Recent advances in artificial intelligent strategies for tissue engineering and regenerative medicine

Background Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, ce...

Full description

Saved in:
Bibliographic Details
Published in:Skin research and technology Vol. 30; no. 9; pp. e70016 - n/a
Main Authors: Gharibshahian, Maliheh, Torkashvand, Mohammad, Bavisi, Mahya, Aldaghi, Niloofar, Alizadeh, Akram
Format: Journal Article
Language:English
Published: England John Wiley & Sons, Inc 01.09.2024
John Wiley and Sons Inc
Subjects:
ISSN:0909-752X, 1600-0846, 1600-0846
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role. Methods The “artificial intelligence,” “machine learning,” “tissue engineering,” “clinical evaluation,” and “scaffold” keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated. Results The combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM. Conclusion The findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside. Highlights The capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation. ML predicts which technologies have the most efficient and easiest path to enter the market and clinic. The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation).
AbstractList Background Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role. Methods The “artificial intelligence,” “machine learning,” “tissue engineering,” “clinical evaluation,” and “scaffold” keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated. Results The combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM. Conclusion The findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside. Highlights The capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation. ML predicts which technologies have the most efficient and easiest path to enter the market and clinic. The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation).
Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role.BACKGROUNDTissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role.The "artificial intelligence," "machine learning," "tissue engineering," "clinical evaluation," and "scaffold" keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated.METHODSThe "artificial intelligence," "machine learning," "tissue engineering," "clinical evaluation," and "scaffold" keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated.The combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM.RESULTSThe combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM.The findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside.CONCLUSIONThe findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside.The capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation. ML predicts which technologies have the most efficient and easiest path to enter the market and clinic. The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation).HIGHLIGHTSThe capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation. ML predicts which technologies have the most efficient and easiest path to enter the market and clinic. The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation).
Background Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role. Methods The “artificial intelligence,” “machine learning,” “tissue engineering,” “clinical evaluation,” and “scaffold” keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated. Results The combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM. Conclusion The findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside. Highlights The capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation. ML predicts which technologies have the most efficient and easiest path to enter the market and clinic. The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation).
Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role. The "artificial intelligence," "machine learning," "tissue engineering," "clinical evaluation," and "scaffold" keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated. The combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM. The findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside. The capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation. ML predicts which technologies have the most efficient and easiest path to enter the market and clinic. The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation).
Author Torkashvand, Mohammad
Bavisi, Mahya
Gharibshahian, Maliheh
Alizadeh, Akram
Aldaghi, Niloofar
AuthorAffiliation 4 Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
5 Student Research Committee School of Medicine Shahroud University of Medical Sciences Shahroud Iran
1 Nervous System Stem Cells Research Center Semnan University of Medical Sciences Semnan Iran
3 College of Engineering University of Tehran Tehran Iran
2 Department of Tissue Engineering and Applied Cell Sciences School of Medicine Semnan University of Medical Sciences Semnan Iran
AuthorAffiliation_xml – name: 1 Nervous System Stem Cells Research Center Semnan University of Medical Sciences Semnan Iran
– name: 2 Department of Tissue Engineering and Applied Cell Sciences School of Medicine Semnan University of Medical Sciences Semnan Iran
– name: 3 College of Engineering University of Tehran Tehran Iran
– name: 4 Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
– name: 5 Student Research Committee School of Medicine Shahroud University of Medical Sciences Shahroud Iran
Author_xml – sequence: 1
  givenname: Maliheh
  orcidid: 0000-0002-4346-0969
  surname: Gharibshahian
  fullname: Gharibshahian, Maliheh
  organization: Semnan University of Medical Sciences
– sequence: 2
  givenname: Mohammad
  surname: Torkashvand
  fullname: Torkashvand, Mohammad
  organization: University of Tehran
– sequence: 3
  givenname: Mahya
  surname: Bavisi
  fullname: Bavisi, Mahya
  organization: Iran University of Medical Sciences
– sequence: 4
  givenname: Niloofar
  surname: Aldaghi
  fullname: Aldaghi, Niloofar
  organization: Shahroud University of Medical Sciences
– sequence: 5
  givenname: Akram
  surname: Alizadeh
  fullname: Alizadeh, Akram
  email: alizadehbio@gmail.com
  organization: Semnan University of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39189880$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rGzEQxUVJaJy0h36BstBLe9hk5JVk6VRC6D8IBNIUehNjebRVWEuptOuSb1-5TkMSaHURQr95M2_eIduLKRJjrzgc83pOSh6PFwBcPWMzrgBa0ELtsRkYMO1Czr8fsMNSrgFAGt49Zwed4dpoDTNGl-Qojg2uNhgdlSbEBvMYfHABh_oaaRhCv0XKmHGkPlTIp9yMoZSJGop9iEQ5xL7BuGoyVZgqGTbUrGlVdSK9YPseh0Iv7-4j9u3jh6uzz-35xacvZ6fnrRNCqFai1Gg0GTmXWnSrORJ5pwxKqWnRSa2cX0rUTnAE6b1EoZyeC-GXnrhx3RF7v9O9mZa199ZZxsHe5LDGfGsTBvv4J4Yftk8by3kntARdFd7eKeT0c6Iy2nUoru4AI6Wp2A7MQhipjKnomyfodZpyrP5sx8EopQSoSr1-ONL9LH8jqMC7HeByKiWTv0c42G28tsZr_8Rb2ZMnrAtjXXXaugnD_yp-hYFu_y1tv15e7Sp-A2JQuPE
CitedBy_id crossref_primary_10_20517_microstructures_2024_89
crossref_primary_10_1016_j_jddst_2025_106872
crossref_primary_10_1186_s42825_025_00197_7
crossref_primary_10_3390_pharmaceutics17091176
crossref_primary_10_1016_j_compbiomed_2024_109559
crossref_primary_10_1016_j_carbpol_2025_123702
crossref_primary_10_1080_09205063_2025_2527910
crossref_primary_10_1002_cjce_70037
crossref_primary_10_3390_pharmaceutics17040456
crossref_primary_10_1088_1748_605X_adda81
crossref_primary_10_1007_s11705_025_2566_x
crossref_primary_10_1088_1748_605X_ada840
crossref_primary_10_1021_acsbiomaterials_5c00286
crossref_primary_10_3390_nano15120895
crossref_primary_10_11648_j_ijbmr_20251301_13
crossref_primary_10_3390_ijms26146966
crossref_primary_10_3390_polym17091212
crossref_primary_10_1016_j_actbio_2025_05_042
crossref_primary_10_1007_s10728_025_00536_z
crossref_primary_10_1007_s44174_024_00254_5
crossref_primary_10_1103_PhysRevApplied_23_054018
Cites_doi 10.1007/s11030-021-10217-3
10.1038/s43588-021-00115-x
10.3390/computers12050091
10.1016/j.biopha.2021.111875
10.1002/adma.202102703
10.1016/j.medengphy.2012.06.006
10.1073/pnas.1903376116
10.1016/j.jmbbm.2014.05.002
10.1186/s41232-019-0103-3
10.1016/j.zemedi.2018.11.002
10.1139/gen-2020-0131
10.1016/j.ijpharm.2013.06.036
10.1155/2016/3091039
10.1115/1.4036396
10.1167/tvst.9.2.61
10.1016/B978-0-443-18498-7.00016-8
10.2196/25929
10.3390/jpm10020021
10.1016/j.nbt.2023.02.001
10.1016/j.drudis.2020.12.003
10.1109/TMI.2018.2833499
10.1016/j.matpr.2021.01.387
10.1080/03091900500130849
10.18063/ijb.v7i1.342
10.3389/fpsyt.2020.00016
10.1021/acscatal.9b04321
10.1007/s10462-021-10058-4
10.1016/j.drudis.2020.10.010
10.1039/C8MH00653A
10.1038/s41591-018-0316-z
10.1038/s41551-021-00770-5
10.3390/polym10070753
10.1038/s41563-019-0338-z
10.1038/s41557-022-00910-7
10.1109/TMI.2019.2959609
10.3389/fbioe.2021.721843
10.3389/fbioe.2019.00127
10.1007/s11837-020-04155-y
10.1089/3dp.2018.0088
10.1186/s42234-023-00118-1
10.1016/j.patcog.2015.03.017
10.1038/s41591-018-0307-0
10.1089/ten.tec.2015.0291
10.1038/s41578-021-00282-3
10.1016/j.addr.2021.05.015
10.1038/natrevmats.2016.75
10.1038/s41580-021-00407-0
10.1016/j.ajo.2018.10.007
10.1038/s41746-020-0221-y
10.1016/j.actbio.2022.10.030
10.1038/s42256-019-0048-x
10.1155/2021/6679512
10.3390/electronics10050562
10.1111/srt.13446
10.1016/B978-0-12-818438-7.00002-2
10.3389/fbioe.2020.00851
10.1177/039139880502800112
10.1098/rsta.2009.0024
10.1115/1.4036641
10.3389/fbioe.2022.913579
10.1089/ten.tea.2020.0191
10.3389/fchem.2020.00343
10.1016/j.cvsm.2017.08.002
10.1109/TMI.2016.2528129
10.1063/5.0021106
10.1016/j.jacr.2018.09.007
10.1111/srt.13633
10.1073/pnas.1001208107
10.1038/nature14539
10.1016/j.cma.2006.09.023
10.1115/1.4025102
10.3389/fradi.2021.781868
10.1016/j.acra.2020.12.001
10.1002/mrm.26977
10.1098/rsif.2017.0387
10.1016/j.biomaterials.2024.122669
10.1088/0031-9155/51/7/001
10.1126/science.1145803
10.1002/aisy.202000084
10.2214/AJR.18.20490
10.1016/j.jbiomech.2003.09.029
10.1002/adma.202370137
10.1111/srt.13515
10.3389/fnins.2019.00810
10.1002/mp.14319
10.1007/s11042-019-7469-8
10.1136/svn-2017-000101
10.1021/acs.jpcc.8b02913
10.1109/MM.2015.133
10.1016/j.eng.2021.05.014
10.1007/s12525-021-00475-2
10.1002/bdrc.20109
10.1109/JBHI.2021.3074852
10.1016/j.biopha.2022.113431
10.1089/ten.teb.2014.0180
10.1038/s41592-019-0403-1
10.1109/ICCCNT54827.2022.9984555
10.1089/space.2021.0018
10.1038/s41576-018-0051-9
10.3390/molecules25225277
10.1016/j.copbio.2016.03.014
10.1016/j.medengphy.2014.02.010
10.1002/reg2.54
10.1016/j.transci.2018.05.004
10.1016/j.molcel.2021.12.011
10.1038/s41598-017-13680-x
10.1016/j.artmed.2014.07.003
10.1016/j.fertnstert.2018.04.027
10.1615/CritRevBiomedEng.v40.i5.10
10.1089/omi.2019.0038
10.1021/acsami.1c24715
10.3390/ma14226763
10.1016/j.semcancer.2023.01.006
10.1016/j.jbi.2005.03.002
10.1007/s11831-020-09506-1
10.1096/fj.11-185140
10.1088/2057-1976/ac154f
10.1007/s00158-010-0508-8
10.1002/bit.24440
10.1016/j.actbio.2013.10.024
10.1371/journal.pone.0146935
10.1016/j.media.2016.05.004
10.1016/j.jcyt.2018.10.008
10.1016/j.tice.2020.101442
10.1109/FUZZY.1999.790086
10.1007/s10237-011-0316-0
10.1109/AT-EQUAL.2009.46
10.1016/j.actbio.2008.05.020
10.1557/PROC-758-LL5.7
10.20965/jrm.2022.p0304
10.1038/s41592-018-0261-2
10.1108/13552540510589458
10.1146/annurev-chembioeng-061010-114257
10.1007/s11263-020-01316-z
10.1002/adhm.201900538
10.1089/ten.tea.2019.0026
10.3389/fbioe.2023.1168504
10.1371/journal.pone.0055082
10.1016/j.tibtech.2013.03.002
10.1007/s10140-020-01886-y
10.1016/j.biomaterials.2016.06.040
10.1016/j.biotechadv.2015.12.011
10.1016/j.proeng.2013.05.125
10.3390/ijms24010009
10.1021/acspolymersau.2c00037
10.1016/j.mfglet.2019.02.001
10.1016/j.bbrc.2020.03.141
10.1088/1748-3190/10/1/016010
10.1155/2018/2495848
10.1002/pep2.24079
10.1016/j.eng.2019.08.015
10.1016/j.ijbiomac.2024.130995
10.1093/bib/bbx044
10.1038/nature14543
10.1016/j.compbiomed.2023.106804
10.1155/2015/450341
10.1002/med.21764
10.1021/acsbiomaterials.0c01008
10.1007/s11220-020-00304-4
10.1016/j.biomaterials.2006.02.039
10.1016/j.apmt.2020.100914
10.1109/ICIEA52957.2021.9436733
10.3389/ti.2022.10640
10.1016/j.biomaterials.2007.06.029
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd.
2024 The Author(s). Skin Research and Technology published by John Wiley & Sons Ltd.
2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd.
– notice: 2024 The Author(s). Skin Research and Technology published by John Wiley & Sons Ltd.
– notice: 2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1111/srt.70016
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
DocumentTitleAlternate GHARIBSHAHIAN et al
EISSN 1600-0846
EndPage n/a
ExternalDocumentID PMC11348508
39189880
10_1111_srt_70016
SRT70016
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Semnan University of Medical Sciences
  funderid: 3867
– fundername: Semnan University of Medical Sciences
  grantid: 3867
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
31~
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAKAS
AAMMB
AANHP
AAONW
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCMX
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADPDF
ADXAS
ADZCM
ADZMN
AEFGJ
AEGXH
AEIMD
AENEX
AFBPY
AFEBI
AFGKR
AFKRA
AFRAH
AFZJQ
AGQPQ
AGXDD
AHEFC
AHMBA
AIACR
AIDQK
AIDYY
AIQQE
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
FEDTE
FUBAC
FYUFA
FZ0
G-S
G.N
GODZA
H.X
HF~
HMCUK
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PHGZM
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RPM
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
UKHRP
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4446-5a58a98e9525843d2aeefc69a558e73586cfb5a8c41a05ff5a46c8244fbfe19c3
IEDL.DBID 24P
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001298293200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0909-752X
1600-0846
IngestDate Tue Nov 04 02:05:42 EST 2025
Sun Sep 28 02:43:50 EDT 2025
Sat Nov 29 14:26:54 EST 2025
Mon Jul 21 06:03:12 EDT 2025
Sat Nov 29 07:21:42 EST 2025
Tue Nov 18 21:16:41 EST 2025
Thu Sep 25 07:34:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords tissue engineering
biomaterials
machine learning
regenerative medicine
artificial intelligence
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Author(s). Skin Research and Technology published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4446-5a58a98e9525843d2aeefc69a558e73586cfb5a8c41a05ff5a46c8244fbfe19c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4346-0969
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.70016
PMID 39189880
PQID 3109666406
PQPubID 1106343
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11348508
proquest_miscellaneous_3097495699
proquest_journals_3109666406
pubmed_primary_39189880
crossref_primary_10_1111_srt_70016
crossref_citationtrail_10_1111_srt_70016
wiley_primary_10_1111_srt_70016_SRT70016
PublicationCentury 2000
PublicationDate September 2024
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Copenhagen
– name: Hoboken
PublicationTitle Skin research and technology
PublicationTitleAlternate Skin Res Technol
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2023; 74
2006; 30
2021; 64
2010; 107
2019; 10
2019; 13
2022; 23
2022; 24
2019; 16
2024; 30
2019; 18
2016; 2016
2020; 11
2020; 10
2024
2013; 8
2012; 11
2018; 48
2016; 35
2016; 34
2022; 29
1997; 389
2013; 59
2018; 5
2019; 20
2006; 27
2004; 37
2019; 25
2022; 34
2022; 35
2019; 29
2016; 40
2018; 33
2009; 367
2018; 37
2021; 2021
2019; 8
2019; 7
2011; 2
2021; 45
2019; 6
2006; 51
2015; 521
2019; 1
2019; 39
2021; 141
2018; 109
2018; 21
2017; 139
2012; 109
1999
2016; 11
2018; 19
2018; 110
2010; 42
2016; 2
2016; 3
2022; 3
2022; 9
2013; 453
2015; 2015
2014; 37
2020; 26
2022; 14
2019; 212
2014; 36
2023; 158
2007; 81
2020; 25
2020; 24
2022; 10
2020; 21
2007; 318
2018; 10
2005; 11
2018; 15
2012; 40
2016; 22
2015; 35
2021; 25
2018; 122
2017; 7
2021; 26
2023; 35
2017; 2
2021; 23
2021; 22
2021; 28
2023; 9
2020; 128
2024; 266
2016; 104
2008; 4
2002; 758
2014; 62
2005; 28
2020; 526
2020; 8
2007; 28
2020; 7
2020; 6
2015; 48
2021; 31
2020; 3
2020; 2
2022; 82
2023; 29
2013; 10
2017; 35
2020; 9
2019; 116
2020; 47
2011; 25
2005; 38
2021; 41
2018; 79
2019; 198
2021; 9
2021; 7
2022; 153
2021; 6
2022; 154
2021; 5
2015; 6
2023; 11
2023; 12
2015; 10
2009
2020; 79
2021; 1
2015; 8
2021; 14
2018; 2018
2021; 10
2023; 89
2023
2022
2021
2013; 35
2020
2020; 72
2013; 31
2007; 196
2015; 21
2019
2018
2013; 135
2021; 175
2016
2017; 19
2015
2020; 67
2022; 55
2013
2018; 57
e_1_2_10_21_1
e_1_2_10_40_1
e_1_2_10_109_1
Raghavendra GM (e_1_2_10_44_1) 2015
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_158_1
e_1_2_10_70_1
e_1_2_10_93_1
Lekadir K (e_1_2_10_167_1) 2022
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_154_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
Zhang X (e_1_2_10_179_1) 2015; 6
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_147_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
Qiao Q (e_1_2_10_66_1) 2023
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
Xu C (e_1_2_10_16_1) 2019
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
Sanjairaj V (e_1_2_10_149_1) 2018; 33
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
Mirjalili S (e_1_2_10_20_1) 2020
Roy SS (e_1_2_10_94_1) 2019; 13
e_1_2_10_110_1
e_1_2_10_156_1
Lanza R (e_1_2_10_15_1) 1997; 389
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_171_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_175_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
Alyass A (e_1_2_10_181_1) 2015; 8
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_126_1
e_1_2_10_160_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_164_1
e_1_2_10_24_1
e_1_2_10_43_1
Schork NJ (e_1_2_10_182_1) 2019
e_1_2_10_108_1
e_1_2_10_130_1
e_1_2_10_157_1
Al‐Kharusi G (e_1_2_10_29_1) 2022; 9
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_161_1
e_1_2_10_180_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 21
  start-page: 1
  year: 2020
  end-page: 16
  article-title: Automatic nodule segmentation method for CT images using aggregation‐U‐Net generative adversarial networks
  publication-title: Sens Imaging
– volume: 24
  start-page: 247
  issue: 5
  year: 2020
  end-page: 263
  article-title: Integrating artificial and human intelligence: a partnership for responsible innovation in biomedical engineering and medicine
  publication-title: Omics
– volume: 42
  start-page: 633
  year: 2010
  end-page: 644
  article-title: Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity
  publication-title: Struct Multidiscip Optim
– volume: 34
  start-page: 304
  issue: 2
  year: 2022
  end-page: 309
  article-title: Flexible shoulder in quadruped animals and robots guiding science of soft robotics
  publication-title: Journal of Robotics and Mechatronics
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 3
  start-page: 17
  issue: 1
  year: 2020
  article-title: An overview of clinical decision support systems: benefits, risks, and strategies for success
  publication-title: NPJ Digital Med
– volume: 67
  year: 2020
  article-title: Modeling adult skeletal stem cell response to laser‐machined topographies through deep learning
  publication-title: Tissue Cell
– volume: 13
  start-page: 810
  year: 2019
  article-title: Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning
  publication-title: Front Neurosci
– volume: 12
  start-page: 91
  issue: 5
  year: 2023
  article-title: Understanding of machine learning with deep learning: architectures, workflow, applications and future directions
  publication-title: Computers
– volume: 30
  issue: 3
  year: 2024
  article-title: Skin ultrasonography and magnetic resonance; new clinical applications and instrumentation
  publication-title: Skin Res Technol
– volume: 9
  year: 2021
  article-title: Vascular tissue engineering: challenges and requirements for an ideal large scale blood vessel
  publication-title: Front Bioeng Biotechnol
– volume: 19
  start-page: 671
  issue: 11
  year: 2018
  end-page: 687
  article-title: Progress and potential in organoid research
  publication-title: Nat Rev Genet
– volume: 1
  year: 2021
  article-title: Review and prospect: artificial intelligence in advanced medical imaging
  publication-title: Front Radiol
– volume: 104
  start-page: 104
  year: 2016
  end-page: 118
  article-title: Machine learning based methodology to identify cell shape phenotypes associated with microenvironmental cues
  publication-title: Biomaterials
– volume: 9
  start-page: 232
  issue: 4
  year: 2021
  end-page: 243
  article-title: Design of an artificial intelligence‐based commercial photobioreactor for optimal algae growth in space life support
  publication-title: New Space
– year: 2013
  article-title: Representation learning: a unified deep learning framework for automatic prostate MR segmentation
– volume: 25
  start-page: 1315
  year: 2021
  end-page: 1360
  article-title: Artificial intelligence to deep learning: machine intelligence approach for drug discovery
  publication-title: Mol Diversity
– volume: 2018
  year: 2018
  article-title: Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine
  publication-title: Stem Cells Int
– volume: 14
  start-page: 365
  issue: 4
  year: 2022
  end-page: 376
  article-title: Making the collective knowledge of chemistry open and machine actionable
  publication-title: Nat Chem
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med Image Anal
– volume: 10
  start-page: 580
  year: 2013
  end-page: 594
  article-title: Current trends in the design of scaffolds for computer‐aided tissue engineering
  publication-title: Acta Biomater
– volume: 122
  start-page: 17575
  issue: 31
  year: 2018
  end-page: 17585
  article-title: Polymer genome: a data‐powered polymer informatics platform for property predictions
  publication-title: J Phys Chem C
– volume: 21
  start-page: 88
  issue: 1
  year: 2015
  end-page: 102
  article-title: Imaging strategies for tissue engineering applications
  publication-title: Tissue Eng Part B Rev
– volume: 9
  start-page: 61
  issue: 2
  year: 2020
  end-page: 61
  article-title: DeepRetina: layer segmentation of retina in OCT images using deep learning
  publication-title: Transl Vis Sci Technol
– volume: 135
  issue: 10
  year: 2013
  article-title: Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global‐local topology optimization with laser sintering
  publication-title: J Biomech Eng
– volume: 109
  start-page: 1844
  issue: 7
  year: 2012
  end-page: 1854
  article-title: Macro‐scale topology optimization for controlling internal shear stress in a porous scaffold bioreactor
  publication-title: Biotechnol Bioeng
– volume: 14
  start-page: 16568
  issue: 14
  year: 2022
  end-page: 16581
  article-title: Predicting Young's modulus of linear polyurethane and polyurethane–polyurea elastomers: Bridging length scales with physicochemical modeling and machine learning
  publication-title: ACS Appl Mater Interfaces
– volume: 79
  start-page: 3055
  issue: 6
  year: 2018
  end-page: 3071
  article-title: Learning a variational network for reconstruction of accelerated MRI data
  publication-title: Magn Reson Med
– year: 2015
  article-title: U‐net: convolutional networks for biomedical image segmentation
– volume: 37
  start-page: 1454
  issue: 6
  year: 2018
  end-page: 1463
  article-title: Deep learning computed tomography: learning projection‐domain weights from image domain in limited angle problems
  publication-title: IEEE Trans Med Imaging
– year: 2022
– volume: 35
  start-page: 1182
  issue: 5
  year: 2016
  end-page: 1195
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: IEEE Trans Med Imaging
– volume: 1
  start-page: 206
  issue: 5
  year: 2019
  end-page: 215
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat Mach Intell
– volume: 26
  start-page: 769
  issue: 3
  year: 2021
  end-page: 777
  article-title: Advanced machine‐learning techniques in drug discovery
  publication-title: Drug Discovery Today
– volume: 31
  start-page: 685
  issue: 3
  year: 2021
  end-page: 695
  article-title: Machine learning and deep learning
  publication-title: Electronic Markets
– volume: 25
  start-page: 688
  issue: 9‐10
  year: 2019
  end-page: 692
  article-title: Emerging technologies for tissue engineering: from gene editing to personalized medicine
  publication-title: Tissue Eng Part A
– volume: 526
  start-page: 751
  issue: 3
  year: 2020
  end-page: 755
  article-title: Machine‐learning‐based quality control of contractility of cultured human‐induced pluripotent stem‐cell‐derived cardiomyocytes
  publication-title: Biochem Biophys Res Commun
– volume: 2015
  year: 2015
  article-title: MRI segmentation of the human brain: challenges, methods, and applications
  publication-title: Comput Math Methods Med
– volume: 3
  start-page: 141
  issue: 2
  year: 2022
  end-page: 157
  article-title: A user's guide to machine learning for polymeric biomaterials
  publication-title: ACS Polymers Au
– volume: 30
  start-page: 69
  issue: 2
  year: 2006
  end-page: 72
  article-title: Decision support for tendon tissue engineering
  publication-title: J Med Eng Technol
– volume: 26
  start-page: 80
  issue: 1
  year: 2021
  article-title: Artificial intelligence in drug discovery and development
  publication-title: Drug Discovery Today
– volume: 139
  issue: 9
  year: 2017
  article-title: Classifying the dimensional variation in additive manufactured parts from laser‐scanned three‐dimensional point cloud data using machine learning approaches
  publication-title: J Manuf Sci Eng
– volume: 2
  issue: 12
  year: 2020
  article-title: Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction
  publication-title: Adv Intell Syst
– volume: 8
  start-page: 343
  year: 2020
  article-title: Structure‐based virtual screening: from classical to artificial intelligence
  publication-title: Front Chem
– volume: 4
  start-page: 1715
  issue: 6
  year: 2008
  end-page: 1724
  article-title: Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds
  publication-title: Acta Biomater
– volume: 7
  issue: 4
  year: 2020
  article-title: Data‐driven materials research enabled by natural language processing and information extraction
  publication-title: Appl Phys Rev
– year: 2021
  article-title: 3D bounding box detection in volumetric medical image data: a systematic literature review
– volume: 25
  start-page: 24
  year: 2019
  end-page: 29
  article-title: A guide to deep learning in healthcare
  publication-title: Nat Med
– volume: 139
  year: 2017
  article-title: Design of hierarchical 3D printed scaffolds considering mechanical and biological factors for bone tissue engineering
  publication-title: J Mech Des
– volume: 35
  start-page: 422
  issue: 4
  year: 2013
  end-page: 432
  article-title: Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions
  publication-title: Med Eng Phys
– volume: 8
  issue: 19
  year: 2019
  article-title: Improving the rate of translation of tissue engineering products
  publication-title: Adv Healthc Mater
– volume: 6
  start-page: 181
  issue: 4
  year: 2019
  end-page: 189
  article-title: Optimization of silicone 3D printing with hierarchical machine learning
  publication-title: 3D Print Add Manufact
– volume: 198
  start-page: 136
  year: 2019
  end-page: 145
  article-title: Using deep learning and transfer learning to accurately diagnose early‐onset glaucoma from macular optical coherence tomography images
  publication-title: Am J Ophthalmol
– volume: 28
  start-page: 497
  year: 2021
  end-page: 505
  article-title: Diagnosis of COVID‐19 using CT scan images and deep learning techniques
  publication-title: Emerg Radiol
– volume: 23
  issue: 6
  year: 2021
  article-title: Evaluation framework for successful artificial intelligence–enabled clinical decision support systems: mixed methods study
  publication-title: J Med Internet Res
– volume: 48
  start-page: 11
  issue: 1
  year: 2018
  end-page: 29
  article-title: Advances in high‐field MRI
  publication-title: Veter Clin Small Animal Pract
– volume: 29
  issue: 9
  year: 2023
  article-title: Comparison of brain functional response to mechanical prickling stimuli to the glabrous and hairy skin
  publication-title: Skin Res Technol
– volume: 8
  issue: 2
  year: 2013
  article-title: Morphology‐based prediction of osteogenic differentiation potential of human mesenchymal stem cells
  publication-title: PLoS One
– volume: 389
  start-page: 453
  issue: 6650
  year: 1997
  end-page: 453
  article-title: Principles of tissue engineering
  publication-title: Nature
– volume: 29
  start-page: 102
  issue: 2
  year: 2019
  end-page: 127
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Zeitschrift für Medizinische Physik
– volume: 8
  start-page: 851
  year: 2020
  article-title: Prediction of human induced pluripotent stem cell cardiac differentiation outcome by multifactorial process modeling
  publication-title: Front Bioeng Biotechnol
– volume: 33
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Electrohydrodynamic‐jetting (EHD‐jet) 3D‐printed functionally graded scaffolds for tissue engineering applications
  publication-title: J Mater Res
– volume: 367
  start-page: 1993
  issue: 1895
  year: 2009
  end-page: 2009
  article-title: Computer‐aided design and finite‐element modelling of biomaterial scaffolds for bone tissue engineering
  publication-title: Philos Trans R Soc A
– volume: 74
  start-page: 16
  year: 2023
  end-page: 24
  article-title: AI for life: trends in artificial intelligence for biotechnology
  publication-title: New Biotechnol
– year: 2016
– volume: 11
  issue: 1
  year: 2016
  article-title: Geometry design optimization of functionally graded scaffolds for bone tissue engineering: a mechanobiological approach
  publication-title: PLoS One
– volume: 158
  year: 2023
  article-title: MLATE: machine learning for predicting cell behavior on cardiac tissue engineering scaffolds
  publication-title: Comput Biol Med
– volume: 57
  start-page: 422
  issue: 3
  year: 2018
  end-page: 424
  article-title: Artificial intelligence: a joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine
  publication-title: Transfus Apher Sci
– volume: 35
  start-page: 60
  issue: 6
  year: 2015
  end-page: 68
  article-title: An open approach to autonomous vehicles
  publication-title: IEEE Micro
– year: 2022
  article-title: Prediction of heart disease using an approach based on machine learning
– volume: 16
  start-page: 67
  year: 2019
  end-page: 70
  article-title: U‐Net: deep learning for cell counting, detection, and morphometry
  publication-title: Nat Methods
– volume: 20
  start-page: 10
  year: 2019
  end-page: 14
  article-title: Deep learning for distortion prediction in laser‐based additive manufacturing using big data
  publication-title: Manufact Lett
– volume: 6
  start-page: 642
  issue: 8
  year: 2021
  end-page: 644
  article-title: Machine learning in combinatorial polymer chemistry
  publication-title: Nat Rev Mater
– volume: 22
  year: 2021
  article-title: Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing
  publication-title: Appl Mater Today
– volume: 7
  issue: 1
  year: 2017
  article-title: A machine learning assisted, label‐free, non‐invasive approach for somatic reprogramming in induced pluripotent stem cell colony formation detection and prediction
  publication-title: Sci Rep
– volume: 79
  start-page: 15467
  year: 2020
  end-page: 15479
  article-title: Deep learning based diagnosis of Parkinson's disease using convolutional neural network
  publication-title: Multimed Tools Appl
– volume: 62
  start-page: 119
  issue: 2
  year: 2014
  end-page: 127
  article-title: Relationship between preparation of cells for therapy and cell quality using artificial neural network analysis
  publication-title: Artif Intell Med
– volume: 16
  start-page: 1233
  issue: 12
  year: 2019
  end-page: 1246
  article-title: Deep learning for cellular image analysis
  publication-title: Nat Methods
– volume: 28
  start-page: 4429
  issue: 30
  year: 2007
  end-page: 4438
  article-title: Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds
  publication-title: Biomaterials
– volume: 109
  start-page: 944
  issue: 6
  year: 2018
  end-page: 945
  article-title: Introduction: personalized medicine: what is it and what are the challenges?
  publication-title: Fertil Steril
– volume: 116
  start-page: 11259
  issue: 23
  year: 2019
  end-page: 11264
  article-title: Design of self‐assembly dipeptide hydrogels and machine learning via their chemical features
  publication-title: Proc Natl Acad Sci
– volume: 10
  issue: 1
  year: 2015
  article-title: On extracting design principles from biology: I. Method–General answers to high‐level design questions for bioinspired robots
  publication-title: Bioinspiration Biomimetics
– volume: 2
  start-page: 403
  year: 2011
  end-page: 430
  article-title: Tissue engineering and regenerative medicine: history, progress, and challenges
  publication-title: Annu Rev Chem Biomol Eng
– start-page: 1
  year: 2023
  end-page: 14
  article-title: The use of machine learning to predict the effects of cryoprotective agents on the GelMA‐based bioinks used in extrusion cryobioprinting
  publication-title: Bio‐Design and Manufacturing
– volume: 175
  year: 2021
  article-title: Harnessing artificial intelligence for the next generation of 3D printed medicines
  publication-title: Adv Drug Deliv Rev
– volume: 36
  start-page: 448
  issue: 4
  year: 2014
  end-page: 457
  article-title: Optimization of scaffold design for bone tissue engineering: a computational and experimental study
  publication-title: Med Eng Phys
– volume: 26
  start-page: 1359
  issue: 23‐24
  year: 2020
  end-page: 1368
  article-title: Machine learning‐guided three‐dimensional printing of tissue engineering scaffolds
  publication-title: Tissue Eng Part A
– year: 2009
– volume: 196
  start-page: 2991
  issue: 31‐32
  year: 2007
  end-page: 2998
  article-title: Computational design of tissue engineering scaffolds
  publication-title: Comput Meth Appl Mech Eng
– volume: 35
  year: 2022
  article-title: Artificial intelligence: present and future potential for solid organ transplantation
  publication-title: Transpl Int
– volume: 21
  start-page: 17
  year: 2018
  end-page: 31
  article-title: Morphological profiling using machine learning reveals emergent subpopulations of interferon‐γ–stimulated mesenchymal stromal cells that predict immunosuppression
  publication-title: Cytotherapy
– volume: 26
  start-page: 139
  issue: 1
  year: 2021
  end-page: 150
  article-title: Speckle noise reduction for OCT images based on image style transfer and conditional GAN
  publication-title: IEEE J Biomed Health Inf
– volume: 25
  start-page: 4150
  issue: 12
  year: 2011
  article-title: Determining the fate of seeded cells in venous tissue‐engineered vascular grafts using serial MRI
  publication-title: FASEB J
– volume: 31
  start-page: 287
  issue: 5
  year: 2013
  end-page: 294
  article-title: Soft robotics: a bioinspired evolution in robotics
  publication-title: Trends Biotechnol
– volume: 13
  start-page: 495
  issue: 4
  year: 2019
  end-page: 505
  article-title: A deep learning based CNN approach on MRI for Alzheimer's disease detection
  publication-title: Intell Decis Technol
– volume: 19
  start-page: 1236
  issue: 6
  year: 2017
  end-page: 1246
  article-title: Deep learning for healthcare: review, opportunities and challenges
  publication-title: Briefings Bioinf
– volume: 758
  year: 2002
  article-title: Computational design, freeform fabrication and testing of nylon‐6 tissue engineering scaffolds
– volume: 16
  start-page: 208
  issue: 2
  year: 2019
  end-page: 210
  article-title: The role of the FDA in ensuring the safety and efficacy of artificial intelligence software and devices
  publication-title: J Am Coll Radiol
– volume: 212
  start-page: 513
  issue: 3
  year: 2019
  end-page: 519
  article-title: Artificial intelligence for medical image analysis: a guide for authors and reviewers
  publication-title: Am J Roentgenol
– volume: 6
  start-page: 4949
  issue: 9
  year: 2020
  end-page: 4956
  article-title: Data‐driven prediction of protein adsorption on self‐assembled monolayers toward material screening and design
  publication-title: ACS Biomater Sci Eng
– volume: 28
  start-page: 74
  issue: 1
  year: 2005
  end-page: 78
  article-title: Tissue engineering scheming by artificial intelligence
  publication-title: Int J Artif Organs
– volume: 10
  start-page: 562
  issue: 5
  year: 2021
  article-title: Machine learning methods for histopathological image analysis: A review
  publication-title: Electronics
– volume: 55
  start-page: 1947
  issue: 3
  year: 2022
  end-page: 1999
  article-title: Machine learning in drug discovery: a review
  publication-title: Artif Intell Rev
– volume: 5
  start-page: 939
  issue: 5
  year: 2018
  end-page: 945
  article-title: Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment
  publication-title: Mater Horiz
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 15
  article-title: Machine learning approach to automated quality identification of human induced pluripotent stem cell colony images
  publication-title: Comput Math Methods Med
– volume: 11
  start-page: 16
  year: 2020
  article-title: Identifying schizophrenia using structural MRI with a deep learning algorithm
  publication-title: Front Psychiatry
– volume: 128
  start-page: 1956
  issue: 7
  year: 2020
  end-page: 1981
  article-title: The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale
  publication-title: Int J Comput Vision
– volume: 11
  start-page: 90
  year: 2005
  end-page: 97
  article-title: Direct writing of chitosan scaffolds using a robotic system
  publication-title: Rapid Prototyping J
– year: 2018
– volume: 41
  start-page: 1427
  issue: 3
  year: 2021
  end-page: 1473
  article-title: Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: state‐of‐the‐arts and future directions
  publication-title: Med Res Rev
– volume: 7
  issue: 5
  year: 2021
  article-title: The future of bone regeneration: integrating AI into tissue engineering
  publication-title: Biomed Phys Eng Express
– volume: 59
  start-page: 298
  year: 2013
  end-page: 306
  article-title: Topological optimisation of scaffolds for tissue engineering
  publication-title: Procedia Eng
– volume: 3
  start-page: 78
  issue: 2
  year: 2016
  end-page: 102
  article-title: Physiological controls of large‐scale patterning in planarian regeneration: a molecular and computational perspective on growth and form
  publication-title: Regeneration
– start-page: 25
  year: 2020
  end-page: 60
– volume: 7
  start-page: 342
  issue: 1
  year: 2021
  article-title: Application of machine learning in 3D bioprinting: focus on development of big data and digital twin
  publication-title: Int J Bioprinting
– volume: 8
  start-page: 1
  issue: 1
  year: 2015
  end-page: 12
  article-title: From big data analysis to personalized medicine for all: challenges and opportunities
  publication-title: BMC Med Genet
– volume: 6
  issue: 1
  year: 2015
  article-title: Precision medicine. Personalized medicine, omics and big data: concepts and relationships
  publication-title: J Pharmacogenomics Pharmacoproteomics
– year: 2024
  article-title: In Vitro and in Vivo Evaluation of Biohybrid Tissue‐Engineered Vascular Grafts with Transformative 1H/19F MRI Traceable Scaffolds
  publication-title: Biomaterials
– volume: 318
  start-page: 1088
  issue: 5853
  year: 2007
  end-page: 1093
  article-title: Self‐organization, embodiment, and biologically inspired robotics
  publication-title: Science
– volume: 89
  start-page: 30
  year: 2023
  end-page: 37
  article-title: Artificial intelligence in lung cancer diagnosis and prognosis: current application and future perspective
  publication-title: Semin Cancer Biol
– volume: 51
  start-page: 1649
  issue: 7
  year: 2006
  article-title: Investigation of optical coherence tomography as an imaging modality in tissue engineering
  publication-title: Phys Med Biol
– start-page: 1
  year: 2020
  end-page: 7
  article-title: Introduction to evolutionary machine learning techniques
  publication-title: Evol Mach Learn Techn Algorithms Appl
– volume: 38
  start-page: 417
  issue: 6
  year: 2005
  end-page: 421
  article-title: Prediction of vascular tissue engineering results with artificial neural networks
  publication-title: J Biomed Inform
– volume: 453
  start-page: 641
  issue: 2
  year: 2013
  end-page: 647
  article-title: Using machine learning for improving knowledge on antibacterial effect of bioactive glass
  publication-title: Int J Pharm
– volume: 48
  start-page: 2847
  issue: 9
  year: 2015
  end-page: 2858
  article-title: IODA: An input/output deep architecture for image labeling
  publication-title: Pattern Recognit
– volume: 25
  start-page: 5277
  issue: 22
  year: 2020
  article-title: Machine learning methods in drug discovery
  publication-title: Molecules
– volume: 37
  start-page: 623
  year: 2004
  end-page: 636
  article-title: A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity
  publication-title: J Biomech
– volume: 2
  start-page: 1
  issue: 1
  year: 2016
  end-page: 17
  article-title: Bioresponsive materials
  publication-title: Nat Rev Mater
– volume: 154
  start-page: 63
  year: 2022
  end-page: 82
  article-title: Next‐generation personalized cranioplasty treatment
  publication-title: Acta Biomater
– volume: 23
  start-page: 40
  issue: 1
  year: 2022
  end-page: 55
  article-title: A guide to machine learning for biologists
  publication-title: Nat Rev Mol Cell Biol
– volume: 11
  start-page: 363
  year: 2012
  end-page: 377
  article-title: A multiscale mechanobiological modelling framework using agent‐based models and finite element analysis: application to vascular tissue engineering
  publication-title: Biomech Model Mechanobiol
– start-page: 155
  year: 2023
  end-page: 174
– volume: 9
  start-page: 17
  issue: 1
  year: 2023
  article-title: Artificial intelligence enhanced sensors‐enabling technologies to next‐generation healthcare and biomedical platform
  publication-title: Bioelectron Med
– volume: 27
  start-page: 3964
  issue: 21
  year: 2006
  end-page: 3972
  article-title: Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration
  publication-title: Biomaterials
– volume: 6
  start-page: 291
  issue: 3
  year: 2020
  end-page: 301
  article-title: Artificial intelligence in healthcare: review and prediction case studies
  publication-title: Engineering
– volume: 7
  start-page: 127
  year: 2019
  article-title: Challenges with the development of biomaterials for sustainable tissue engineering
  publication-title: Front Bioeng Biotechnol
– volume: 2021
  year: 2021
  article-title: Involvement of machine learning tools in healthcare decision making
  publication-title: J Healthc Eng
– volume: 47
  start-page: 3961
  issue: 9
  year: 2020
  end-page: 3971
  article-title: Noise and spatial resolution properties of a commercially available deep learning‐based CT reconstruction algorithm
  publication-title: Med Phys
– volume: 14
  start-page: 6763
  issue: 22
  year: 2021
  article-title: Computed tomography as a characterization tool for engineered scaffolds with biomedical applications
  publication-title: Materials
– volume: 64
  start-page: 416
  issue: 4
  year: 2021
  end-page: 425
  article-title: Machine learning for precision medicine
  publication-title: Genome
– volume: 40
  start-page: 103
  year: 2016
  end-page: 112
  article-title: 3D printing of functional biomaterials for tissue engineering
  publication-title: Curr Opin Biotechnol
– volume: 10
  start-page: 21
  issue: 2
  year: 2020
  article-title: Applications of machine learning predictive models in the chronic disease diagnosis
  publication-title: J Pers Med
– volume: 28
  start-page: 3399
  year: 2021
  end-page: 3413
  article-title: Artificial intelligence in materials modeling and design
  publication-title: Arch Comput Meth Eng
– volume: 29
  start-page: S135
  year: 2022
  end-page: S144
  article-title: Automatic detection and segmentation of breast cancer on MRI using mask R‐CNN trained on non–fat‐sat images and tested on fat‐sat images
  publication-title: Acad Radiol
– volume: 107
  start-page: 13222
  issue: 30
  year: 2010
  end-page: 13227
  article-title: Topological optimization for designing patient‐specific large craniofacial segmental bone replacements
  publication-title: Proc Natl Acad Sci
– volume: 10
  start-page: 753
  issue: 7
  year: 2018
  article-title: Electrohydrodynamic jet 3D printed nerve guide conduits (NGCs) for peripheral nerve injury repair
  publication-title: Polymers
– volume: 2
  start-page: 230
  issue: 4
  year: 2017
  end-page: 243
  article-title: Artificial intelligence in healthcare: past, present and future
  publication-title: Stroke Vasc Neurol
– start-page: 1
  year: 2019
  end-page: 4
– volume: 11
  year: 2023
  article-title: Recent advances on 3D‐printed PCL‐based composite scaffolds for bone tissue engineering
  publication-title: Front Bioeng Biotechnol
– volume: 24
  start-page: 9
  issue: 1
  year: 2022
  article-title: Tissue engineering for gastrointestinal and genitourinary tracts
  publication-title: Int J Mol Sci
– volume: 35
  issue: 19
  year: 2023
  article-title: Assessing biomaterial‐induced stem cell lineage fate by machine learning‐based artificial intelligence (Adv. Mater. 19/2023)
  publication-title: Adv Mater
– volume: 1
  start-page: 532
  issue: 8
  year: 2021
  end-page: 541
  article-title: A machine learning‐based multiscale model to predict bone formation in scaffolds
  publication-title: Nat Comput Sci
– volume: 10
  start-page: 1210
  issue: 2
  year: 2019
  end-page: 1223
  article-title: Machine learning in enzyme engineering
  publication-title: ACS Catalysis
– volume: 29
  issue: 11
  year: 2023
  article-title: Abnormal brain structure in atopic dermatitis: Evidence from Mendelian randomization study
  publication-title: Skin Res Technol
– volume: 521
  start-page: 467
  issue: 7553
  year: 2015
  end-page: 475
  article-title: Design, fabrication and control of soft robots
  publication-title: Nature
– volume: 39
  start-page: 1
  year: 2019
  end-page: 7
  article-title: The application of convolutional neural network to stem cell biology
  publication-title: Inflamm Regen
– volume: 266
  year: 2024
  article-title: Magnesium‐oxide‐enhanced bone regeneration: 3D‐printing of gelatin‐coated composite scaffolds with sustained Rosuvastatin release
  publication-title: Int J Biol Macromol
– volume: 9
  start-page: 561
  issue: 10
  year: 2022
  article-title: The role of machine learning and design of experiments in the advancement of biomaterial and tissue engineering research
  publication-title: Bioeng
– volume: 34
  issue: 1
  year: 2022
  article-title: Machine learning‐driven biomaterials evolution
  publication-title: Adv Mater
– volume: 22
  start-page: 429
  issue: 5
  year: 2016
  end-page: 438
  article-title: T2 and apparent diffusion coefficient of MRI reflect maturation of tissue‐engineered auricular cartilage subcutaneously transplanted in rats
  publication-title: Tissue Eng C Methods
– volume: 40
  start-page: 363
  issue: 5
  year: 2012
  end-page: 408
  article-title: Bone tissue engineering: recent advances and challenges
  publication-title: Crit Rev Biomed Eng
– volume: 5
  start-page: 1228
  issue: 10
  year: 2021
  end-page: 1238
  article-title: Computational reconstruction of the signalling networks surrounding implanted biomaterials from single‐cell transcriptomics
  publication-title: Nat Biomed Eng
– volume: 110
  issue: 4
  year: 2018
  article-title: Classifying antimicrobial and multifunctional peptides with Bayesian network models
  publication-title: Pept Sci
– volume: 10
  year: 2022
  article-title: Bioink formulation and machine learning‐empowered bioprinting optimization
  publication-title: Front Bioeng Biotechnol
– volume: 81
  start-page: 320
  issue: 4
  year: 2007
  end-page: 328
  article-title: Developmental biology and tissue engineering
  publication-title: Birth Defects Res C Embryo Today Rev
– start-page: 65
  year: 2019
  end-page: 283
  article-title: Artificial intelligence and personalized medicine
  publication-title: Prec Med Cancer Ther
– volume: 25
  start-page: 24
  issue: 1
  year: 2019
  end-page: 29
  article-title: A guide to deep learning in healthcare
  publication-title: Nat Med
– start-page: 21
  year: 2015
  end-page: 44
– volume: 34
  start-page: 422
  issue: 4
  year: 2016
  end-page: 434
  article-title: 3D bioprinting for engineering complex tissues
  publication-title: Biotechnol Adv
– volume: 18
  start-page: 435
  issue: 5
  year: 2019
  end-page: 441
  article-title: Exploiting machine learning for end‐to‐end drug discovery and development
  publication-title: Nat Mater
– volume: 7
  start-page: 1704
  issue: 12
  year: 2021
  end-page: 1706
  article-title: Machine learning and medical devices: the next step for tissue engineering
  publication-title: Engineering
– volume: 39
  start-page: 1856
  issue: 6
  year: 2019
  end-page: 1867
  article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 153
  year: 2022
  article-title: Commercialization and regulation of regenerative medicine products: Promises, advances and challenges
  publication-title: Biomed Pharmacother
– volume: 15
  year: 2018
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J R Soc, Interface
– volume: 72
  start-page: 2363
  year: 2020
  end-page: 2377
  article-title: Machine learning in additive manufacturing: a review
  publication-title: Jom
– volume: 25
  start-page: 30
  issue: 1
  year: 2019
  end-page: 36
  article-title: The practical implementation of artificial intelligence technologies in medicine
  publication-title: Nat Med
– volume: 141
  year: 2021
  article-title: Recent advances in regenerative medicine strategies for cancer treatment
  publication-title: Biomed Pharmacother
– volume: 37
  start-page: 56
  year: 2014
  end-page: 68
  article-title: Numerical optimization of open‐porous bone scaffold structures to match the elastic properties of human cortical bone
  publication-title: J Mech Behav Biomed Mater
– volume: 82
  start-page: 260
  issue: 2
  year: 2022
  end-page: 273
  article-title: The use of machine learning to discover regulatory networks controlling biological systems
  publication-title: Mol Cell
– volume: 45
  start-page: 4954
  year: 2021
  end-page: 4959
  article-title: The role of artificial intelligence in revealing the results of the interaction of biological materials with each other or with chemicals
  publication-title: Mater Today: Proc
– year: 1999
– ident: e_1_2_10_35_1
  doi: 10.1007/s11030-021-10217-3
– ident: e_1_2_10_18_1
  doi: 10.1038/s43588-021-00115-x
– ident: e_1_2_10_10_1
  doi: 10.3390/computers12050091
– ident: e_1_2_10_14_1
  doi: 10.1016/j.biopha.2021.111875
– ident: e_1_2_10_46_1
  doi: 10.1002/adma.202102703
– ident: e_1_2_10_156_1
  doi: 10.1016/j.medengphy.2012.06.006
– ident: e_1_2_10_55_1
  doi: 10.1073/pnas.1903376116
– ident: e_1_2_10_152_1
  doi: 10.1016/j.jmbbm.2014.05.002
– ident: e_1_2_10_123_1
  doi: 10.1186/s41232-019-0103-3
– start-page: 1
  volume-title: Machine Learning and Complex Biological Data
  year: 2019
  ident: e_1_2_10_16_1
– ident: e_1_2_10_40_1
  doi: 10.1016/j.zemedi.2018.11.002
– ident: e_1_2_10_34_1
  doi: 10.1139/gen-2020-0131
– ident: e_1_2_10_60_1
  doi: 10.1016/j.ijpharm.2013.06.036
– ident: e_1_2_10_138_1
  doi: 10.1155/2016/3091039
– ident: e_1_2_10_148_1
  doi: 10.1115/1.4036396
– ident: e_1_2_10_105_1
  doi: 10.1167/tvst.9.2.61
– ident: e_1_2_10_64_1
  doi: 10.1016/B978-0-443-18498-7.00016-8
– start-page: 65
  year: 2019
  ident: e_1_2_10_182_1
  article-title: Artificial intelligence and personalized medicine
  publication-title: Prec Med Cancer Ther
– ident: e_1_2_10_170_1
  doi: 10.2196/25929
– ident: e_1_2_10_43_1
  doi: 10.3390/jpm10020021
– ident: e_1_2_10_2_1
  doi: 10.1016/j.nbt.2023.02.001
– ident: e_1_2_10_25_1
  doi: 10.1016/j.drudis.2020.12.003
– ident: e_1_2_10_98_1
  doi: 10.1109/TMI.2018.2833499
– ident: e_1_2_10_53_1
  doi: 10.1016/j.matpr.2021.01.387
– ident: e_1_2_10_174_1
  doi: 10.1080/03091900500130849
– ident: e_1_2_10_71_1
  doi: 10.18063/ijb.v7i1.342
– ident: e_1_2_10_96_1
  doi: 10.3389/fpsyt.2020.00016
– ident: e_1_2_10_23_1
  doi: 10.1021/acscatal.9b04321
– ident: e_1_2_10_8_1
  doi: 10.1007/s10462-021-10058-4
– ident: e_1_2_10_110_1
  doi: 10.1016/j.drudis.2020.10.010
– ident: e_1_2_10_70_1
  doi: 10.1039/C8MH00653A
– ident: e_1_2_10_17_1
  doi: 10.1038/s41591-018-0316-z
– ident: e_1_2_10_57_1
  doi: 10.1038/s41551-021-00770-5
– ident: e_1_2_10_150_1
  doi: 10.3390/polym10070753
– ident: e_1_2_10_114_1
  doi: 10.1038/s41563-019-0338-z
– ident: e_1_2_10_51_1
  doi: 10.1038/s41557-022-00910-7
– ident: e_1_2_10_75_1
  doi: 10.1109/TMI.2019.2959609
– ident: e_1_2_10_5_1
  doi: 10.3389/fbioe.2021.721843
– ident: e_1_2_10_27_1
  doi: 10.3389/fbioe.2019.00127
– ident: e_1_2_10_67_1
  doi: 10.1007/s11837-020-04155-y
– ident: e_1_2_10_68_1
  doi: 10.1089/3dp.2018.0088
– ident: e_1_2_10_108_1
  doi: 10.1186/s42234-023-00118-1
– ident: e_1_2_10_127_1
  doi: 10.1016/j.patcog.2015.03.017
– ident: e_1_2_10_171_1
  doi: 10.1038/s41591-018-0307-0
– ident: e_1_2_10_80_1
  doi: 10.1089/ten.tec.2015.0291
– ident: e_1_2_10_52_1
  doi: 10.1038/s41578-021-00282-3
– ident: e_1_2_10_63_1
  doi: 10.1016/j.addr.2021.05.015
– ident: e_1_2_10_47_1
  doi: 10.1038/natrevmats.2016.75
– ident: e_1_2_10_21_1
  doi: 10.1038/s41580-021-00407-0
– ident: e_1_2_10_106_1
  doi: 10.1016/j.ajo.2018.10.007
– ident: e_1_2_10_168_1
  doi: 10.1038/s41746-020-0221-y
– ident: e_1_2_10_109_1
  doi: 10.1016/j.actbio.2022.10.030
– ident: e_1_2_10_77_1
  doi: 10.1038/s42256-019-0048-x
– ident: e_1_2_10_176_1
  doi: 10.1155/2021/6679512
– ident: e_1_2_10_178_1
  doi: 10.3390/electronics10050562
– volume: 33
  start-page: 1
  year: 2018
  ident: e_1_2_10_149_1
  article-title: Electrohydrodynamic‐jetting (EHD‐jet) 3D‐printed functionally graded scaffolds for tissue engineering applications
  publication-title: J Mater Res
– ident: e_1_2_10_86_1
  doi: 10.1111/srt.13446
– ident: e_1_2_10_3_1
  doi: 10.1016/B978-0-12-818438-7.00002-2
– ident: e_1_2_10_133_1
  doi: 10.3389/fbioe.2020.00851
– volume: 389
  start-page: 453
  issue: 6650
  year: 1997
  ident: e_1_2_10_15_1
  article-title: Principles of tissue engineering
  publication-title: Nature
– ident: e_1_2_10_42_1
  doi: 10.1177/039139880502800112
– ident: e_1_2_10_147_1
  doi: 10.1098/rsta.2009.0024
– start-page: 1
  year: 2020
  ident: e_1_2_10_20_1
  article-title: Introduction to evolutionary machine learning techniques
  publication-title: Evol Mach Learn Techn Algorithms Appl
– ident: e_1_2_10_73_1
  doi: 10.1115/1.4036641
– ident: e_1_2_10_90_1
– ident: e_1_2_10_65_1
  doi: 10.3389/fbioe.2022.913579
– ident: e_1_2_10_24_1
  doi: 10.1089/ten.tea.2020.0191
– ident: e_1_2_10_111_1
  doi: 10.3389/fchem.2020.00343
– ident: e_1_2_10_79_1
  doi: 10.1016/j.cvsm.2017.08.002
– ident: e_1_2_10_92_1
  doi: 10.1109/TMI.2016.2528129
– ident: e_1_2_10_50_1
  doi: 10.1063/5.0021106
– ident: e_1_2_10_28_1
  doi: 10.1016/j.jacr.2018.09.007
– ident: e_1_2_10_82_1
  doi: 10.1111/srt.13633
– volume: 8
  start-page: 1
  issue: 1
  year: 2015
  ident: e_1_2_10_181_1
  article-title: From big data analysis to personalized medicine for all: challenges and opportunities
  publication-title: BMC Med Genet
– ident: e_1_2_10_162_1
  doi: 10.1073/pnas.1001208107
– ident: e_1_2_10_119_1
  doi: 10.1038/nature14539
– ident: e_1_2_10_157_1
  doi: 10.1016/j.cma.2006.09.023
– ident: e_1_2_10_159_1
  doi: 10.1115/1.4025102
– ident: e_1_2_10_85_1
  doi: 10.3389/fradi.2021.781868
– ident: e_1_2_10_89_1
  doi: 10.1016/j.acra.2020.12.001
– ident: e_1_2_10_87_1
  doi: 10.1002/mrm.26977
– ident: e_1_2_10_120_1
  doi: 10.1098/rsif.2017.0387
– ident: e_1_2_10_84_1
  doi: 10.1016/j.biomaterials.2024.122669
– ident: e_1_2_10_103_1
  doi: 10.1088/0031-9155/51/7/001
– ident: e_1_2_10_140_1
  doi: 10.1126/science.1145803
– ident: e_1_2_10_54_1
  doi: 10.1002/aisy.202000084
– volume: 13
  start-page: 495
  issue: 4
  year: 2019
  ident: e_1_2_10_94_1
  article-title: A deep learning based CNN approach on MRI for Alzheimer's disease detection
  publication-title: Intell Decis Technol
– ident: e_1_2_10_78_1
  doi: 10.2214/AJR.18.20490
– ident: e_1_2_10_158_1
  doi: 10.1016/j.jbiomech.2003.09.029
– ident: e_1_2_10_41_1
  doi: 10.1002/adma.202370137
– ident: e_1_2_10_83_1
  doi: 10.1111/srt.13515
– ident: e_1_2_10_95_1
  doi: 10.3389/fnins.2019.00810
– ident: e_1_2_10_99_1
  doi: 10.1002/mp.14319
– ident: e_1_2_10_93_1
  doi: 10.1007/s11042-019-7469-8
– ident: e_1_2_10_169_1
  doi: 10.1136/svn-2017-000101
– ident: e_1_2_10_48_1
  doi: 10.1021/acs.jpcc.8b02913
– ident: e_1_2_10_19_1
  doi: 10.1109/MM.2015.133
– ident: e_1_2_10_22_1
  doi: 10.1016/j.eng.2021.05.014
– volume-title: Artificial intelligence in healthcare applications, risks, and ethical and societal impacts
  year: 2022
  ident: e_1_2_10_167_1
– ident: e_1_2_10_37_1
  doi: 10.1007/s12525-021-00475-2
– ident: e_1_2_10_45_1
  doi: 10.1002/bdrc.20109
– ident: e_1_2_10_104_1
  doi: 10.1109/JBHI.2021.3074852
– ident: e_1_2_10_118_1
  doi: 10.1016/j.biopha.2022.113431
– ident: e_1_2_10_74_1
  doi: 10.1089/ten.teb.2014.0180
– ident: e_1_2_10_121_1
  doi: 10.1038/s41592-019-0403-1
– ident: e_1_2_10_38_1
  doi: 10.1109/ICCCNT54827.2022.9984555
– ident: e_1_2_10_32_1
  doi: 10.1089/space.2021.0018
– ident: e_1_2_10_183_1
  doi: 10.1038/s41576-018-0051-9
– ident: e_1_2_10_115_1
  doi: 10.3390/molecules25225277
– ident: e_1_2_10_62_1
  doi: 10.1016/j.copbio.2016.03.014
– ident: e_1_2_10_161_1
  doi: 10.1016/j.medengphy.2014.02.010
– ident: e_1_2_10_173_1
  doi: 10.1002/reg2.54
– ident: e_1_2_10_117_1
  doi: 10.1016/j.transci.2018.05.004
– ident: e_1_2_10_30_1
  doi: 10.1016/j.molcel.2021.12.011
– ident: e_1_2_10_128_1
– ident: e_1_2_10_135_1
  doi: 10.1038/s41598-017-13680-x
– ident: e_1_2_10_175_1
  doi: 10.1016/j.artmed.2014.07.003
– ident: e_1_2_10_180_1
  doi: 10.1016/j.fertnstert.2018.04.027
– ident: e_1_2_10_6_1
  doi: 10.1615/CritRevBiomedEng.v40.i5.10
– ident: e_1_2_10_172_1
  doi: 10.1089/omi.2019.0038
– ident: e_1_2_10_58_1
  doi: 10.1021/acsami.1c24715
– ident: e_1_2_10_97_1
  doi: 10.3390/ma14226763
– ident: e_1_2_10_102_1
  doi: 10.1016/j.semcancer.2023.01.006
– ident: e_1_2_10_33_1
  doi: 10.1016/j.jbi.2005.03.002
– ident: e_1_2_10_49_1
  doi: 10.1007/s11831-020-09506-1
– ident: e_1_2_10_125_1
– ident: e_1_2_10_81_1
  doi: 10.1096/fj.11-185140
– ident: e_1_2_10_4_1
  doi: 10.1088/2057-1976/ac154f
– ident: e_1_2_10_164_1
  doi: 10.1007/s00158-010-0508-8
– ident: e_1_2_10_165_1
  doi: 10.1002/bit.24440
– ident: e_1_2_10_146_1
  doi: 10.1016/j.actbio.2013.10.024
– ident: e_1_2_10_154_1
  doi: 10.1371/journal.pone.0146935
– ident: e_1_2_10_126_1
  doi: 10.1016/j.media.2016.05.004
– ident: e_1_2_10_136_1
  doi: 10.1016/j.jcyt.2018.10.008
– ident: e_1_2_10_122_1
  doi: 10.1016/j.tice.2020.101442
– ident: e_1_2_10_39_1
  doi: 10.1109/FUZZY.1999.790086
– ident: e_1_2_10_36_1
  doi: 10.1007/s10237-011-0316-0
– ident: e_1_2_10_139_1
  doi: 10.1109/AT-EQUAL.2009.46
– ident: e_1_2_10_153_1
  doi: 10.1016/j.actbio.2008.05.020
– ident: e_1_2_10_163_1
  doi: 10.1557/PROC-758-LL5.7
– ident: e_1_2_10_144_1
  doi: 10.20965/jrm.2022.p0304
– ident: e_1_2_10_124_1
  doi: 10.1038/s41592-018-0261-2
– start-page: 21
  volume-title: Biomaterials: design, development and biomedical applications. In: Nanotechnology applications for tissue engineering
  year: 2015
  ident: e_1_2_10_44_1
– ident: e_1_2_10_145_1
  doi: 10.1108/13552540510589458
– ident: e_1_2_10_13_1
  doi: 10.1146/annurev-chembioeng-061010-114257
– ident: e_1_2_10_177_1
  doi: 10.1007/s11263-020-01316-z
– ident: e_1_2_10_12_1
  doi: 10.1002/adhm.201900538
– ident: e_1_2_10_26_1
  doi: 10.1089/ten.tea.2019.0026
– ident: e_1_2_10_112_1
  doi: 10.3389/fbioe.2023.1168504
– ident: e_1_2_10_132_1
  doi: 10.1371/journal.pone.0055082
– ident: e_1_2_10_142_1
  doi: 10.1016/j.tibtech.2013.03.002
– ident: e_1_2_10_101_1
  doi: 10.1007/s10140-020-01886-y
– ident: e_1_2_10_134_1
  doi: 10.1016/j.biomaterials.2016.06.040
– ident: e_1_2_10_61_1
  doi: 10.1016/j.biotechadv.2015.12.011
– ident: e_1_2_10_160_1
  doi: 10.1016/j.proeng.2013.05.125
– ident: e_1_2_10_7_1
  doi: 10.3390/ijms24010009
– ident: e_1_2_10_9_1
  doi: 10.1021/acspolymersau.2c00037
– ident: e_1_2_10_72_1
  doi: 10.1016/j.mfglet.2019.02.001
– ident: e_1_2_10_137_1
  doi: 10.1016/j.bbrc.2020.03.141
– ident: e_1_2_10_141_1
  doi: 10.1088/1748-3190/10/1/016010
– ident: e_1_2_10_11_1
  doi: 10.1155/2018/2495848
– ident: e_1_2_10_59_1
  doi: 10.1002/pep2.24079
– ident: e_1_2_10_76_1
– ident: e_1_2_10_166_1
  doi: 10.1016/j.eng.2019.08.015
– ident: e_1_2_10_113_1
  doi: 10.1016/j.ijbiomac.2024.130995
– ident: e_1_2_10_131_1
  doi: 10.1093/bib/bbx044
– volume: 6
  issue: 1
  year: 2015
  ident: e_1_2_10_179_1
  article-title: Precision medicine. Personalized medicine, omics and big data: concepts and relationships
  publication-title: J Pharmacogenomics Pharmacoproteomics
– ident: e_1_2_10_143_1
  doi: 10.1038/nature14543
– ident: e_1_2_10_31_1
  doi: 10.1016/j.compbiomed.2023.106804
– ident: e_1_2_10_88_1
  doi: 10.1155/2015/450341
– ident: e_1_2_10_116_1
  doi: 10.1002/med.21764
– ident: e_1_2_10_129_1
– ident: e_1_2_10_56_1
  doi: 10.1021/acsbiomaterials.0c01008
– ident: e_1_2_10_100_1
  doi: 10.1007/s11220-020-00304-4
– volume: 9
  start-page: 561
  issue: 10
  year: 2022
  ident: e_1_2_10_29_1
  article-title: The role of machine learning and design of experiments in the advancement of biomaterial and tissue engineering research
  publication-title: Bioeng
– ident: e_1_2_10_130_1
  doi: 10.1038/s41591-018-0316-z
– ident: e_1_2_10_151_1
  doi: 10.1016/j.biomaterials.2006.02.039
– ident: e_1_2_10_69_1
  doi: 10.1016/j.apmt.2020.100914
– ident: e_1_2_10_91_1
  doi: 10.1109/ICIEA52957.2021.9436733
– ident: e_1_2_10_107_1
  doi: 10.3389/ti.2022.10640
– start-page: 1
  year: 2023
  ident: e_1_2_10_66_1
  article-title: The use of machine learning to predict the effects of cryoprotective agents on the GelMA‐based bioinks used in extrusion cryobioprinting
  publication-title: Bio‐Design and Manufacturing
– ident: e_1_2_10_155_1
  doi: 10.1016/j.biomaterials.2007.06.029
SSID ssj0005913
Score 2.4988475
SecondaryResourceType review_article
Snippet Background Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging,...
Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by...
Background Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e70016
SubjectTerms Artificial Intelligence
biomaterials
Biomedical engineering
Computers
Cost analysis
Deep learning
Fabrication
Humans
Image analysis
Image processing
Image segmentation
Imaging techniques
Invited Review
Learning algorithms
Localization
Machine Learning
Manufacturing
Medical imaging
Organs
Regenerative medicine
Regenerative Medicine - methods
Scaffolds
Software
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds
Title Recent advances in artificial intelligent strategies for tissue engineering and regenerative medicine
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.70016
https://www.ncbi.nlm.nih.gov/pubmed/39189880
https://www.proquest.com/docview/3109666406
https://www.proquest.com/docview/3097495699
https://pubmed.ncbi.nlm.nih.gov/PMC11348508
Volume 30
WOSCitedRecordID wos001298293200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005913
  issn: 0909-752X
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005913
  issn: 0909-752X
  databaseCode: 7X7
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005913
  issn: 0909-752X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1600-0846
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005913
  issn: 0909-752X
  databaseCode: 24P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFiE4tFAeTWkrgzhwCUpiO7bFqa9VD2W1Wlppb5HjtWEllKJNyu_v2Hl0VwUJqRcnkieJY8_Y32QmnwE-aWcT7ZyMubbzmFFm4lJSdFyFEUq4JHHzQJl_KcZjOZupyQZ87f-Fafkhhg9u3jLCfO0NXJf1ipHXy-aLD5rmT2ArTan0-zZkbHKf36HavZFVomLBs1lHK-TTeIZL1xejBwjzYaLkKoANK9Bo51FtfwnbHfAkx62mvIINW-3CixU6wl149q0LtL8Gi3ASW0O6FIGaLCrilazlmyCLgcizIXXTs00QBMCkCSNJ7P2Nia7mZGl_BIJrP7uSPqD_Bq5H51enF3G3I0NsGPqNOKBcaiWt4hkCFzrPtLXO5EpzLq2gXObGlVxLw1KdcOe4ZrmRiCBc6WyqDH0Lm9VNZfeASF5Sm9GcGo6QTGgtWcpS4SxVXOWWRvC5H5rCdHTlfteMX0XvtmAnFqETI_g4iP5uOTr-JnTQj2_RmWldeFpU9N8Q1ETwYahGA_NRE13Zm1uUSdDlQi9SqQjeteowPIWqVCqcASOQa4oyCHjy7vWaavEzkHijyjKJ6BjfM2jKv1tefJ9ehZP9_xd9D88zRF9tMtwBbDbLW3sIT80fVILlUTAULMVMhFIewdbJ-XgyxePZdHR9eQcDFR4V
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFlE48OgzUMAgDr0EJbGd2BIXhKiK2K4qWKS9RV7vuKxUZavdlN_fsfPorgoSUm-RPEkcz4z9jWfyGeCDcZgY51QsDU5jwYWNJ4pT4FrYQhcuSdw0UOYPiuFQjcf6fAM-df_CNPwQ_Yab94wwX3sH9xvSK16-XNQffdY0fwBbglYZb-WZOL8t8NDN4cg60XEhs3HLK-TrePpb11ejOxDzbqXkKoINS9DJs_t1_jk8baEn-9zYygvYwGoHnqwQEu7Ao7M21b4LSICSusPaIoElm1XMm1nDOMFmPZVnzZZ1xzfBCAKzOuiS4e2DmammbIEXgeLaz6-sS-nvwa-Tr6Mvp3F7JkNsBUWOpFKpjFaoZUbQhU8zg-hsro2UCgsuVW7dRBplRWoS6Zw0IreKMISbOEy15fuwWc0rPASm5IRjxnNuJYGywhglUpEWDrmWOkcewXGnm9K2hOX-3IzLsgtcaBDLMIgRvO9FrxqWjr8JHXUKLltHXZaeGJUiOII1Ebzrm8nFfN7EVDi_JpmEgi6KI7WO4KCxh_4tXKdK0xwYgVqzlF7A03evt1Sz34HGO025UISP6TuDqfy75-XPH6Nw8fL_Rd_C9unobFAOvg2_v4LHGWGxpjTuCDbrxTW-hof2DxnE4k3wmhu3zhz3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLarogUd5hRYwiAOXVElsJ7bEpaKsQCyrqrTS3iKvM4aVUFrtpv39jJ1Hd1WQkLhF8iRxPDPON5nJNwDvjMPEOKdiabCKBRc2nitOgWthC124JHFVoMyfFNOpms30yRZ86P-Fafkhhg9u3jPCfu0dHC8rt-blq2Vz6LOm-R3YFr6JzAi2j0_H55ObEg_dtkfWiY4Lmc06ZiFfyTOcvPk-ugUyb9dKrmPY8BIaP_i_6T-E-x34ZEettTyCLaz3YHeNknAPdr51yfbHgAQpaTqsKxNYsUXNvKG1nBNsMZB5NmzV9IwTjEAwa4I2Gd5cmJm6Ykv8EUiu_Q7L-qT-Ezgffzr7-DnuujLEVlDsSEqVymiFWmYEXniVGURnc22kVFhwqXLr5tIoK1KTSOekEblVhCLc3GGqLX8Ko_qixufAlJxzzHjOrSRYVhijRCrSwiHXpE_kEbzvdVPajrLcd874VfahCy1iGRYxgreD6GXL0_EnoYNewWXnqqvSU6NSDEfAJoI3wzA5mc-cmBovrkgmobCLIkmtI3jW2sNwF65TpWkXjEBtWMog4Am8N0fqxc9A5J2mXChCyPScwVT-PvPy--lZOHjx76KvYefkeFxOvky_7sO9jMBYWxt3AKNmeYUv4a69JntYvurc5jdBJB4N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+artificial+intelligent+strategies+for+tissue+engineering+and+regenerative+medicine&rft.jtitle=Skin+research+and+technology&rft.au=Gharibshahian%2C+Maliheh&rft.au=Torkashvand%2C+Mohammad&rft.au=Bavisi%2C+Mahya&rft.au=Aldaghi%2C+Niloofar&rft.date=2024-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0909-752X&rft.eissn=1600-0846&rft.volume=30&rft.issue=9&rft_id=info:doi/10.1111%2Fsrt.70016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0909-752X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0909-752X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0909-752X&client=summon