Recent advances in artificial intelligent strategies for tissue engineering and regenerative medicine
Background Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, ce...
Saved in:
| Published in: | Skin research and technology Vol. 30; no. 9; pp. e70016 - n/a |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
John Wiley & Sons, Inc
01.09.2024
John Wiley and Sons Inc |
| Subjects: | |
| ISSN: | 0909-752X, 1600-0846, 1600-0846 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role.
Methods
The “artificial intelligence,” “machine learning,” “tissue engineering,” “clinical evaluation,” and “scaffold” keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated.
Results
The combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM.
Conclusion
The findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside.
Highlights
The capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation.
ML predicts which technologies have the most efficient and easiest path to enter the market and clinic.
The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation). |
|---|---|
| AbstractList | Background
Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role.
Methods
The “artificial intelligence,” “machine learning,” “tissue engineering,” “clinical evaluation,” and “scaffold” keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated.
Results
The combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM.
Conclusion
The findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside.
Highlights
The capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation.
ML predicts which technologies have the most efficient and easiest path to enter the market and clinic.
The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation). Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role.BACKGROUNDTissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role.The "artificial intelligence," "machine learning," "tissue engineering," "clinical evaluation," and "scaffold" keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated.METHODSThe "artificial intelligence," "machine learning," "tissue engineering," "clinical evaluation," and "scaffold" keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated.The combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM.RESULTSThe combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM.The findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside.CONCLUSIONThe findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside.The capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation. ML predicts which technologies have the most efficient and easiest path to enter the market and clinic. The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation).HIGHLIGHTSThe capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation. ML predicts which technologies have the most efficient and easiest path to enter the market and clinic. The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation). Background Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role. Methods The “artificial intelligence,” “machine learning,” “tissue engineering,” “clinical evaluation,” and “scaffold” keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated. Results The combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM. Conclusion The findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside. Highlights The capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation. ML predicts which technologies have the most efficient and easiest path to enter the market and clinic. The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation). Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by applying different sciences. For this purpose, an essential part of TERM is the designing, manufacturing, and evaluating of scaffolds, cells, tissues, and organs. Artificial intelligence (AI) or the intelligence of machines or software can be effective in all areas where computers play a role. The "artificial intelligence," "machine learning," "tissue engineering," "clinical evaluation," and "scaffold" keywords used for searching in various databases and articles published from 2000 to 2024 were evaluated. The combination of tissue engineering and AI has created a new generation of technological advancement in the biomedical industry. Experience in TERM has been refined using advanced design and manufacturing techniques. Advances in AI, particularly deep learning, offer an opportunity to improve scientific understanding and clinical outcomes in TERM. The findings of this research show the high potential of AI, machine learning, and robots in the selection, design, and fabrication of scaffolds, cells, tissues, or organs, and their analysis, characterization, and evaluation after their implantation. AI can be a tool to accelerate the introduction of tissue engineering products to the bedside. The capabilities of artificial intelligence (AI) can be used in different ways in all the different stages of TERM and not only solve the existing limitations, but also accelerate the processes, increase efficiency and precision, reduce costs, and complications after transplantation. ML predicts which technologies have the most efficient and easiest path to enter the market and clinic. The use of AI along with these imaging techniques can lead to the improvement of diagnostic information, the reduction of operator errors when reading images, and the improvement of image analysis (such as classification, localization, regression, and segmentation). |
| Author | Torkashvand, Mohammad Bavisi, Mahya Gharibshahian, Maliheh Alizadeh, Akram Aldaghi, Niloofar |
| AuthorAffiliation | 4 Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran 5 Student Research Committee School of Medicine Shahroud University of Medical Sciences Shahroud Iran 1 Nervous System Stem Cells Research Center Semnan University of Medical Sciences Semnan Iran 3 College of Engineering University of Tehran Tehran Iran 2 Department of Tissue Engineering and Applied Cell Sciences School of Medicine Semnan University of Medical Sciences Semnan Iran |
| AuthorAffiliation_xml | – name: 1 Nervous System Stem Cells Research Center Semnan University of Medical Sciences Semnan Iran – name: 2 Department of Tissue Engineering and Applied Cell Sciences School of Medicine Semnan University of Medical Sciences Semnan Iran – name: 3 College of Engineering University of Tehran Tehran Iran – name: 4 Department of Tissue Engineering and Applied Cell Sciences School of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran – name: 5 Student Research Committee School of Medicine Shahroud University of Medical Sciences Shahroud Iran |
| Author_xml | – sequence: 1 givenname: Maliheh orcidid: 0000-0002-4346-0969 surname: Gharibshahian fullname: Gharibshahian, Maliheh organization: Semnan University of Medical Sciences – sequence: 2 givenname: Mohammad surname: Torkashvand fullname: Torkashvand, Mohammad organization: University of Tehran – sequence: 3 givenname: Mahya surname: Bavisi fullname: Bavisi, Mahya organization: Iran University of Medical Sciences – sequence: 4 givenname: Niloofar surname: Aldaghi fullname: Aldaghi, Niloofar organization: Shahroud University of Medical Sciences – sequence: 5 givenname: Akram surname: Alizadeh fullname: Alizadeh, Akram email: alizadehbio@gmail.com organization: Semnan University of Medical Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39189880$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9rGzEQxUVJaJy0h36BstBLe9hk5JVk6VRC6D8IBNIUehNjebRVWEuptOuSb1-5TkMSaHURQr95M2_eIduLKRJjrzgc83pOSh6PFwBcPWMzrgBa0ELtsRkYMO1Czr8fsMNSrgFAGt49Zwed4dpoDTNGl-Qojg2uNhgdlSbEBvMYfHABh_oaaRhCv0XKmHGkPlTIp9yMoZSJGop9iEQ5xL7BuGoyVZgqGTbUrGlVdSK9YPseh0Iv7-4j9u3jh6uzz-35xacvZ6fnrRNCqFai1Gg0GTmXWnSrORJ5pwxKqWnRSa2cX0rUTnAE6b1EoZyeC-GXnrhx3RF7v9O9mZa199ZZxsHe5LDGfGsTBvv4J4Yftk8by3kntARdFd7eKeT0c6Iy2nUoru4AI6Wp2A7MQhipjKnomyfodZpyrP5sx8EopQSoSr1-ONL9LH8jqMC7HeByKiWTv0c42G28tsZr_8Rb2ZMnrAtjXXXaugnD_yp-hYFu_y1tv15e7Sp-A2JQuPE |
| CitedBy_id | crossref_primary_10_20517_microstructures_2024_89 crossref_primary_10_1016_j_jddst_2025_106872 crossref_primary_10_1186_s42825_025_00197_7 crossref_primary_10_3390_pharmaceutics17091176 crossref_primary_10_1016_j_compbiomed_2024_109559 crossref_primary_10_1016_j_carbpol_2025_123702 crossref_primary_10_1080_09205063_2025_2527910 crossref_primary_10_1002_cjce_70037 crossref_primary_10_3390_pharmaceutics17040456 crossref_primary_10_1088_1748_605X_adda81 crossref_primary_10_1007_s11705_025_2566_x crossref_primary_10_1088_1748_605X_ada840 crossref_primary_10_1021_acsbiomaterials_5c00286 crossref_primary_10_3390_nano15120895 crossref_primary_10_11648_j_ijbmr_20251301_13 crossref_primary_10_3390_ijms26146966 crossref_primary_10_3390_polym17091212 crossref_primary_10_1016_j_actbio_2025_05_042 crossref_primary_10_1007_s10728_025_00536_z crossref_primary_10_1007_s44174_024_00254_5 crossref_primary_10_1103_PhysRevApplied_23_054018 |
| Cites_doi | 10.1007/s11030-021-10217-3 10.1038/s43588-021-00115-x 10.3390/computers12050091 10.1016/j.biopha.2021.111875 10.1002/adma.202102703 10.1016/j.medengphy.2012.06.006 10.1073/pnas.1903376116 10.1016/j.jmbbm.2014.05.002 10.1186/s41232-019-0103-3 10.1016/j.zemedi.2018.11.002 10.1139/gen-2020-0131 10.1016/j.ijpharm.2013.06.036 10.1155/2016/3091039 10.1115/1.4036396 10.1167/tvst.9.2.61 10.1016/B978-0-443-18498-7.00016-8 10.2196/25929 10.3390/jpm10020021 10.1016/j.nbt.2023.02.001 10.1016/j.drudis.2020.12.003 10.1109/TMI.2018.2833499 10.1016/j.matpr.2021.01.387 10.1080/03091900500130849 10.18063/ijb.v7i1.342 10.3389/fpsyt.2020.00016 10.1021/acscatal.9b04321 10.1007/s10462-021-10058-4 10.1016/j.drudis.2020.10.010 10.1039/C8MH00653A 10.1038/s41591-018-0316-z 10.1038/s41551-021-00770-5 10.3390/polym10070753 10.1038/s41563-019-0338-z 10.1038/s41557-022-00910-7 10.1109/TMI.2019.2959609 10.3389/fbioe.2021.721843 10.3389/fbioe.2019.00127 10.1007/s11837-020-04155-y 10.1089/3dp.2018.0088 10.1186/s42234-023-00118-1 10.1016/j.patcog.2015.03.017 10.1038/s41591-018-0307-0 10.1089/ten.tec.2015.0291 10.1038/s41578-021-00282-3 10.1016/j.addr.2021.05.015 10.1038/natrevmats.2016.75 10.1038/s41580-021-00407-0 10.1016/j.ajo.2018.10.007 10.1038/s41746-020-0221-y 10.1016/j.actbio.2022.10.030 10.1038/s42256-019-0048-x 10.1155/2021/6679512 10.3390/electronics10050562 10.1111/srt.13446 10.1016/B978-0-12-818438-7.00002-2 10.3389/fbioe.2020.00851 10.1177/039139880502800112 10.1098/rsta.2009.0024 10.1115/1.4036641 10.3389/fbioe.2022.913579 10.1089/ten.tea.2020.0191 10.3389/fchem.2020.00343 10.1016/j.cvsm.2017.08.002 10.1109/TMI.2016.2528129 10.1063/5.0021106 10.1016/j.jacr.2018.09.007 10.1111/srt.13633 10.1073/pnas.1001208107 10.1038/nature14539 10.1016/j.cma.2006.09.023 10.1115/1.4025102 10.3389/fradi.2021.781868 10.1016/j.acra.2020.12.001 10.1002/mrm.26977 10.1098/rsif.2017.0387 10.1016/j.biomaterials.2024.122669 10.1088/0031-9155/51/7/001 10.1126/science.1145803 10.1002/aisy.202000084 10.2214/AJR.18.20490 10.1016/j.jbiomech.2003.09.029 10.1002/adma.202370137 10.1111/srt.13515 10.3389/fnins.2019.00810 10.1002/mp.14319 10.1007/s11042-019-7469-8 10.1136/svn-2017-000101 10.1021/acs.jpcc.8b02913 10.1109/MM.2015.133 10.1016/j.eng.2021.05.014 10.1007/s12525-021-00475-2 10.1002/bdrc.20109 10.1109/JBHI.2021.3074852 10.1016/j.biopha.2022.113431 10.1089/ten.teb.2014.0180 10.1038/s41592-019-0403-1 10.1109/ICCCNT54827.2022.9984555 10.1089/space.2021.0018 10.1038/s41576-018-0051-9 10.3390/molecules25225277 10.1016/j.copbio.2016.03.014 10.1016/j.medengphy.2014.02.010 10.1002/reg2.54 10.1016/j.transci.2018.05.004 10.1016/j.molcel.2021.12.011 10.1038/s41598-017-13680-x 10.1016/j.artmed.2014.07.003 10.1016/j.fertnstert.2018.04.027 10.1615/CritRevBiomedEng.v40.i5.10 10.1089/omi.2019.0038 10.1021/acsami.1c24715 10.3390/ma14226763 10.1016/j.semcancer.2023.01.006 10.1016/j.jbi.2005.03.002 10.1007/s11831-020-09506-1 10.1096/fj.11-185140 10.1088/2057-1976/ac154f 10.1007/s00158-010-0508-8 10.1002/bit.24440 10.1016/j.actbio.2013.10.024 10.1371/journal.pone.0146935 10.1016/j.media.2016.05.004 10.1016/j.jcyt.2018.10.008 10.1016/j.tice.2020.101442 10.1109/FUZZY.1999.790086 10.1007/s10237-011-0316-0 10.1109/AT-EQUAL.2009.46 10.1016/j.actbio.2008.05.020 10.1557/PROC-758-LL5.7 10.20965/jrm.2022.p0304 10.1038/s41592-018-0261-2 10.1108/13552540510589458 10.1146/annurev-chembioeng-061010-114257 10.1007/s11263-020-01316-z 10.1002/adhm.201900538 10.1089/ten.tea.2019.0026 10.3389/fbioe.2023.1168504 10.1371/journal.pone.0055082 10.1016/j.tibtech.2013.03.002 10.1007/s10140-020-01886-y 10.1016/j.biomaterials.2016.06.040 10.1016/j.biotechadv.2015.12.011 10.1016/j.proeng.2013.05.125 10.3390/ijms24010009 10.1021/acspolymersau.2c00037 10.1016/j.mfglet.2019.02.001 10.1016/j.bbrc.2020.03.141 10.1088/1748-3190/10/1/016010 10.1155/2018/2495848 10.1002/pep2.24079 10.1016/j.eng.2019.08.015 10.1016/j.ijbiomac.2024.130995 10.1093/bib/bbx044 10.1038/nature14543 10.1016/j.compbiomed.2023.106804 10.1155/2015/450341 10.1002/med.21764 10.1021/acsbiomaterials.0c01008 10.1007/s11220-020-00304-4 10.1016/j.biomaterials.2006.02.039 10.1016/j.apmt.2020.100914 10.1109/ICIEA52957.2021.9436733 10.3389/ti.2022.10640 10.1016/j.biomaterials.2007.06.029 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd. 2024 The Author(s). Skin Research and Technology published by John Wiley & Sons Ltd. 2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd. – notice: 2024 The Author(s). Skin Research and Technology published by John Wiley & Sons Ltd. – notice: 2024. This work is published under Creative Commons Attribution – Non-Commercial – No Derivatives License~http://creativecommons.org/licenses/by-nc-nd/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 5PM |
| DOI | 10.1111/srt.70016 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| DocumentTitleAlternate | GHARIBSHAHIAN et al |
| EISSN | 1600-0846 |
| EndPage | n/a |
| ExternalDocumentID | PMC11348508 39189880 10_1111_srt_70016 SRT70016 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Semnan University of Medical Sciences funderid: 3867 – fundername: Semnan University of Medical Sciences grantid: 3867 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 31~ 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAKAS AAMMB AANHP AAONW AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCMX ACGFS ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADPDF ADXAS ADZCM ADZMN AEFGJ AEGXH AEIMD AENEX AFBPY AFEBI AFGKR AFKRA AFRAH AFZJQ AGQPQ AGXDD AHEFC AHMBA AIACR AIDQK AIDYY AIQQE AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BROTX BRXPI BY8 CAG CCPQU COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 FEDTE FUBAC FYUFA FZ0 G-S G.N GODZA H.X HF~ HMCUK HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P2Z P4B P4D PALCI PHGZM PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RPM RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 UKHRP W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4446-5a58a98e9525843d2aeefc69a558e73586cfb5a8c41a05ff5a46c8244fbfe19c3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001298293200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0909-752X 1600-0846 |
| IngestDate | Tue Nov 04 02:05:42 EST 2025 Sun Sep 28 02:43:50 EDT 2025 Sat Nov 29 14:26:54 EST 2025 Mon Jul 21 06:03:12 EDT 2025 Sat Nov 29 07:21:42 EST 2025 Tue Nov 18 21:16:41 EST 2025 Thu Sep 25 07:34:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | tissue engineering biomaterials machine learning regenerative medicine artificial intelligence |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2024 The Author(s). Skin Research and Technology published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4446-5a58a98e9525843d2aeefc69a558e73586cfb5a8c41a05ff5a46c8244fbfe19c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-4346-0969 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.70016 |
| PMID | 39189880 |
| PQID | 3109666406 |
| PQPubID | 1106343 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11348508 proquest_miscellaneous_3097495699 proquest_journals_3109666406 pubmed_primary_39189880 crossref_primary_10_1111_srt_70016 crossref_citationtrail_10_1111_srt_70016 wiley_primary_10_1111_srt_70016_SRT70016 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Copenhagen – name: Hoboken |
| PublicationTitle | Skin research and technology |
| PublicationTitleAlternate | Skin Res Technol |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | 2023; 74 2006; 30 2021; 64 2010; 107 2019; 10 2019; 13 2022; 23 2022; 24 2019; 16 2024; 30 2019; 18 2016; 2016 2020; 11 2020; 10 2024 2013; 8 2012; 11 2018; 48 2016; 35 2016; 34 2022; 29 1997; 389 2013; 59 2018; 5 2019; 20 2006; 27 2004; 37 2019; 25 2022; 34 2022; 35 2019; 29 2016; 40 2018; 33 2009; 367 2018; 37 2021; 2021 2019; 8 2019; 7 2011; 2 2021; 45 2019; 6 2006; 51 2015; 521 2019; 1 2019; 39 2021; 141 2018; 109 2018; 21 2017; 139 2012; 109 1999 2016; 11 2018; 19 2018; 110 2010; 42 2016; 2 2016; 3 2022; 3 2022; 9 2013; 453 2015; 2015 2014; 37 2020; 26 2022; 14 2019; 212 2014; 36 2023; 158 2007; 81 2020; 25 2020; 24 2022; 10 2020; 21 2007; 318 2018; 10 2005; 11 2018; 15 2012; 40 2016; 22 2015; 35 2021; 25 2018; 122 2017; 7 2021; 26 2023; 35 2017; 2 2021; 23 2021; 22 2021; 28 2023; 9 2020; 128 2024; 266 2016; 104 2008; 4 2002; 758 2014; 62 2005; 28 2020; 526 2020; 8 2007; 28 2020; 7 2020; 6 2015; 48 2021; 31 2020; 3 2020; 2 2022; 82 2023; 29 2013; 10 2017; 35 2020; 9 2019; 116 2020; 47 2011; 25 2005; 38 2021; 41 2018; 79 2019; 198 2021; 9 2021; 7 2022; 153 2021; 6 2022; 154 2021; 5 2015; 6 2023; 11 2023; 12 2015; 10 2009 2020; 79 2021; 1 2015; 8 2021; 14 2018; 2018 2021; 10 2023; 89 2023 2022 2021 2013; 35 2020 2020; 72 2013; 31 2007; 196 2015; 21 2019 2018 2013; 135 2021; 175 2016 2017; 19 2015 2020; 67 2022; 55 2013 2018; 57 e_1_2_10_21_1 e_1_2_10_40_1 e_1_2_10_109_1 Raghavendra GM (e_1_2_10_44_1) 2015 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_158_1 e_1_2_10_70_1 e_1_2_10_93_1 Lekadir K (e_1_2_10_167_1) 2022 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 Zhang X (e_1_2_10_179_1) 2015; 6 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 Qiao Q (e_1_2_10_66_1) 2023 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 Xu C (e_1_2_10_16_1) 2019 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 Sanjairaj V (e_1_2_10_149_1) 2018; 33 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 Mirjalili S (e_1_2_10_20_1) 2020 Roy SS (e_1_2_10_94_1) 2019; 13 e_1_2_10_110_1 e_1_2_10_156_1 Lanza R (e_1_2_10_15_1) 1997; 389 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_171_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_175_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 Alyass A (e_1_2_10_181_1) 2015; 8 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_126_1 e_1_2_10_160_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_164_1 e_1_2_10_24_1 e_1_2_10_43_1 Schork NJ (e_1_2_10_182_1) 2019 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_157_1 Al‐Kharusi G (e_1_2_10_29_1) 2022; 9 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_161_1 e_1_2_10_180_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_47_1 e_1_2_10_89_1 |
| References_xml | – volume: 21 start-page: 1 year: 2020 end-page: 16 article-title: Automatic nodule segmentation method for CT images using aggregation‐U‐Net generative adversarial networks publication-title: Sens Imaging – volume: 24 start-page: 247 issue: 5 year: 2020 end-page: 263 article-title: Integrating artificial and human intelligence: a partnership for responsible innovation in biomedical engineering and medicine publication-title: Omics – volume: 42 start-page: 633 year: 2010 end-page: 644 article-title: Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity publication-title: Struct Multidiscip Optim – volume: 34 start-page: 304 issue: 2 year: 2022 end-page: 309 article-title: Flexible shoulder in quadruped animals and robots guiding science of soft robotics publication-title: Journal of Robotics and Mechatronics – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 3 start-page: 17 issue: 1 year: 2020 article-title: An overview of clinical decision support systems: benefits, risks, and strategies for success publication-title: NPJ Digital Med – volume: 67 year: 2020 article-title: Modeling adult skeletal stem cell response to laser‐machined topographies through deep learning publication-title: Tissue Cell – volume: 13 start-page: 810 year: 2019 article-title: Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning publication-title: Front Neurosci – volume: 12 start-page: 91 issue: 5 year: 2023 article-title: Understanding of machine learning with deep learning: architectures, workflow, applications and future directions publication-title: Computers – volume: 30 issue: 3 year: 2024 article-title: Skin ultrasonography and magnetic resonance; new clinical applications and instrumentation publication-title: Skin Res Technol – volume: 9 year: 2021 article-title: Vascular tissue engineering: challenges and requirements for an ideal large scale blood vessel publication-title: Front Bioeng Biotechnol – volume: 19 start-page: 671 issue: 11 year: 2018 end-page: 687 article-title: Progress and potential in organoid research publication-title: Nat Rev Genet – volume: 1 year: 2021 article-title: Review and prospect: artificial intelligence in advanced medical imaging publication-title: Front Radiol – volume: 104 start-page: 104 year: 2016 end-page: 118 article-title: Machine learning based methodology to identify cell shape phenotypes associated with microenvironmental cues publication-title: Biomaterials – volume: 9 start-page: 232 issue: 4 year: 2021 end-page: 243 article-title: Design of an artificial intelligence‐based commercial photobioreactor for optimal algae growth in space life support publication-title: New Space – year: 2013 article-title: Representation learning: a unified deep learning framework for automatic prostate MR segmentation – volume: 25 start-page: 1315 year: 2021 end-page: 1360 article-title: Artificial intelligence to deep learning: machine intelligence approach for drug discovery publication-title: Mol Diversity – volume: 2018 year: 2018 article-title: Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine publication-title: Stem Cells Int – volume: 14 start-page: 365 issue: 4 year: 2022 end-page: 376 article-title: Making the collective knowledge of chemistry open and machine actionable publication-title: Nat Chem – volume: 35 start-page: 18 year: 2017 end-page: 31 article-title: Brain tumor segmentation with deep neural networks publication-title: Med Image Anal – volume: 10 start-page: 580 year: 2013 end-page: 594 article-title: Current trends in the design of scaffolds for computer‐aided tissue engineering publication-title: Acta Biomater – volume: 122 start-page: 17575 issue: 31 year: 2018 end-page: 17585 article-title: Polymer genome: a data‐powered polymer informatics platform for property predictions publication-title: J Phys Chem C – volume: 21 start-page: 88 issue: 1 year: 2015 end-page: 102 article-title: Imaging strategies for tissue engineering applications publication-title: Tissue Eng Part B Rev – volume: 9 start-page: 61 issue: 2 year: 2020 end-page: 61 article-title: DeepRetina: layer segmentation of retina in OCT images using deep learning publication-title: Transl Vis Sci Technol – volume: 135 issue: 10 year: 2013 article-title: Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global‐local topology optimization with laser sintering publication-title: J Biomech Eng – volume: 109 start-page: 1844 issue: 7 year: 2012 end-page: 1854 article-title: Macro‐scale topology optimization for controlling internal shear stress in a porous scaffold bioreactor publication-title: Biotechnol Bioeng – volume: 14 start-page: 16568 issue: 14 year: 2022 end-page: 16581 article-title: Predicting Young's modulus of linear polyurethane and polyurethane–polyurea elastomers: Bridging length scales with physicochemical modeling and machine learning publication-title: ACS Appl Mater Interfaces – volume: 79 start-page: 3055 issue: 6 year: 2018 end-page: 3071 article-title: Learning a variational network for reconstruction of accelerated MRI data publication-title: Magn Reson Med – year: 2015 article-title: U‐net: convolutional networks for biomedical image segmentation – volume: 37 start-page: 1454 issue: 6 year: 2018 end-page: 1463 article-title: Deep learning computed tomography: learning projection‐domain weights from image domain in limited angle problems publication-title: IEEE Trans Med Imaging – year: 2022 – volume: 35 start-page: 1182 issue: 5 year: 2016 end-page: 1195 article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks publication-title: IEEE Trans Med Imaging – volume: 1 start-page: 206 issue: 5 year: 2019 end-page: 215 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat Mach Intell – volume: 26 start-page: 769 issue: 3 year: 2021 end-page: 777 article-title: Advanced machine‐learning techniques in drug discovery publication-title: Drug Discovery Today – volume: 31 start-page: 685 issue: 3 year: 2021 end-page: 695 article-title: Machine learning and deep learning publication-title: Electronic Markets – volume: 25 start-page: 688 issue: 9‐10 year: 2019 end-page: 692 article-title: Emerging technologies for tissue engineering: from gene editing to personalized medicine publication-title: Tissue Eng Part A – volume: 526 start-page: 751 issue: 3 year: 2020 end-page: 755 article-title: Machine‐learning‐based quality control of contractility of cultured human‐induced pluripotent stem‐cell‐derived cardiomyocytes publication-title: Biochem Biophys Res Commun – volume: 2015 year: 2015 article-title: MRI segmentation of the human brain: challenges, methods, and applications publication-title: Comput Math Methods Med – volume: 3 start-page: 141 issue: 2 year: 2022 end-page: 157 article-title: A user's guide to machine learning for polymeric biomaterials publication-title: ACS Polymers Au – volume: 30 start-page: 69 issue: 2 year: 2006 end-page: 72 article-title: Decision support for tendon tissue engineering publication-title: J Med Eng Technol – volume: 26 start-page: 80 issue: 1 year: 2021 article-title: Artificial intelligence in drug discovery and development publication-title: Drug Discovery Today – volume: 139 issue: 9 year: 2017 article-title: Classifying the dimensional variation in additive manufactured parts from laser‐scanned three‐dimensional point cloud data using machine learning approaches publication-title: J Manuf Sci Eng – volume: 2 issue: 12 year: 2020 article-title: Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction publication-title: Adv Intell Syst – volume: 8 start-page: 343 year: 2020 article-title: Structure‐based virtual screening: from classical to artificial intelligence publication-title: Front Chem – volume: 4 start-page: 1715 issue: 6 year: 2008 end-page: 1724 article-title: Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds publication-title: Acta Biomater – volume: 7 issue: 4 year: 2020 article-title: Data‐driven materials research enabled by natural language processing and information extraction publication-title: Appl Phys Rev – year: 2021 article-title: 3D bounding box detection in volumetric medical image data: a systematic literature review – volume: 25 start-page: 24 year: 2019 end-page: 29 article-title: A guide to deep learning in healthcare publication-title: Nat Med – volume: 139 year: 2017 article-title: Design of hierarchical 3D printed scaffolds considering mechanical and biological factors for bone tissue engineering publication-title: J Mech Des – volume: 35 start-page: 422 issue: 4 year: 2013 end-page: 432 article-title: Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions publication-title: Med Eng Phys – volume: 8 issue: 19 year: 2019 article-title: Improving the rate of translation of tissue engineering products publication-title: Adv Healthc Mater – volume: 6 start-page: 181 issue: 4 year: 2019 end-page: 189 article-title: Optimization of silicone 3D printing with hierarchical machine learning publication-title: 3D Print Add Manufact – volume: 198 start-page: 136 year: 2019 end-page: 145 article-title: Using deep learning and transfer learning to accurately diagnose early‐onset glaucoma from macular optical coherence tomography images publication-title: Am J Ophthalmol – volume: 28 start-page: 497 year: 2021 end-page: 505 article-title: Diagnosis of COVID‐19 using CT scan images and deep learning techniques publication-title: Emerg Radiol – volume: 23 issue: 6 year: 2021 article-title: Evaluation framework for successful artificial intelligence–enabled clinical decision support systems: mixed methods study publication-title: J Med Internet Res – volume: 48 start-page: 11 issue: 1 year: 2018 end-page: 29 article-title: Advances in high‐field MRI publication-title: Veter Clin Small Animal Pract – volume: 29 issue: 9 year: 2023 article-title: Comparison of brain functional response to mechanical prickling stimuli to the glabrous and hairy skin publication-title: Skin Res Technol – volume: 8 issue: 2 year: 2013 article-title: Morphology‐based prediction of osteogenic differentiation potential of human mesenchymal stem cells publication-title: PLoS One – volume: 389 start-page: 453 issue: 6650 year: 1997 end-page: 453 article-title: Principles of tissue engineering publication-title: Nature – volume: 29 start-page: 102 issue: 2 year: 2019 end-page: 127 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Zeitschrift für Medizinische Physik – volume: 8 start-page: 851 year: 2020 article-title: Prediction of human induced pluripotent stem cell cardiac differentiation outcome by multifactorial process modeling publication-title: Front Bioeng Biotechnol – volume: 33 start-page: 1 year: 2018 end-page: 13 article-title: Electrohydrodynamic‐jetting (EHD‐jet) 3D‐printed functionally graded scaffolds for tissue engineering applications publication-title: J Mater Res – volume: 367 start-page: 1993 issue: 1895 year: 2009 end-page: 2009 article-title: Computer‐aided design and finite‐element modelling of biomaterial scaffolds for bone tissue engineering publication-title: Philos Trans R Soc A – volume: 74 start-page: 16 year: 2023 end-page: 24 article-title: AI for life: trends in artificial intelligence for biotechnology publication-title: New Biotechnol – year: 2016 – volume: 11 issue: 1 year: 2016 article-title: Geometry design optimization of functionally graded scaffolds for bone tissue engineering: a mechanobiological approach publication-title: PLoS One – volume: 158 year: 2023 article-title: MLATE: machine learning for predicting cell behavior on cardiac tissue engineering scaffolds publication-title: Comput Biol Med – volume: 57 start-page: 422 issue: 3 year: 2018 end-page: 424 article-title: Artificial intelligence: a joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine publication-title: Transfus Apher Sci – volume: 35 start-page: 60 issue: 6 year: 2015 end-page: 68 article-title: An open approach to autonomous vehicles publication-title: IEEE Micro – year: 2022 article-title: Prediction of heart disease using an approach based on machine learning – volume: 16 start-page: 67 year: 2019 end-page: 70 article-title: U‐Net: deep learning for cell counting, detection, and morphometry publication-title: Nat Methods – volume: 20 start-page: 10 year: 2019 end-page: 14 article-title: Deep learning for distortion prediction in laser‐based additive manufacturing using big data publication-title: Manufact Lett – volume: 6 start-page: 642 issue: 8 year: 2021 end-page: 644 article-title: Machine learning in combinatorial polymer chemistry publication-title: Nat Rev Mater – volume: 22 year: 2021 article-title: Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing publication-title: Appl Mater Today – volume: 7 issue: 1 year: 2017 article-title: A machine learning assisted, label‐free, non‐invasive approach for somatic reprogramming in induced pluripotent stem cell colony formation detection and prediction publication-title: Sci Rep – volume: 79 start-page: 15467 year: 2020 end-page: 15479 article-title: Deep learning based diagnosis of Parkinson's disease using convolutional neural network publication-title: Multimed Tools Appl – volume: 62 start-page: 119 issue: 2 year: 2014 end-page: 127 article-title: Relationship between preparation of cells for therapy and cell quality using artificial neural network analysis publication-title: Artif Intell Med – volume: 16 start-page: 1233 issue: 12 year: 2019 end-page: 1246 article-title: Deep learning for cellular image analysis publication-title: Nat Methods – volume: 28 start-page: 4429 issue: 30 year: 2007 end-page: 4438 article-title: Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds publication-title: Biomaterials – volume: 109 start-page: 944 issue: 6 year: 2018 end-page: 945 article-title: Introduction: personalized medicine: what is it and what are the challenges? publication-title: Fertil Steril – volume: 116 start-page: 11259 issue: 23 year: 2019 end-page: 11264 article-title: Design of self‐assembly dipeptide hydrogels and machine learning via their chemical features publication-title: Proc Natl Acad Sci – volume: 10 issue: 1 year: 2015 article-title: On extracting design principles from biology: I. Method–General answers to high‐level design questions for bioinspired robots publication-title: Bioinspiration Biomimetics – volume: 2 start-page: 403 year: 2011 end-page: 430 article-title: Tissue engineering and regenerative medicine: history, progress, and challenges publication-title: Annu Rev Chem Biomol Eng – start-page: 1 year: 2023 end-page: 14 article-title: The use of machine learning to predict the effects of cryoprotective agents on the GelMA‐based bioinks used in extrusion cryobioprinting publication-title: Bio‐Design and Manufacturing – volume: 175 year: 2021 article-title: Harnessing artificial intelligence for the next generation of 3D printed medicines publication-title: Adv Drug Deliv Rev – volume: 36 start-page: 448 issue: 4 year: 2014 end-page: 457 article-title: Optimization of scaffold design for bone tissue engineering: a computational and experimental study publication-title: Med Eng Phys – volume: 26 start-page: 1359 issue: 23‐24 year: 2020 end-page: 1368 article-title: Machine learning‐guided three‐dimensional printing of tissue engineering scaffolds publication-title: Tissue Eng Part A – year: 2009 – volume: 196 start-page: 2991 issue: 31‐32 year: 2007 end-page: 2998 article-title: Computational design of tissue engineering scaffolds publication-title: Comput Meth Appl Mech Eng – volume: 35 year: 2022 article-title: Artificial intelligence: present and future potential for solid organ transplantation publication-title: Transpl Int – volume: 21 start-page: 17 year: 2018 end-page: 31 article-title: Morphological profiling using machine learning reveals emergent subpopulations of interferon‐γ–stimulated mesenchymal stromal cells that predict immunosuppression publication-title: Cytotherapy – volume: 26 start-page: 139 issue: 1 year: 2021 end-page: 150 article-title: Speckle noise reduction for OCT images based on image style transfer and conditional GAN publication-title: IEEE J Biomed Health Inf – volume: 25 start-page: 4150 issue: 12 year: 2011 article-title: Determining the fate of seeded cells in venous tissue‐engineered vascular grafts using serial MRI publication-title: FASEB J – volume: 31 start-page: 287 issue: 5 year: 2013 end-page: 294 article-title: Soft robotics: a bioinspired evolution in robotics publication-title: Trends Biotechnol – volume: 13 start-page: 495 issue: 4 year: 2019 end-page: 505 article-title: A deep learning based CNN approach on MRI for Alzheimer's disease detection publication-title: Intell Decis Technol – volume: 19 start-page: 1236 issue: 6 year: 2017 end-page: 1246 article-title: Deep learning for healthcare: review, opportunities and challenges publication-title: Briefings Bioinf – volume: 758 year: 2002 article-title: Computational design, freeform fabrication and testing of nylon‐6 tissue engineering scaffolds – volume: 16 start-page: 208 issue: 2 year: 2019 end-page: 210 article-title: The role of the FDA in ensuring the safety and efficacy of artificial intelligence software and devices publication-title: J Am Coll Radiol – volume: 212 start-page: 513 issue: 3 year: 2019 end-page: 519 article-title: Artificial intelligence for medical image analysis: a guide for authors and reviewers publication-title: Am J Roentgenol – volume: 6 start-page: 4949 issue: 9 year: 2020 end-page: 4956 article-title: Data‐driven prediction of protein adsorption on self‐assembled monolayers toward material screening and design publication-title: ACS Biomater Sci Eng – volume: 28 start-page: 74 issue: 1 year: 2005 end-page: 78 article-title: Tissue engineering scheming by artificial intelligence publication-title: Int J Artif Organs – volume: 10 start-page: 562 issue: 5 year: 2021 article-title: Machine learning methods for histopathological image analysis: A review publication-title: Electronics – volume: 55 start-page: 1947 issue: 3 year: 2022 end-page: 1999 article-title: Machine learning in drug discovery: a review publication-title: Artif Intell Rev – volume: 5 start-page: 939 issue: 5 year: 2018 end-page: 945 article-title: Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment publication-title: Mater Horiz – volume: 2016 start-page: 1 year: 2016 end-page: 15 article-title: Machine learning approach to automated quality identification of human induced pluripotent stem cell colony images publication-title: Comput Math Methods Med – volume: 11 start-page: 16 year: 2020 article-title: Identifying schizophrenia using structural MRI with a deep learning algorithm publication-title: Front Psychiatry – volume: 128 start-page: 1956 issue: 7 year: 2020 end-page: 1981 article-title: The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale publication-title: Int J Comput Vision – volume: 11 start-page: 90 year: 2005 end-page: 97 article-title: Direct writing of chitosan scaffolds using a robotic system publication-title: Rapid Prototyping J – year: 2018 – volume: 41 start-page: 1427 issue: 3 year: 2021 end-page: 1473 article-title: Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: state‐of‐the‐arts and future directions publication-title: Med Res Rev – volume: 7 issue: 5 year: 2021 article-title: The future of bone regeneration: integrating AI into tissue engineering publication-title: Biomed Phys Eng Express – volume: 59 start-page: 298 year: 2013 end-page: 306 article-title: Topological optimisation of scaffolds for tissue engineering publication-title: Procedia Eng – volume: 3 start-page: 78 issue: 2 year: 2016 end-page: 102 article-title: Physiological controls of large‐scale patterning in planarian regeneration: a molecular and computational perspective on growth and form publication-title: Regeneration – start-page: 25 year: 2020 end-page: 60 – volume: 7 start-page: 342 issue: 1 year: 2021 article-title: Application of machine learning in 3D bioprinting: focus on development of big data and digital twin publication-title: Int J Bioprinting – volume: 8 start-page: 1 issue: 1 year: 2015 end-page: 12 article-title: From big data analysis to personalized medicine for all: challenges and opportunities publication-title: BMC Med Genet – volume: 6 issue: 1 year: 2015 article-title: Precision medicine. Personalized medicine, omics and big data: concepts and relationships publication-title: J Pharmacogenomics Pharmacoproteomics – year: 2024 article-title: In Vitro and in Vivo Evaluation of Biohybrid Tissue‐Engineered Vascular Grafts with Transformative 1H/19F MRI Traceable Scaffolds publication-title: Biomaterials – volume: 318 start-page: 1088 issue: 5853 year: 2007 end-page: 1093 article-title: Self‐organization, embodiment, and biologically inspired robotics publication-title: Science – volume: 89 start-page: 30 year: 2023 end-page: 37 article-title: Artificial intelligence in lung cancer diagnosis and prognosis: current application and future perspective publication-title: Semin Cancer Biol – volume: 51 start-page: 1649 issue: 7 year: 2006 article-title: Investigation of optical coherence tomography as an imaging modality in tissue engineering publication-title: Phys Med Biol – start-page: 1 year: 2020 end-page: 7 article-title: Introduction to evolutionary machine learning techniques publication-title: Evol Mach Learn Techn Algorithms Appl – volume: 38 start-page: 417 issue: 6 year: 2005 end-page: 421 article-title: Prediction of vascular tissue engineering results with artificial neural networks publication-title: J Biomed Inform – volume: 453 start-page: 641 issue: 2 year: 2013 end-page: 647 article-title: Using machine learning for improving knowledge on antibacterial effect of bioactive glass publication-title: Int J Pharm – volume: 48 start-page: 2847 issue: 9 year: 2015 end-page: 2858 article-title: IODA: An input/output deep architecture for image labeling publication-title: Pattern Recognit – volume: 25 start-page: 5277 issue: 22 year: 2020 article-title: Machine learning methods in drug discovery publication-title: Molecules – volume: 37 start-page: 623 year: 2004 end-page: 636 article-title: A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity publication-title: J Biomech – volume: 2 start-page: 1 issue: 1 year: 2016 end-page: 17 article-title: Bioresponsive materials publication-title: Nat Rev Mater – volume: 154 start-page: 63 year: 2022 end-page: 82 article-title: Next‐generation personalized cranioplasty treatment publication-title: Acta Biomater – volume: 23 start-page: 40 issue: 1 year: 2022 end-page: 55 article-title: A guide to machine learning for biologists publication-title: Nat Rev Mol Cell Biol – volume: 11 start-page: 363 year: 2012 end-page: 377 article-title: A multiscale mechanobiological modelling framework using agent‐based models and finite element analysis: application to vascular tissue engineering publication-title: Biomech Model Mechanobiol – start-page: 155 year: 2023 end-page: 174 – volume: 9 start-page: 17 issue: 1 year: 2023 article-title: Artificial intelligence enhanced sensors‐enabling technologies to next‐generation healthcare and biomedical platform publication-title: Bioelectron Med – volume: 27 start-page: 3964 issue: 21 year: 2006 end-page: 3972 article-title: Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration publication-title: Biomaterials – volume: 6 start-page: 291 issue: 3 year: 2020 end-page: 301 article-title: Artificial intelligence in healthcare: review and prediction case studies publication-title: Engineering – volume: 7 start-page: 127 year: 2019 article-title: Challenges with the development of biomaterials for sustainable tissue engineering publication-title: Front Bioeng Biotechnol – volume: 2021 year: 2021 article-title: Involvement of machine learning tools in healthcare decision making publication-title: J Healthc Eng – volume: 47 start-page: 3961 issue: 9 year: 2020 end-page: 3971 article-title: Noise and spatial resolution properties of a commercially available deep learning‐based CT reconstruction algorithm publication-title: Med Phys – volume: 14 start-page: 6763 issue: 22 year: 2021 article-title: Computed tomography as a characterization tool for engineered scaffolds with biomedical applications publication-title: Materials – volume: 64 start-page: 416 issue: 4 year: 2021 end-page: 425 article-title: Machine learning for precision medicine publication-title: Genome – volume: 40 start-page: 103 year: 2016 end-page: 112 article-title: 3D printing of functional biomaterials for tissue engineering publication-title: Curr Opin Biotechnol – volume: 10 start-page: 21 issue: 2 year: 2020 article-title: Applications of machine learning predictive models in the chronic disease diagnosis publication-title: J Pers Med – volume: 28 start-page: 3399 year: 2021 end-page: 3413 article-title: Artificial intelligence in materials modeling and design publication-title: Arch Comput Meth Eng – volume: 29 start-page: S135 year: 2022 end-page: S144 article-title: Automatic detection and segmentation of breast cancer on MRI using mask R‐CNN trained on non–fat‐sat images and tested on fat‐sat images publication-title: Acad Radiol – volume: 107 start-page: 13222 issue: 30 year: 2010 end-page: 13227 article-title: Topological optimization for designing patient‐specific large craniofacial segmental bone replacements publication-title: Proc Natl Acad Sci – volume: 10 start-page: 753 issue: 7 year: 2018 article-title: Electrohydrodynamic jet 3D printed nerve guide conduits (NGCs) for peripheral nerve injury repair publication-title: Polymers – volume: 2 start-page: 230 issue: 4 year: 2017 end-page: 243 article-title: Artificial intelligence in healthcare: past, present and future publication-title: Stroke Vasc Neurol – start-page: 1 year: 2019 end-page: 4 – volume: 11 year: 2023 article-title: Recent advances on 3D‐printed PCL‐based composite scaffolds for bone tissue engineering publication-title: Front Bioeng Biotechnol – volume: 24 start-page: 9 issue: 1 year: 2022 article-title: Tissue engineering for gastrointestinal and genitourinary tracts publication-title: Int J Mol Sci – volume: 35 issue: 19 year: 2023 article-title: Assessing biomaterial‐induced stem cell lineage fate by machine learning‐based artificial intelligence (Adv. Mater. 19/2023) publication-title: Adv Mater – volume: 1 start-page: 532 issue: 8 year: 2021 end-page: 541 article-title: A machine learning‐based multiscale model to predict bone formation in scaffolds publication-title: Nat Comput Sci – volume: 10 start-page: 1210 issue: 2 year: 2019 end-page: 1223 article-title: Machine learning in enzyme engineering publication-title: ACS Catalysis – volume: 29 issue: 11 year: 2023 article-title: Abnormal brain structure in atopic dermatitis: Evidence from Mendelian randomization study publication-title: Skin Res Technol – volume: 521 start-page: 467 issue: 7553 year: 2015 end-page: 475 article-title: Design, fabrication and control of soft robots publication-title: Nature – volume: 39 start-page: 1 year: 2019 end-page: 7 article-title: The application of convolutional neural network to stem cell biology publication-title: Inflamm Regen – volume: 266 year: 2024 article-title: Magnesium‐oxide‐enhanced bone regeneration: 3D‐printing of gelatin‐coated composite scaffolds with sustained Rosuvastatin release publication-title: Int J Biol Macromol – volume: 9 start-page: 561 issue: 10 year: 2022 article-title: The role of machine learning and design of experiments in the advancement of biomaterial and tissue engineering research publication-title: Bioeng – volume: 34 issue: 1 year: 2022 article-title: Machine learning‐driven biomaterials evolution publication-title: Adv Mater – volume: 22 start-page: 429 issue: 5 year: 2016 end-page: 438 article-title: T2 and apparent diffusion coefficient of MRI reflect maturation of tissue‐engineered auricular cartilage subcutaneously transplanted in rats publication-title: Tissue Eng C Methods – volume: 40 start-page: 363 issue: 5 year: 2012 end-page: 408 article-title: Bone tissue engineering: recent advances and challenges publication-title: Crit Rev Biomed Eng – volume: 5 start-page: 1228 issue: 10 year: 2021 end-page: 1238 article-title: Computational reconstruction of the signalling networks surrounding implanted biomaterials from single‐cell transcriptomics publication-title: Nat Biomed Eng – volume: 110 issue: 4 year: 2018 article-title: Classifying antimicrobial and multifunctional peptides with Bayesian network models publication-title: Pept Sci – volume: 10 year: 2022 article-title: Bioink formulation and machine learning‐empowered bioprinting optimization publication-title: Front Bioeng Biotechnol – volume: 81 start-page: 320 issue: 4 year: 2007 end-page: 328 article-title: Developmental biology and tissue engineering publication-title: Birth Defects Res C Embryo Today Rev – start-page: 65 year: 2019 end-page: 283 article-title: Artificial intelligence and personalized medicine publication-title: Prec Med Cancer Ther – volume: 25 start-page: 24 issue: 1 year: 2019 end-page: 29 article-title: A guide to deep learning in healthcare publication-title: Nat Med – start-page: 21 year: 2015 end-page: 44 – volume: 34 start-page: 422 issue: 4 year: 2016 end-page: 434 article-title: 3D bioprinting for engineering complex tissues publication-title: Biotechnol Adv – volume: 18 start-page: 435 issue: 5 year: 2019 end-page: 441 article-title: Exploiting machine learning for end‐to‐end drug discovery and development publication-title: Nat Mater – volume: 7 start-page: 1704 issue: 12 year: 2021 end-page: 1706 article-title: Machine learning and medical devices: the next step for tissue engineering publication-title: Engineering – volume: 39 start-page: 1856 issue: 6 year: 2019 end-page: 1867 article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans Med Imaging – volume: 153 year: 2022 article-title: Commercialization and regulation of regenerative medicine products: Promises, advances and challenges publication-title: Biomed Pharmacother – volume: 15 year: 2018 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J R Soc, Interface – volume: 72 start-page: 2363 year: 2020 end-page: 2377 article-title: Machine learning in additive manufacturing: a review publication-title: Jom – volume: 25 start-page: 30 issue: 1 year: 2019 end-page: 36 article-title: The practical implementation of artificial intelligence technologies in medicine publication-title: Nat Med – volume: 141 year: 2021 article-title: Recent advances in regenerative medicine strategies for cancer treatment publication-title: Biomed Pharmacother – volume: 37 start-page: 56 year: 2014 end-page: 68 article-title: Numerical optimization of open‐porous bone scaffold structures to match the elastic properties of human cortical bone publication-title: J Mech Behav Biomed Mater – volume: 82 start-page: 260 issue: 2 year: 2022 end-page: 273 article-title: The use of machine learning to discover regulatory networks controlling biological systems publication-title: Mol Cell – volume: 45 start-page: 4954 year: 2021 end-page: 4959 article-title: The role of artificial intelligence in revealing the results of the interaction of biological materials with each other or with chemicals publication-title: Mater Today: Proc – year: 1999 – ident: e_1_2_10_35_1 doi: 10.1007/s11030-021-10217-3 – ident: e_1_2_10_18_1 doi: 10.1038/s43588-021-00115-x – ident: e_1_2_10_10_1 doi: 10.3390/computers12050091 – ident: e_1_2_10_14_1 doi: 10.1016/j.biopha.2021.111875 – ident: e_1_2_10_46_1 doi: 10.1002/adma.202102703 – ident: e_1_2_10_156_1 doi: 10.1016/j.medengphy.2012.06.006 – ident: e_1_2_10_55_1 doi: 10.1073/pnas.1903376116 – ident: e_1_2_10_152_1 doi: 10.1016/j.jmbbm.2014.05.002 – ident: e_1_2_10_123_1 doi: 10.1186/s41232-019-0103-3 – start-page: 1 volume-title: Machine Learning and Complex Biological Data year: 2019 ident: e_1_2_10_16_1 – ident: e_1_2_10_40_1 doi: 10.1016/j.zemedi.2018.11.002 – ident: e_1_2_10_34_1 doi: 10.1139/gen-2020-0131 – ident: e_1_2_10_60_1 doi: 10.1016/j.ijpharm.2013.06.036 – ident: e_1_2_10_138_1 doi: 10.1155/2016/3091039 – ident: e_1_2_10_148_1 doi: 10.1115/1.4036396 – ident: e_1_2_10_105_1 doi: 10.1167/tvst.9.2.61 – ident: e_1_2_10_64_1 doi: 10.1016/B978-0-443-18498-7.00016-8 – start-page: 65 year: 2019 ident: e_1_2_10_182_1 article-title: Artificial intelligence and personalized medicine publication-title: Prec Med Cancer Ther – ident: e_1_2_10_170_1 doi: 10.2196/25929 – ident: e_1_2_10_43_1 doi: 10.3390/jpm10020021 – ident: e_1_2_10_2_1 doi: 10.1016/j.nbt.2023.02.001 – ident: e_1_2_10_25_1 doi: 10.1016/j.drudis.2020.12.003 – ident: e_1_2_10_98_1 doi: 10.1109/TMI.2018.2833499 – ident: e_1_2_10_53_1 doi: 10.1016/j.matpr.2021.01.387 – ident: e_1_2_10_174_1 doi: 10.1080/03091900500130849 – ident: e_1_2_10_71_1 doi: 10.18063/ijb.v7i1.342 – ident: e_1_2_10_96_1 doi: 10.3389/fpsyt.2020.00016 – ident: e_1_2_10_23_1 doi: 10.1021/acscatal.9b04321 – ident: e_1_2_10_8_1 doi: 10.1007/s10462-021-10058-4 – ident: e_1_2_10_110_1 doi: 10.1016/j.drudis.2020.10.010 – ident: e_1_2_10_70_1 doi: 10.1039/C8MH00653A – ident: e_1_2_10_17_1 doi: 10.1038/s41591-018-0316-z – ident: e_1_2_10_57_1 doi: 10.1038/s41551-021-00770-5 – ident: e_1_2_10_150_1 doi: 10.3390/polym10070753 – ident: e_1_2_10_114_1 doi: 10.1038/s41563-019-0338-z – ident: e_1_2_10_51_1 doi: 10.1038/s41557-022-00910-7 – ident: e_1_2_10_75_1 doi: 10.1109/TMI.2019.2959609 – ident: e_1_2_10_5_1 doi: 10.3389/fbioe.2021.721843 – ident: e_1_2_10_27_1 doi: 10.3389/fbioe.2019.00127 – ident: e_1_2_10_67_1 doi: 10.1007/s11837-020-04155-y – ident: e_1_2_10_68_1 doi: 10.1089/3dp.2018.0088 – ident: e_1_2_10_108_1 doi: 10.1186/s42234-023-00118-1 – ident: e_1_2_10_127_1 doi: 10.1016/j.patcog.2015.03.017 – ident: e_1_2_10_171_1 doi: 10.1038/s41591-018-0307-0 – ident: e_1_2_10_80_1 doi: 10.1089/ten.tec.2015.0291 – ident: e_1_2_10_52_1 doi: 10.1038/s41578-021-00282-3 – ident: e_1_2_10_63_1 doi: 10.1016/j.addr.2021.05.015 – ident: e_1_2_10_47_1 doi: 10.1038/natrevmats.2016.75 – ident: e_1_2_10_21_1 doi: 10.1038/s41580-021-00407-0 – ident: e_1_2_10_106_1 doi: 10.1016/j.ajo.2018.10.007 – ident: e_1_2_10_168_1 doi: 10.1038/s41746-020-0221-y – ident: e_1_2_10_109_1 doi: 10.1016/j.actbio.2022.10.030 – ident: e_1_2_10_77_1 doi: 10.1038/s42256-019-0048-x – ident: e_1_2_10_176_1 doi: 10.1155/2021/6679512 – ident: e_1_2_10_178_1 doi: 10.3390/electronics10050562 – volume: 33 start-page: 1 year: 2018 ident: e_1_2_10_149_1 article-title: Electrohydrodynamic‐jetting (EHD‐jet) 3D‐printed functionally graded scaffolds for tissue engineering applications publication-title: J Mater Res – ident: e_1_2_10_86_1 doi: 10.1111/srt.13446 – ident: e_1_2_10_3_1 doi: 10.1016/B978-0-12-818438-7.00002-2 – ident: e_1_2_10_133_1 doi: 10.3389/fbioe.2020.00851 – volume: 389 start-page: 453 issue: 6650 year: 1997 ident: e_1_2_10_15_1 article-title: Principles of tissue engineering publication-title: Nature – ident: e_1_2_10_42_1 doi: 10.1177/039139880502800112 – ident: e_1_2_10_147_1 doi: 10.1098/rsta.2009.0024 – start-page: 1 year: 2020 ident: e_1_2_10_20_1 article-title: Introduction to evolutionary machine learning techniques publication-title: Evol Mach Learn Techn Algorithms Appl – ident: e_1_2_10_73_1 doi: 10.1115/1.4036641 – ident: e_1_2_10_90_1 – ident: e_1_2_10_65_1 doi: 10.3389/fbioe.2022.913579 – ident: e_1_2_10_24_1 doi: 10.1089/ten.tea.2020.0191 – ident: e_1_2_10_111_1 doi: 10.3389/fchem.2020.00343 – ident: e_1_2_10_79_1 doi: 10.1016/j.cvsm.2017.08.002 – ident: e_1_2_10_92_1 doi: 10.1109/TMI.2016.2528129 – ident: e_1_2_10_50_1 doi: 10.1063/5.0021106 – ident: e_1_2_10_28_1 doi: 10.1016/j.jacr.2018.09.007 – ident: e_1_2_10_82_1 doi: 10.1111/srt.13633 – volume: 8 start-page: 1 issue: 1 year: 2015 ident: e_1_2_10_181_1 article-title: From big data analysis to personalized medicine for all: challenges and opportunities publication-title: BMC Med Genet – ident: e_1_2_10_162_1 doi: 10.1073/pnas.1001208107 – ident: e_1_2_10_119_1 doi: 10.1038/nature14539 – ident: e_1_2_10_157_1 doi: 10.1016/j.cma.2006.09.023 – ident: e_1_2_10_159_1 doi: 10.1115/1.4025102 – ident: e_1_2_10_85_1 doi: 10.3389/fradi.2021.781868 – ident: e_1_2_10_89_1 doi: 10.1016/j.acra.2020.12.001 – ident: e_1_2_10_87_1 doi: 10.1002/mrm.26977 – ident: e_1_2_10_120_1 doi: 10.1098/rsif.2017.0387 – ident: e_1_2_10_84_1 doi: 10.1016/j.biomaterials.2024.122669 – ident: e_1_2_10_103_1 doi: 10.1088/0031-9155/51/7/001 – ident: e_1_2_10_140_1 doi: 10.1126/science.1145803 – ident: e_1_2_10_54_1 doi: 10.1002/aisy.202000084 – volume: 13 start-page: 495 issue: 4 year: 2019 ident: e_1_2_10_94_1 article-title: A deep learning based CNN approach on MRI for Alzheimer's disease detection publication-title: Intell Decis Technol – ident: e_1_2_10_78_1 doi: 10.2214/AJR.18.20490 – ident: e_1_2_10_158_1 doi: 10.1016/j.jbiomech.2003.09.029 – ident: e_1_2_10_41_1 doi: 10.1002/adma.202370137 – ident: e_1_2_10_83_1 doi: 10.1111/srt.13515 – ident: e_1_2_10_95_1 doi: 10.3389/fnins.2019.00810 – ident: e_1_2_10_99_1 doi: 10.1002/mp.14319 – ident: e_1_2_10_93_1 doi: 10.1007/s11042-019-7469-8 – ident: e_1_2_10_169_1 doi: 10.1136/svn-2017-000101 – ident: e_1_2_10_48_1 doi: 10.1021/acs.jpcc.8b02913 – ident: e_1_2_10_19_1 doi: 10.1109/MM.2015.133 – ident: e_1_2_10_22_1 doi: 10.1016/j.eng.2021.05.014 – volume-title: Artificial intelligence in healthcare applications, risks, and ethical and societal impacts year: 2022 ident: e_1_2_10_167_1 – ident: e_1_2_10_37_1 doi: 10.1007/s12525-021-00475-2 – ident: e_1_2_10_45_1 doi: 10.1002/bdrc.20109 – ident: e_1_2_10_104_1 doi: 10.1109/JBHI.2021.3074852 – ident: e_1_2_10_118_1 doi: 10.1016/j.biopha.2022.113431 – ident: e_1_2_10_74_1 doi: 10.1089/ten.teb.2014.0180 – ident: e_1_2_10_121_1 doi: 10.1038/s41592-019-0403-1 – ident: e_1_2_10_38_1 doi: 10.1109/ICCCNT54827.2022.9984555 – ident: e_1_2_10_32_1 doi: 10.1089/space.2021.0018 – ident: e_1_2_10_183_1 doi: 10.1038/s41576-018-0051-9 – ident: e_1_2_10_115_1 doi: 10.3390/molecules25225277 – ident: e_1_2_10_62_1 doi: 10.1016/j.copbio.2016.03.014 – ident: e_1_2_10_161_1 doi: 10.1016/j.medengphy.2014.02.010 – ident: e_1_2_10_173_1 doi: 10.1002/reg2.54 – ident: e_1_2_10_117_1 doi: 10.1016/j.transci.2018.05.004 – ident: e_1_2_10_30_1 doi: 10.1016/j.molcel.2021.12.011 – ident: e_1_2_10_128_1 – ident: e_1_2_10_135_1 doi: 10.1038/s41598-017-13680-x – ident: e_1_2_10_175_1 doi: 10.1016/j.artmed.2014.07.003 – ident: e_1_2_10_180_1 doi: 10.1016/j.fertnstert.2018.04.027 – ident: e_1_2_10_6_1 doi: 10.1615/CritRevBiomedEng.v40.i5.10 – ident: e_1_2_10_172_1 doi: 10.1089/omi.2019.0038 – ident: e_1_2_10_58_1 doi: 10.1021/acsami.1c24715 – ident: e_1_2_10_97_1 doi: 10.3390/ma14226763 – ident: e_1_2_10_102_1 doi: 10.1016/j.semcancer.2023.01.006 – ident: e_1_2_10_33_1 doi: 10.1016/j.jbi.2005.03.002 – ident: e_1_2_10_49_1 doi: 10.1007/s11831-020-09506-1 – ident: e_1_2_10_125_1 – ident: e_1_2_10_81_1 doi: 10.1096/fj.11-185140 – ident: e_1_2_10_4_1 doi: 10.1088/2057-1976/ac154f – ident: e_1_2_10_164_1 doi: 10.1007/s00158-010-0508-8 – ident: e_1_2_10_165_1 doi: 10.1002/bit.24440 – ident: e_1_2_10_146_1 doi: 10.1016/j.actbio.2013.10.024 – ident: e_1_2_10_154_1 doi: 10.1371/journal.pone.0146935 – ident: e_1_2_10_126_1 doi: 10.1016/j.media.2016.05.004 – ident: e_1_2_10_136_1 doi: 10.1016/j.jcyt.2018.10.008 – ident: e_1_2_10_122_1 doi: 10.1016/j.tice.2020.101442 – ident: e_1_2_10_39_1 doi: 10.1109/FUZZY.1999.790086 – ident: e_1_2_10_36_1 doi: 10.1007/s10237-011-0316-0 – ident: e_1_2_10_139_1 doi: 10.1109/AT-EQUAL.2009.46 – ident: e_1_2_10_153_1 doi: 10.1016/j.actbio.2008.05.020 – ident: e_1_2_10_163_1 doi: 10.1557/PROC-758-LL5.7 – ident: e_1_2_10_144_1 doi: 10.20965/jrm.2022.p0304 – ident: e_1_2_10_124_1 doi: 10.1038/s41592-018-0261-2 – start-page: 21 volume-title: Biomaterials: design, development and biomedical applications. In: Nanotechnology applications for tissue engineering year: 2015 ident: e_1_2_10_44_1 – ident: e_1_2_10_145_1 doi: 10.1108/13552540510589458 – ident: e_1_2_10_13_1 doi: 10.1146/annurev-chembioeng-061010-114257 – ident: e_1_2_10_177_1 doi: 10.1007/s11263-020-01316-z – ident: e_1_2_10_12_1 doi: 10.1002/adhm.201900538 – ident: e_1_2_10_26_1 doi: 10.1089/ten.tea.2019.0026 – ident: e_1_2_10_112_1 doi: 10.3389/fbioe.2023.1168504 – ident: e_1_2_10_132_1 doi: 10.1371/journal.pone.0055082 – ident: e_1_2_10_142_1 doi: 10.1016/j.tibtech.2013.03.002 – ident: e_1_2_10_101_1 doi: 10.1007/s10140-020-01886-y – ident: e_1_2_10_134_1 doi: 10.1016/j.biomaterials.2016.06.040 – ident: e_1_2_10_61_1 doi: 10.1016/j.biotechadv.2015.12.011 – ident: e_1_2_10_160_1 doi: 10.1016/j.proeng.2013.05.125 – ident: e_1_2_10_7_1 doi: 10.3390/ijms24010009 – ident: e_1_2_10_9_1 doi: 10.1021/acspolymersau.2c00037 – ident: e_1_2_10_72_1 doi: 10.1016/j.mfglet.2019.02.001 – ident: e_1_2_10_137_1 doi: 10.1016/j.bbrc.2020.03.141 – ident: e_1_2_10_141_1 doi: 10.1088/1748-3190/10/1/016010 – ident: e_1_2_10_11_1 doi: 10.1155/2018/2495848 – ident: e_1_2_10_59_1 doi: 10.1002/pep2.24079 – ident: e_1_2_10_76_1 – ident: e_1_2_10_166_1 doi: 10.1016/j.eng.2019.08.015 – ident: e_1_2_10_113_1 doi: 10.1016/j.ijbiomac.2024.130995 – ident: e_1_2_10_131_1 doi: 10.1093/bib/bbx044 – volume: 6 issue: 1 year: 2015 ident: e_1_2_10_179_1 article-title: Precision medicine. Personalized medicine, omics and big data: concepts and relationships publication-title: J Pharmacogenomics Pharmacoproteomics – ident: e_1_2_10_143_1 doi: 10.1038/nature14543 – ident: e_1_2_10_31_1 doi: 10.1016/j.compbiomed.2023.106804 – ident: e_1_2_10_88_1 doi: 10.1155/2015/450341 – ident: e_1_2_10_116_1 doi: 10.1002/med.21764 – ident: e_1_2_10_129_1 – ident: e_1_2_10_56_1 doi: 10.1021/acsbiomaterials.0c01008 – ident: e_1_2_10_100_1 doi: 10.1007/s11220-020-00304-4 – volume: 9 start-page: 561 issue: 10 year: 2022 ident: e_1_2_10_29_1 article-title: The role of machine learning and design of experiments in the advancement of biomaterial and tissue engineering research publication-title: Bioeng – ident: e_1_2_10_130_1 doi: 10.1038/s41591-018-0316-z – ident: e_1_2_10_151_1 doi: 10.1016/j.biomaterials.2006.02.039 – ident: e_1_2_10_69_1 doi: 10.1016/j.apmt.2020.100914 – ident: e_1_2_10_91_1 doi: 10.1109/ICIEA52957.2021.9436733 – ident: e_1_2_10_107_1 doi: 10.3389/ti.2022.10640 – start-page: 1 year: 2023 ident: e_1_2_10_66_1 article-title: The use of machine learning to predict the effects of cryoprotective agents on the GelMA‐based bioinks used in extrusion cryobioprinting publication-title: Bio‐Design and Manufacturing – ident: e_1_2_10_155_1 doi: 10.1016/j.biomaterials.2007.06.029 |
| SSID | ssj0005913 |
| Score | 2.4988475 |
| SecondaryResourceType | review_article |
| Snippet | Background
Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging,... Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging, by... Background Tissue engineering and regenerative medicine (TERM) aim to repair or replace damaged or lost tissues or organs due to accidents, diseases, or aging,... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e70016 |
| SubjectTerms | Artificial Intelligence biomaterials Biomedical engineering Computers Cost analysis Deep learning Fabrication Humans Image analysis Image processing Image segmentation Imaging techniques Invited Review Learning algorithms Localization Machine Learning Manufacturing Medical imaging Organs Regenerative medicine Regenerative Medicine - methods Scaffolds Software Tissue engineering Tissue Engineering - methods Tissue Scaffolds |
| Title | Recent advances in artificial intelligent strategies for tissue engineering and regenerative medicine |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.70016 https://www.ncbi.nlm.nih.gov/pubmed/39189880 https://www.proquest.com/docview/3109666406 https://www.proquest.com/docview/3097495699 https://pubmed.ncbi.nlm.nih.gov/PMC11348508 |
| Volume | 30 |
| WOSCitedRecordID | wos001298293200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1600-0846 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005913 issn: 0909-752X databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1600-0846 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005913 issn: 0909-752X databaseCode: 7X7 dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1600-0846 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005913 issn: 0909-752X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1600-0846 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005913 issn: 0909-752X databaseCode: 24P dateStart: 20220101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFiE4tFAeTWkrgzhwCUpiO7bFqa9VD2W1Wlppb5HjtWEllKJNyu_v2Hl0VwUJqRcnkieJY8_Y32QmnwE-aWcT7ZyMubbzmFFm4lJSdFyFEUq4JHHzQJl_KcZjOZupyQZ87f-Fafkhhg9u3jLCfO0NXJf1ipHXy-aLD5rmT2ArTan0-zZkbHKf36HavZFVomLBs1lHK-TTeIZL1xejBwjzYaLkKoANK9Bo51FtfwnbHfAkx62mvIINW-3CixU6wl149q0LtL8Gi3ASW0O6FIGaLCrilazlmyCLgcizIXXTs00QBMCkCSNJ7P2Nia7mZGl_BIJrP7uSPqD_Bq5H51enF3G3I0NsGPqNOKBcaiWt4hkCFzrPtLXO5EpzLq2gXObGlVxLw1KdcOe4ZrmRiCBc6WyqDH0Lm9VNZfeASF5Sm9GcGo6QTGgtWcpS4SxVXOWWRvC5H5rCdHTlfteMX0XvtmAnFqETI_g4iP5uOTr-JnTQj2_RmWldeFpU9N8Q1ETwYahGA_NRE13Zm1uUSdDlQi9SqQjeteowPIWqVCqcASOQa4oyCHjy7vWaavEzkHijyjKJ6BjfM2jKv1tefJ9ehZP9_xd9D88zRF9tMtwBbDbLW3sIT80fVILlUTAULMVMhFIewdbJ-XgyxePZdHR9eQcDFR4V |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFlE48OgzUMAgDr0EJbGd2BIXhKiK2K4qWKS9RV7vuKxUZavdlN_fsfPorgoSUm-RPEkcz4z9jWfyGeCDcZgY51QsDU5jwYWNJ4pT4FrYQhcuSdw0UOYPiuFQjcf6fAM-df_CNPwQ_Yab94wwX3sH9xvSK16-XNQffdY0fwBbglYZb-WZOL8t8NDN4cg60XEhs3HLK-TrePpb11ejOxDzbqXkKoINS9DJs_t1_jk8baEn-9zYygvYwGoHnqwQEu7Ao7M21b4LSICSusPaIoElm1XMm1nDOMFmPZVnzZZ1xzfBCAKzOuiS4e2DmammbIEXgeLaz6-sS-nvwa-Tr6Mvp3F7JkNsBUWOpFKpjFaoZUbQhU8zg-hsro2UCgsuVW7dRBplRWoS6Zw0IreKMISbOEy15fuwWc0rPASm5IRjxnNuJYGywhglUpEWDrmWOkcewXGnm9K2hOX-3IzLsgtcaBDLMIgRvO9FrxqWjr8JHXUKLltHXZaeGJUiOII1Ebzrm8nFfN7EVDi_JpmEgi6KI7WO4KCxh_4tXKdK0xwYgVqzlF7A03evt1Sz34HGO025UISP6TuDqfy75-XPH6Nw8fL_Rd_C9unobFAOvg2_v4LHGWGxpjTuCDbrxTW-hof2DxnE4k3wmhu3zhz3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLarogUd5hRYwiAOXVElsJ7bEpaKsQCyrqrTS3iKvM4aVUFrtpv39jJ1Hd1WQkLhF8iRxPDPON5nJNwDvjMPEOKdiabCKBRc2nitOgWthC124JHFVoMyfFNOpms30yRZ86P-Fafkhhg9u3jPCfu0dHC8rt-blq2Vz6LOm-R3YFr6JzAi2j0_H55ObEg_dtkfWiY4Lmc06ZiFfyTOcvPk-ugUyb9dKrmPY8BIaP_i_6T-E-x34ZEettTyCLaz3YHeNknAPdr51yfbHgAQpaTqsKxNYsUXNvKG1nBNsMZB5NmzV9IwTjEAwa4I2Gd5cmJm6Ykv8EUiu_Q7L-qT-Ezgffzr7-DnuujLEVlDsSEqVymiFWmYEXniVGURnc22kVFhwqXLr5tIoK1KTSOekEblVhCLc3GGqLX8Ko_qixufAlJxzzHjOrSRYVhijRCrSwiHXpE_kEbzvdVPajrLcd874VfahCy1iGRYxgreD6GXL0_EnoYNewWXnqqvSU6NSDEfAJoI3wzA5mc-cmBovrkgmobCLIkmtI3jW2sNwF65TpWkXjEBtWMog4Am8N0fqxc9A5J2mXChCyPScwVT-PvPy--lZOHjx76KvYefkeFxOvky_7sO9jMBYWxt3AKNmeYUv4a69JntYvurc5jdBJB4N |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+artificial+intelligent+strategies+for+tissue+engineering+and+regenerative+medicine&rft.jtitle=Skin+research+and+technology&rft.au=Gharibshahian%2C+Maliheh&rft.au=Torkashvand%2C+Mohammad&rft.au=Bavisi%2C+Mahya&rft.au=Aldaghi%2C+Niloofar&rft.date=2024-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0909-752X&rft.eissn=1600-0846&rft.volume=30&rft.issue=9&rft_id=info:doi/10.1111%2Fsrt.70016&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0909-752X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0909-752X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0909-752X&client=summon |