqDAf7doY8AU1oFTI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+multi-swarm+particle+swarm+optimisation+based+multi-objective+reactive+power+dispatch&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Srivastava%2C+Laxmi&rft.au=Singh%2C+Himmat&rft.date=2015-05-21&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=9&rft.issue=8&rft.spage=727&rft.epage=739&rft_id=info:doi/10.1049%2Fiet-gtd.2014.0469&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon