Hybrid multi-swarm particle swarm optimisation based multi-objective reactive power dispatch
Most of the real-world optimisation problems are subject to different types of constraints and are known as constrained optimisation problems. Reactive power dispatch (RPD) in electrical power system is also a non-linear, multi-objective or a single objective constrained optimisation problem. In thi...
Gespeichert in:
| Veröffentlicht in: | IET generation, transmission & distribution Jg. 9; H. 8; S. 727 - 739 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
The Institution of Engineering and Technology
21.05.2015
|
| Schlagworte: | |
| ISSN: | 1751-8687, 1751-8695 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Most of the real-world optimisation problems are subject to different types of constraints and are known as constrained optimisation problems. Reactive power dispatch (RPD) in electrical power system is also a non-linear, multi-objective or a single objective constrained optimisation problem. In this study, hybrid multi-swarm particle swarm optimisation (HMPSO) algorithm has been proposed to solve the RPD problem. HMPSO is one of the recently proposed population based search algorithm, in which the existing swarm is partitioned into several sub-swarms. Particle swarm optimisation is applied as the search engine for each sub-swarm. In addition, to explore more promising regions of the search space, differential evolution (DE) algorithm is implemented to improve the personal best of each particle. The RPD problem is formulated as non-linear, constrained multi-objective optimisation problem with equality and inequality constraints for minimisation of power losses and improvement of voltage profile simultaneously. To find the Pareto optimal set for RPD problem, weighted sum method has been applied. Afterwards, for finding the preferred solution out of the Pareto-optimal set, fuzzy membership function has been used. Effectiveness of the HMPSO algorithm has been verified on the standard IEEE 30-bus and a practical 75-bus Indian systems. |
|---|---|
| AbstractList | Most of the real-world optimisation problems are subject to different types of constraints and are known as constrained optimisation problems. Reactive power dispatch (RPD) in electrical power system is also a non-linear, multi-objective or a single objective constrained optimisation problem. In this study, hybrid multi-swarm particle swarm optimisation (HMPSO) algorithm has been proposed to solve the RPD problem. HMPSO is one of the recently proposed population based search algorithm, in which the existing swarm is partitioned into several sub-swarms. Particle swarm optimisation is applied as the search engine for each sub-swarm. In addition, to explore more promising regions of the search space, differential evolution (DE) algorithm is implemented to improve the personal best of each particle. The RPD problem is formulated as non-linear, constrained multi-objective optimisation problem with equality and inequality constraints for minimisation of power losses and improvement of voltage profile simultaneously. To find the Pareto optimal set for RPD problem, weighted sum method has been applied. Afterwards, for finding the preferred solution out of the Pareto-optimal set, fuzzy membership function has been used. Effectiveness of the HMPSO algorithm has been verified on the standard IEEE 30-bus and a practical 75-bus Indian systems. |
| Author | Singh, Himmat Srivastava, Laxmi |
| Author_xml | – sequence: 1 givenname: Laxmi surname: Srivastava fullname: Srivastava, Laxmi email: laxmigwl@gmail.com organization: Department of Electrical Engineering, Madhav Institute of Technology and Science, Gwalior, M.P., India – sequence: 2 givenname: Himmat surname: Singh fullname: Singh, Himmat organization: Department of Electrical Engineering, Madhav Institute of Technology and Science, Gwalior, M.P., India |
| BookMark | eNqFkEFLwzAYhoMo6KY_wFuPeuhM0qRtvOncVBC8zJsQ0vSrZnRNTTLH_r2tVRERPeULvM_3fjwjtNvYBhA6JnhCMBNnBkL8FMoJxYRNMEvFDjogGSdxngq--zXn2T4aeb_EmPOUZQfo8WZbOFNGq3UdTOw3yq2iVrlgdA3R8LVtMCvjVTC2iQrl4TNtiyXoYF4hcqCGobUbcFFpfKuCfj5Ee5WqPRx9vGP0MJ8tpjfx3f317fTiLtaMsTSuGC3yinOhFeeYF7QohVBFjqFMEkxZQbM8z3SGFQaR85KBIBWpuk6WY06TZIxOhr2tsy9r8EF292qoa9WAXXtJMpHQRDBMuigZotpZ7x1UsnVmpdxWEix7k7IzKTuTsjcpe5Mdk_1gtAnvOoJTpv6TPB_Ijalh-3-VvF5c0cs5xoymHRwPcB9b2rVrOod_lp3-kr-dLfqt3zraskreAPYtrMs |
| CitedBy_id | crossref_primary_10_29328_journal_jairi_1001003 crossref_primary_10_3390_en13215679 crossref_primary_10_1016_j_swevo_2018_04_011 crossref_primary_10_3390_s21155246 crossref_primary_10_1016_j_eswa_2017_06_009 crossref_primary_10_1155_2018_7276585 crossref_primary_10_1155_2019_8418369 crossref_primary_10_3390_en12030395 crossref_primary_10_1016_j_epsr_2019_106031 crossref_primary_10_1016_j_asoc_2018_04_051 crossref_primary_10_3390_en11123499 crossref_primary_10_1016_j_energy_2019_116790 crossref_primary_10_1080_15567036_2021_1957043 crossref_primary_10_1016_j_energy_2017_12_005 crossref_primary_10_1016_j_epsr_2021_107467 crossref_primary_10_1049_iet_gtd_2018_6669 crossref_primary_10_1108_JEDT_08_2018_0130 crossref_primary_10_1080_15567249_2021_1942595 crossref_primary_10_1080_15325008_2017_1311387 crossref_primary_10_3390_en14102831 crossref_primary_10_1007_s12065_025_01081_3 crossref_primary_10_1109_TSTE_2019_2914063 crossref_primary_10_1155_2022_8256908 crossref_primary_10_3390_computers11040048 crossref_primary_10_1088_1757_899X_643_1_012089 crossref_primary_10_1007_s00202_024_02396_7 crossref_primary_10_1007_s40031_021_00636_z crossref_primary_10_1007_s11831_025_10326_4 crossref_primary_10_1007_s10489_018_1167_5 crossref_primary_10_1109_ACCESS_2020_2974961 crossref_primary_10_1007_s00202_023_01778_7 crossref_primary_10_1016_j_asoc_2017_02_010 crossref_primary_10_26634_jee_16_1_19099 crossref_primary_10_1016_j_ref_2022_07_001 crossref_primary_10_1109_ACCESS_2021_3075777 |
| Cites_doi | 10.1109/CEC.2006.1688284 10.1016/S0378‐7796(02)00209‐2 10.1016/j.ijepes.2012.04.020 10.1109/TPAS.1985.323466 10.1016/S0142‐0615(01)00067‐9 10.1016/j.ijepes.2012.03.030 10.1109/TSMCB.2006.886164 10.1109/59.317674 10.1109/59.466531 10.1109/TPAS.1968.292150 10.1016/j.ijepes.2012.11.002 10.1016/j.ijepes.2004.07.006 10.1109/4235.985692 10.1016/j.epsr.2010.10.005 10.1049/ip‐gtd:19952216 10.1016/j.ijepes.2013.03.016 10.1016/j.ijepes.2013.10.015 10.1007/978-3-540-78297-1_1 10.1109/59.898095 10.1016/j.cie.2011.06.024 10.1109/TPAS.1984.318223 10.1016/j.ijepes.2012.05.032 10.1109/59.574940 10.1007/s11704‐009‐0010‐x 10.1016/j.ijepes.2008.03.003 10.1109/TPAS.1981.316646 10.1109/TSMCB.2006.873185 10.1109/59.317548 10.1109/TPWRS.2005.846049 10.1016/j.ijepes.2011.09.003 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2015 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2015 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 KR7 L7M |
| DOI | 10.1049/iet-gtd.2014.0469 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8695 |
| EndPage | 739 |
| ExternalDocumentID | 10_1049_iet_gtd_2014_0469 GTD2BF00426 |
| Genre | article |
| GrantInformation_xml | – fundername: University Grants Commission (UGC), New Delhi, India funderid: 41–657/2012(SR) |
| GroupedDBID | 0R 24P 29I 4IJ 6IK 8VB AAJGR ABPTK ACIWK ALMA_UNASSIGNED_HOLDINGS BFFAM ESX HZ IFIPE IPLJI JAVBF LAI LOTEE LXI M43 MS NADUK NXXTH O9- OCL QWB RIE RNS RUI U5U UNMZH UNR ZL0 .DC 0R~ 0ZK 1OC 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AIWBW AJBDE ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU EBS EJD F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IGS ITC K1G L6V M7S MCNEO MS~ OK1 P62 PTHSS ROL S0W AAYXX AFFHD CITATION IDLOA PHGZM PHGZT PQGLB WIN 7SP 7TB 8FD F28 FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c4446-f42b8f559ca5505b2bd99ab80ed33024b27887c70a0e985d4e91f1feac4805233 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354245900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-8687 |
| IngestDate | Thu Sep 04 16:19:18 EDT 2025 Tue Nov 18 21:51:39 EST 2025 Wed Oct 29 21:17:41 EDT 2025 Wed Jan 22 16:32:13 EST 2025 Tue Jan 05 21:52:51 EST 2021 Thu May 09 18:26:39 EDT 2019 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Pareto optimisation multiobjective optimisation problem particle swarm optimisation search engine power losses minimisation fuzzy set theory hybrid multiswarm particle swarm optimisation RPD fuzzy membership function load dispatching evolutionary computation population based search algorithm differential evolution algorithm multiobjective reactive power dispatch constrained optimisation problems Pareto optimal set search problems HMPSO algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4446-f42b8f559ca5505b2bd99ab80ed33024b27887c70a0e985d4e91f1feac4805233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-gtd.2014.0469 |
| PQID | 1793239401 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | iet_journals_10_1049_iet_gtd_2014_0469 wiley_primary_10_1049_iet_gtd_2014_0469_GTD2BF00426 proquest_miscellaneous_1793239401 crossref_primary_10_1049_iet_gtd_2014_0469 crossref_citationtrail_10_1049_iet_gtd_2014_0469 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2015-05-21 |
| PublicationDateYYYYMMDD | 2015-05-21 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationTitle | IET generation, transmission & distribution |
| PublicationYear | 2015 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Wu, Q.H.; Ma, J.T. (C9) 1995; 10 Abido, M.A.; Bakhashwain, J.M. (C32) 2005; 27 Lai, L.L.; Ma, J.T. (C10) 1997; 12 Lee, K.Y.; Park, Y.M.; Ortiz, J.L. (C3) 1985; 104 Esmin, A.A.A.; Lambert-Torres, G.; de Souza, A.C.Z. (C17) 2005; 20 Wang, Y.; Cai, Z.; Guo, G. (C25) 2007; 37 Singh, H.; Srivastava, L. (C15) 2014; 55 Clerc, M.; Kennedy, J. (C29) 2002; 6 Roy, P.K.; Ghoshal, S.P.; Thakur, S.S. (C7) 2012; 43 Mansour, M.O.; Abdel-Rahman, T.M. (C5) 1984; 103 Saber, A.Y. (C21) 2012; 34 Araújo, T.F.; Uturbey, W. (C20) 2013; 47 Dommel, H.W.; Tinney, W.F. (C2) 1968; 87 Granville, S. (C4) 1994; 9 Wang, Y.; Cai, Z. (C24) 2009; 3 Yoshida, H.; Kawata, K.; Fukuyama, Y. (C11) 2000; 15 Krohling, R.A.; Coelho, L.S. (C30) 2006; 36 Abido, M.A. (C1) 2002; 24 Abou, El Ela; Abido, M.A.; Spea, S.R. (C12) 2011; 81 Bhagwan Das, D.; Patvardhan, C. (C16) 2003; 65 Singh, S.N.; Srivastava, S.C. (C26) 1995; 142 Iba, K. (C8) 1994; 9 Badar Altaf, Q.H.; Umre, B.S.; Junghare, A.S. (C14) 2012; 41 Jia, D.; Zheng, G.; Qu, B.; Khan, M.K. (C23) 2011; 61 Varadarajan, M.; Swarup, K.S. (C13) 2008; 30 Farahmand, H.; Rashidinejad, M.; Mousavi, A. (C22) 2012; 42 Mamandur, K.R.C.; Chenoweth, R.D. (C6) 1981; 100 Li, Y.; Wang, Y.; Li, B. (C18) 2013; 52 2013; 47 1984; 103 2010 2011; 81 2002; 6 1981; 100 2006; 36 1995; 10 2011; 61 2005; 20 1985; 104 2006 2008; 30 2005; 27 2012; 34 1968; 87 2007; 37 1994; 9 2000; 15 2002; 24 1997; 12 2013; 52 2008; 116 2009; 3 1995; 142 2012; 43 2014; 55 2003; 65 2012; 42 2012; 41 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_25_2 e_1_2_8_26_2 Deb K. (e_1_2_8_28_2) 2010 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_14_2 e_1_2_8_15_2 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_11_2 e_1_2_8_32_2 |
| References_xml | – volume: 24 start-page: 563 issue: 7 year: 2002 end-page: 571 ident: C1 article-title: Optimal power flow using particle swarm optimization publication-title: Electr. Power Energy Syst. – volume: 41 start-page: 133 year: 2012 end-page: 136 ident: C14 article-title: Reactive power control using dynamic particle swarm optimization for real power loss minimization publication-title: Int. J. Electr. Power Energy Syst. – volume: 55 start-page: 731 year: 2014 end-page: 740 ident: C15 article-title: Modified differential evolution algorithm for multi-objective VAR management publication-title: Int. J.Electr. Power Energy Syst. – volume: 34 start-page: 38 year: 2012 end-page: 46 ident: C21 article-title: Economic dispatch using particle swarm optimization with bacterial foraging effect publication-title: Int. J. Electr. Power Energy Syst. – volume: 100 start-page: 3185 issue: 7 year: 1981 end-page: 3193 ident: C6 article-title: Optimal control of reactive power flow for improvements in voltage profiles and for real power loss minimization publication-title: IEEE Trans. Power Appar. Syst. – volume: 87 start-page: 1866 year: 1968 end-page: 1876 ident: C2 article-title: Optimal power flow solutions publication-title: IEEE Trans. Power Appar. Syst. – volume: 103 start-page: 246 issue: 2 year: 1984 end-page: 255 ident: C5 article-title: Non-linear VAR optimization using decomposition and coordination publication-title: IEEE Trans. Power Appar. Syst. – volume: 30 start-page: 435 year: 2008 end-page: 441 ident: C13 article-title: Differential evolutionary algorithm for optimal reactive power dispatch publication-title: Electr. Power Energy Syst. – volume: 42 start-page: 240 year: 2012 end-page: 249 ident: C22 article-title: Hybrid mutation particle swarm optimisation method for available transfer capability enhancement publication-title: Int. J. Electr. Power Energy Syst. – volume: 43 start-page: 830 year: 2012 end-page: 838 ident: C7 article-title: Optimal VAR control for improvements in voltage profiles and for real power loss minimization using Biogeography Based Optimization publication-title: Electr. Power Energy Syst. – volume: 65 start-page: 83 year: 2003 end-page: 90 ident: C16 article-title: A new hybrid evolutionary strategy for reactive power dispatch publication-title: Electr. Power Syt. Res. – volume: 20 start-page: 859 issue: 2 year: 2005 end-page: 866 ident: C17 article-title: A hybrid particle swarm optimization applied to loss power minimization publication-title: IEEE Trans. Power Syst. – volume: 27 start-page: 13 year: 2005 end-page: 20 ident: C32 article-title: Optimal VAR dispatch using a multiobjective evolutionary algorithm publication-title: Int. J. Electr. Power Energy Syst. – volume: 15 start-page: 1232 issue: 4 year: 2000 end-page: 1239 ident: C11 article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment publication-title: IEEE Trans. Power Syst. – volume: 52 start-page: 25 year: 2013 end-page: 33 ident: C18 article-title: A hybrid artificial bee colony assisted differential evolution algorithm for optimal reactive power flow publication-title: Int. J. Electr. Power Energy Syst. – volume: 61 start-page: 1117 issue: 4 year: 2011 end-page: 1122 ident: C23 article-title: A hybrid particle swarm optimization algorithm for high-dimensional problems publication-title: Comput. Ind. Eng. – volume: 6 start-page: 58 issue: 1 year: 2002 end-page: 73 ident: C29 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. – volume: 9 start-page: 98 issue: 1 year: 1994 end-page: 105 ident: C4 article-title: Optimal reactive power dispatch through interior point methods publication-title: IEEE Trans. Power Syst. – volume: 10 start-page: 1243 issue: 3 year: 1995 end-page: 1249 ident: C9 article-title: Power system optimal reactive power dispatch using evolutionary programming publication-title: IEEE Trans. Power. Syst. – volume: 81 start-page: 458 year: 2011 end-page: 464 ident: C12 article-title: Differential evolution algorithm for optimal reactive power dispatch publication-title: Electr. Power Syst. Res. – volume: 47 start-page: 205 year: 2013 end-page: 217 ident: C20 article-title: Performance assessment of PSO, DE and hybrid PSO–DE algorithms when applied to the dispatch of generation and demand publication-title: Int. J. Electr. Power Energy Syst. – volume: 104 start-page: 1147 issue: 5 year: 1985 end-page: 1153 ident: C3 article-title: A united approach to optimal real and reactive power dispatch publication-title: IEEE Trans. Power Appar. Syst. – volume: 3 start-page: 38 issue: 1 year: 2009 end-page: 52 ident: C24 article-title: A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems publication-title: Front. Comput. Sci. China – volume: 142 start-page: 576 issue: 6 year: 1995 end-page: 582 ident: C26 article-title: Corrective action planning to achieve a feasible optimum power flow solution publication-title: Proc. Inst. Electr. Eng., Gen., Transm., Distrib. – volume: 9 start-page: 685 issue: 2 year: 1994 end-page: 692 ident: C8 article-title: Reactive power optimization by genetic algorithms publication-title: IEEE Trans. Power Syst. – volume: 36 start-page: 1407 issue: 6 year: 2006 end-page: 1416 ident: C30 article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. – volume: 12 start-page: 198 issue: 1 year: 1997 end-page: 206 ident: C10 article-title: Application of evolutionary programming to reactive power planning-comparison with nonlinear programming approach publication-title: IEEE Trans. Power Syst. – volume: 37 start-page: 560 issue: 3 year: 2007 end-page: 575 ident: C25 article-title: Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. – volume: 100 start-page: 3185 issue: 7 year: 1981 end-page: 3193 article-title: Optimal control of reactive power flow for improvements in voltage profiles and for real power loss minimization publication-title: IEEE Trans. Power Appar. Syst. – volume: 15 start-page: 1232 issue: 4 year: 2000 end-page: 1239 article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment publication-title: IEEE Trans. Power Syst. – volume: 142 start-page: 576 issue: 6 year: 1995 end-page: 582 article-title: Corrective action planning to achieve a feasible optimum power flow solution publication-title: Proc. Inst. Electr. Eng., Gen., Transm., Distrib. – volume: 9 start-page: 685 issue: 2 year: 1994 end-page: 692 article-title: Reactive power optimization by genetic algorithms publication-title: IEEE Trans. Power Syst. – volume: 30 start-page: 435 year: 2008 end-page: 441 article-title: Differential evolutionary algorithm for optimal reactive power dispatch publication-title: Electr. Power Energy Syst. – volume: 104 start-page: 1147 issue: 5 year: 1985 end-page: 1153 article-title: A united approach to optimal real and reactive power dispatch publication-title: IEEE Trans. Power Appar. Syst. – volume: 34 start-page: 38 year: 2012 end-page: 46 article-title: Economic dispatch using particle swarm optimization with bacterial foraging effect publication-title: Int. J. Electr. Power Energy Syst. – volume: 6 start-page: 58 issue: 1 year: 2002 end-page: 73 article-title: The particle swarm‐explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. – start-page: 9 year: 2006 end-page: 16 article-title: Dynamic multi‐swarm particle swarm optimizer with a novel constraint‐handling mechanism – volume: 61 start-page: 1117 issue: 4 year: 2011 end-page: 1122 article-title: A hybrid particle swarm optimization algorithm for high‐dimensional problems publication-title: Comput. Ind. Eng. – volume: 36 start-page: 1407 issue: 6 year: 2006 end-page: 1416 article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. – volume: 37 start-page: 560 issue: 3 year: 2007 end-page: 575 article-title: Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems publication-title: IEEE Trans. Syst. Man Cybern. B: Cybern. – volume: 87 start-page: 1866 year: 1968 end-page: 1876 article-title: Optimal power flow solutions publication-title: IEEE Trans. Power Appar. Syst. – volume: 3 start-page: 38 issue: 1 year: 2009 end-page: 52 article-title: A hybrid multi‐swarm particle swarm optimization to solve constrained optimization problems publication-title: Front. Comput. Sci. China – volume: 27 start-page: 13 year: 2005 end-page: 20 article-title: Optimal VAR dispatch using a multiobjective evolutionary algorithm publication-title: Int. J. Electr. Power Energy Syst. – volume: 65 start-page: 83 year: 2003 end-page: 90 article-title: A new hybrid evolutionary strategy for reactive power dispatch publication-title: Electr. Power Syt. Res. – volume: 42 start-page: 240 year: 2012 end-page: 249 article-title: Hybrid mutation particle swarm optimisation method for available transfer capability enhancement publication-title: Int. J. Electr. Power Energy Syst. – year: 2010 – volume: 103 start-page: 246 issue: 2 year: 1984 end-page: 255 article-title: Non‐linear VAR optimization using decomposition and coordination publication-title: IEEE Trans. Power Appar. Syst. – start-page: 69 end-page: 73 article-title: A modified particle swarm optimizer – volume: 24 start-page: 563 issue: 7 year: 2002 end-page: 571 article-title: Optimal power flow using particle swarm optimization publication-title: Electr. Power Energy Syst. – volume: 9 start-page: 98 issue: 1 year: 1994 end-page: 105 article-title: Optimal reactive power dispatch through interior point methods publication-title: IEEE Trans. Power Syst. – volume: 12 start-page: 198 issue: 1 year: 1997 end-page: 206 article-title: Application of evolutionary programming to reactive power planning‐comparison with nonlinear programming approach publication-title: IEEE Trans. Power Syst. – volume: 20 start-page: 859 issue: 2 year: 2005 end-page: 866 article-title: A hybrid particle swarm optimization applied to loss power minimization publication-title: IEEE Trans. Power Syst. – volume: 116 start-page: 1 year: 2008 end-page: 38 article-title: Particle swarm optimization and differential evolution algorithms: Technical analysis, appications and hybridization perspectives – volume: 81 start-page: 458 year: 2011 end-page: 464 article-title: Differential evolution algorithm for optimal reactive power dispatch publication-title: Electr. Power Syst. Res. – volume: 52 start-page: 25 year: 2013 end-page: 33 article-title: A hybrid artificial bee colony assisted differential evolution algorithm for optimal reactive power flow publication-title: Int. J. Electr. Power Energy Syst. – volume: 55 start-page: 731 year: 2014 end-page: 740 article-title: Modified differential evolution algorithm for multi‐objective VAR management publication-title: Int. J.Electr. Power Energy Syst. – volume: 43 start-page: 830 year: 2012 end-page: 838 article-title: Optimal VAR control for improvements in voltage profiles and for real power loss minimization using Biogeography Based Optimization publication-title: Electr. Power Energy Syst. – volume: 10 start-page: 1243 issue: 3 year: 1995 end-page: 1249 article-title: Power system optimal reactive power dispatch using evolutionary programming publication-title: IEEE Trans. Power. Syst. – volume: 41 start-page: 133 year: 2012 end-page: 136 article-title: Reactive power control using dynamic particle swarm optimization for real power loss minimization publication-title: Int. J. Electr. Power Energy Syst. – volume: 47 start-page: 205 year: 2013 end-page: 217 article-title: Performance assessment of PSO, DE and hybrid PSO–DE algorithms when applied to the dispatch of generation and demand publication-title: Int. J. Electr. Power Energy Syst. – ident: e_1_2_8_32_2 doi: 10.1109/CEC.2006.1688284 – ident: e_1_2_8_17_2 doi: 10.1016/S0378‐7796(02)00209‐2 – ident: e_1_2_8_23_2 doi: 10.1016/j.ijepes.2012.04.020 – ident: e_1_2_8_4_2 doi: 10.1109/TPAS.1985.323466 – ident: e_1_2_8_2_2 doi: 10.1016/S0142‐0615(01)00067‐9 – ident: e_1_2_8_15_2 doi: 10.1016/j.ijepes.2012.03.030 – ident: e_1_2_8_26_2 doi: 10.1109/TSMCB.2006.886164 – ident: e_1_2_8_9_2 doi: 10.1109/59.317674 – ident: e_1_2_8_10_2 doi: 10.1109/59.466531 – ident: e_1_2_8_3_2 doi: 10.1109/TPAS.1968.292150 – ident: e_1_2_8_21_2 doi: 10.1016/j.ijepes.2012.11.002 – ident: e_1_2_8_29_2 – ident: e_1_2_8_33_2 doi: 10.1016/j.ijepes.2004.07.006 – ident: e_1_2_8_30_2 doi: 10.1109/4235.985692 – ident: e_1_2_8_13_2 doi: 10.1016/j.epsr.2010.10.005 – ident: e_1_2_8_27_2 doi: 10.1049/ip‐gtd:19952216 – ident: e_1_2_8_19_2 doi: 10.1016/j.ijepes.2013.03.016 – ident: e_1_2_8_16_2 doi: 10.1016/j.ijepes.2013.10.015 – ident: e_1_2_8_20_2 doi: 10.1007/978-3-540-78297-1_1 – ident: e_1_2_8_12_2 doi: 10.1109/59.898095 – ident: e_1_2_8_24_2 doi: 10.1016/j.cie.2011.06.024 – ident: e_1_2_8_6_2 doi: 10.1109/TPAS.1984.318223 – ident: e_1_2_8_8_2 doi: 10.1016/j.ijepes.2012.05.032 – ident: e_1_2_8_11_2 doi: 10.1109/59.574940 – ident: e_1_2_8_25_2 doi: 10.1007/s11704‐009‐0010‐x – ident: e_1_2_8_14_2 doi: 10.1016/j.ijepes.2008.03.003 – ident: e_1_2_8_7_2 doi: 10.1109/TPAS.1981.316646 – ident: e_1_2_8_31_2 doi: 10.1109/TSMCB.2006.873185 – volume-title: Multi‐objective optimization using eolutionary algorithm year: 2010 ident: e_1_2_8_28_2 – ident: e_1_2_8_5_2 doi: 10.1109/59.317548 – ident: e_1_2_8_18_2 doi: 10.1109/TPWRS.2005.846049 – ident: e_1_2_8_22_2 doi: 10.1016/j.ijepes.2011.09.003 |
| SSID | ssj0055647 |
| Score | 2.3494618 |
| Snippet | Most of the real-world optimisation problems are subject to different types of constraints and are known as constrained optimisation problems. Reactive power... Most of the real‐world optimisation problems are subject to different types of constraints and are known as constrained optimisation problems. Reactive power... |
| SourceID | proquest crossref wiley iet |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 727 |
| SubjectTerms | Algorithms constrained optimisation problems Constraints differential evolution algorithm evolutionary computation Fuzzy fuzzy membership function fuzzy set theory HMPSO algorithm hybrid multiswarm particle swarm optimisation load dispatching multiobjective optimisation problem multiobjective reactive power dispatch Nonlinearity Optimization Pareto optimal set Pareto optimisation particle swarm optimisation population based search algorithm power losses minimisation Reactive power RPD search engine Search engines search problems Searching |
| Title | Hybrid multi-swarm particle swarm optimisation based multi-objective reactive power dispatch |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2014.0469 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2014.0469 https://www.proquest.com/docview/1793239401 |
| Volume | 9 |
| WOSCitedRecordID | wos000354245900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-8695 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055647 issn: 1751-8687 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8695 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055647 issn: 1751-8687 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1dT9sw8ERhD-NhY19aYUwZmvYwKVsdO6n9CIyuSKjiodt48xLHRkVrG7XpEG_8BH4jv4Q7Jy1USCBNe4kS--JY5_N95M53AB-l4QnPOTndrQlRv1WhlIaFjlJ_uMQZ40-5_jxq93ry5EQdr8D-_CxMlR9i8cONdobn17TB06yqQoJKLS7iwJbhaUnJPpn4QlZeA9YY45LqN0TieM6O4zjxVcZQTLJQJrK9cG2qr_eGWBJODexe0jvvaq9e_HSe_5eJb8CzWvsMdityeQErdvQS1u_kJHwFv7sXdIgr8JGG15dX0_N0MgyKmsKC6nGMjGZYBwIFJAhv4cfZWcVDA1RHq5uCKrEF-QCZF9LIa_jROejvd8O6DENoBBqLoRNRJh1aHiYlcyaLslypNJMti2uMIj6LKCLRtFtpyyoZ58Iq5pjDbwiql8D5G1gdjUf2LQSp4xa7Ih6LXOQsz3hiXUp-Y5EIJXkTWnP8a1PnKKdSGX-095ULpRF5GpGnCXmakNeEz4tXiipBx0PAn6it3qbThwB3lgAPD_r6e__bLYAucteED3Pi0Ihz8rSkIzue4bjI9XzNedYE7mnh8bnR-NFexxu1m__01hY8xfaYYhsi9g5Wy8nMbsMT87ccTCfv_a7A66_D3g3RqhJi |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1dT9sw8FQY0raHDdimdR8QEOJhUrYmdlL7cVsprSgVD4Xx5iWOjYrWD_Vj0972E_Yb90t256SlFVKREG9JfHas8_k-fOc7gAOhWcwyRk53o33Ub6UvhA58S6k_bGy1drdcL1rVdltcXsqzEtRmd2Hy_BDzAzfaGY5f0wanA-nc4OSUJLNrJv7VhLJ9BvwjmXlr8IijwkEFHL412zN-HEWxKzOGcjLwRSyqc9-m_HRriCXptIbNS4rnovrq5E_9-cPMfBOeFfqn9zknmC0omf42PF3ISvgCvjd-0zUuz8Ua_vvzd_wrGfW8YUFjXv46QFbTK0KBPBKFN_CD9Drnoh4qpPnDkGqxeVkX2RdSyUs4rx91vjb8ohCDrzmai77lYSos2h46IYMmDdNMyiQVFYOrjEI-DSkmUVcrScVIEWXcyMAGFv_BqWICY69gvT_om9fgJZYZbApZxDOeBVnKYmMT8hzzmEvBylCZLYDSRZZyKpbxQzlvOZcKkacQeYqQpwh5Zfgw7zLMU3SsAj6kb8VGHa8C3F8CbB511HGndgOghpktw96MOhTinHwtSd8Mpjgu8j1XdT4oA3PEcPfcaPzwS92ZtW_u1WsXHjc6py3VarZP3sIThIko0iEM3sH6ZDQ172FD_5x0x6Mdt0X-A1S-Fas |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1dT9sw8MSXpvHA97SOrzChPUwK1LGT2o-DUkCgqg_dxJuXOPbUabRVW5j2tp_Ab-SX7M5JCxUSSGhvSXxxrPN95s53APvS8ITnnILu1oRo36pQSsNCR6U_XOKM8adcv13Wmk15daVaM1Afn4Up6kNMfrgRZ3h5TQxu-7krHE5BRTI7dhT-GFG1TyYOyM2bhXkR1xjRdiRaY3kcx4lvM4Z6koUykbVJbFMdPpliSjvN4vCU4fnYfPX6p7H8f1a-Akul_Rl8KQhmFWZsdw0WH1UlXIfvZ3_oGFfgcw3v_94Nf6eD66Bf0lhQ3PZQ1FyXqUABqcIH-F72s5CiARqkxUWferEFeQfFF1LJBnxtnLSPz8KyEUNoBLqLoRNRJh36HiYlhyaLslypNJNVi7uMSj6LKCfR1Kpp1SoZ58Iq5pjDbwjqmMD5O5jr9rr2PQSp4xaHIh6LXOQsz3hiXUqRY5EIJXkFquMN0KasUk7NMn5pHy0XSiPyNCJPE_I0Ia8Cnyev9IsSHc8Bf6JnJaMOnwP8OAV4ftLWp-36A4DGPa3A3pg6NOKcYi1p1_ZucF6Ue77rPKsA98Tw8tpo_uio4d3aD696axfetOoNfXnevNiEtwgSU6JDxLZgbjS4sduwYG5HneFgx3PIPzZXFMI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+multi-swarm+particle+swarm+optimisation+based+multi-objective+reactive+power+dispatch&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Srivastava%2C+Laxmi&rft.au=Singh%2C+Himmat&rft.date=2015-05-21&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=9&rft.issue=8&rft.spage=727&rft.epage=739&rft_id=info:doi/10.1049%2Fiet-gtd.2014.0469&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon |