Posttranscriptional regulation of cancer traits by HuR
Cancer‐related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA‐binding protein HuR is highly abundant in many cancers. Numerous HuR‐regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encod...
Gespeichert in:
| Veröffentlicht in: | Wiley interdisciplinary reviews. RNA Jg. 1; H. 2; S. 214 - 229 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2010
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 1757-7004, 1757-7012, 1757-7012 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cancer‐related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA‐binding protein HuR is highly abundant in many cancers. Numerous HuR‐regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy. Copyright © 2010 John Wiley & Sons, Ltd.
This article is categorized under:
RNA Turnover and Surveillance > Regulation of RNA Stability
RNA in Disease and Development > RNA in Disease |
|---|---|
| AbstractList | Cancer‐related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA‐binding protein HuR is highly abundant in many cancers. Numerous HuR‐regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy. Copyright © 2010 John Wiley & Sons, Ltd.This article is categorized under:RNA Turnover and Surveillance > Regulation of RNA StabilityRNA in Disease and Development > RNA in Disease Cancer‐related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA‐binding protein HuR is highly abundant in many cancers. Numerous HuR‐regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease Cancer-related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA-binding protein HuR is highly abundant in many cancers. Numerous HuR-regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy. Cancer-related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA-binding protein HuR is highly abundant in many cancers. Numerous HuR-regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy.Cancer-related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA-binding protein HuR is highly abundant in many cancers. Numerous HuR-regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy. |
| Author | Gorospe, Myriam Abdelmohsen, Kotb |
| Author_xml | – sequence: 1 givenname: Kotb surname: Abdelmohsen fullname: Abdelmohsen, Kotb email: myriam-gorospe@nih.gov organization: LCMB, NIA-IRP, NIH, Baltimore, MD 21224, USA – sequence: 2 givenname: Myriam surname: Gorospe fullname: Gorospe, Myriam organization: LCMB, NIA-IRP, NIH, Baltimore, MD 21224, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21935886$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10O1LAjEcwPERRprZnxAHQRF0tidvdy9FSgMxFcmXYze3ODvvbLvD_O_b5cMLo9-bbfDhB_teglqWZwqAawTbCEL8tDGZaNMz0ECsw3wGEa4d75DWQcvaJXRDIWYIXYA6RhHphGHQAME4t0VhRGalSdZFkmci9Yz6KFNRPbxce1JkUhnPoaSwXrz1BuX0CpxrkVrV2p9NMHt5nvUG_vCt_9rrDn1J3fgxIVoQHS4E1iEmKIz1QgZQoSCII8ZkqGLCGJVxFDjCMCEUM60Y1ZBIpUkT3O_Wrk3-VSpb8FVipUpTkam8tDyMCMOYMubk7Ylc5qXLklqOIQwYcSVCp272qoxXasHXJlkJs-WHHg487oA0ubVGaS6T4rdE9f2UI8ir4rwqzqnjdyf8sPEPfNjBTZKq7T-Kz6ejbmX9nU1sob6PVphPXv2jw-ejPp_gaNIbjd95j_wAhKecBw |
| CitedBy_id | crossref_primary_10_1016_j_bbadis_2024_167453 crossref_primary_10_1172_JCI80046 crossref_primary_10_3390_ijms17010074 crossref_primary_10_1038_s42003_020_0933_1 crossref_primary_10_1074_jbc_M112_371203 crossref_primary_10_1242_jcs_192096 crossref_primary_10_1038_s41467_022_33552_x crossref_primary_10_1007_s13277_016_5397_z crossref_primary_10_1038_s41419_020_2728_1 crossref_primary_10_1038_s41420_023_01352_x crossref_primary_10_1080_15384101_2021_1979773 crossref_primary_10_1128_MCB_00766_14 crossref_primary_10_1016_j_tig_2011_03_005 crossref_primary_10_1093_nar_gku686 crossref_primary_10_1016_j_jep_2021_113965 crossref_primary_10_1016_j_critrevonc_2024_104271 crossref_primary_10_1186_s13578_023_01137_w crossref_primary_10_1007_s13277_013_0774_3 crossref_primary_10_1016_j_cellsig_2016_08_005 crossref_primary_10_3390_cells8101178 crossref_primary_10_1186_s12935_021_02244_9 crossref_primary_10_1158_1541_7786_MCR_15_0448 crossref_primary_10_3389_fcell_2021_656849 crossref_primary_10_1007_s13277_010_0141_6 crossref_primary_10_1016_j_neuint_2018_04_014 crossref_primary_10_1080_09273948_2020_1745244 crossref_primary_10_1080_02648725_2013_801236 crossref_primary_10_1093_abbs_gmx071 crossref_primary_10_1186_s13059_016_0990_4 crossref_primary_10_1038_ncomms6248 crossref_primary_10_1096_fj_201901930R crossref_primary_10_1016_j_febslet_2015_05_015 crossref_primary_10_1097_HJH_0000000000000801 crossref_primary_10_1128_MCB_00508_18 crossref_primary_10_1080_0067270X_2018_1439558 crossref_primary_10_1016_j_semcancer_2022_02_023 crossref_primary_10_7555_JBR_35_20210067 crossref_primary_10_1038_nrg3724 crossref_primary_10_1016_j_gde_2017_11_004 crossref_primary_10_1080_07391102_2022_2073270 crossref_primary_10_1186_s13578_018_0208_4 crossref_primary_10_1038_nrg3160 crossref_primary_10_1016_j_arr_2012_01_005 crossref_primary_10_1007_s00439_017_1819_2 crossref_primary_10_1007_s00428_013_1452_y crossref_primary_10_3390_cells11091515 crossref_primary_10_1158_0008_5472_CAN_13_1915 crossref_primary_10_1038_s41698_024_00780_x crossref_primary_10_1186_s13046_022_02433_y crossref_primary_10_3389_fimmu_2018_02732 crossref_primary_10_1016_j_yexcr_2014_09_010 crossref_primary_10_1261_rna_057588_116 crossref_primary_10_1002_iub_70049 crossref_primary_10_1186_s12885_021_07930_5 crossref_primary_10_3748_wjg_v21_i46_13004 crossref_primary_10_1002_jcp_27502 crossref_primary_10_1016_j_exger_2019_110752 crossref_primary_10_1038_s41388_021_02033_8 crossref_primary_10_1016_j_tranon_2024_102178 crossref_primary_10_3389_fgene_2025_1549304 crossref_primary_10_1073_pnas_1808696116 crossref_primary_10_1186_s12943_017_0751_3 crossref_primary_10_1007_s10549_013_2805_6 crossref_primary_10_1016_j_virol_2018_09_013 crossref_primary_10_1158_0008_5472_CAN_17_0015 crossref_primary_10_1016_j_bbagrm_2012_12_003 crossref_primary_10_1080_15476286_2025_2471133 crossref_primary_10_1016_j_arr_2012_01_003 crossref_primary_10_1158_1541_7786_MCR_14_0241 crossref_primary_10_1016_j_nano_2017_11_010 crossref_primary_10_1242_dmm_050120 crossref_primary_10_3892_ol_2019_10295 crossref_primary_10_1016_j_prp_2023_154348 crossref_primary_10_2147_CMAR_S268375 crossref_primary_10_3390_ijms241713127 crossref_primary_10_1016_j_diabres_2022_110142 crossref_primary_10_1016_j_drudis_2023_103580 crossref_primary_10_1128_MCB_05639_11 crossref_primary_10_1038_s41419_020_03205_2 crossref_primary_10_1002_cam4_1091 crossref_primary_10_4161_cc_10_19_17050 crossref_primary_10_1016_j_cellsig_2019_109410 crossref_primary_10_1158_1541_7786_MCR_11_0337 crossref_primary_10_1007_s10555_011_9300_5 crossref_primary_10_3390_cancers16203502 crossref_primary_10_3390_livers5030033 crossref_primary_10_1038_s41598_018_25443_3 crossref_primary_10_1093_jb_mvz067 crossref_primary_10_1101_gad_276022_115 crossref_primary_10_1186_s12915_025_02131_z crossref_primary_10_7554_eLife_63600 crossref_primary_10_1002_ijc_32608 crossref_primary_10_1093_nar_gkt166 crossref_primary_10_1158_0008_5472_CAN_14_0747 crossref_primary_10_1089_dna_2017_3940 crossref_primary_10_1007_s13277_014_2485_9 crossref_primary_10_1186_s11658_022_00343_7 crossref_primary_10_1007_s11033_013_2960_1 crossref_primary_10_1002_wrna_1378 crossref_primary_10_1002_wrna_1499 crossref_primary_10_1002_wrna_1372 crossref_primary_10_1038_cddis_2015_43 crossref_primary_10_1038_onc_2015_325 crossref_primary_10_1158_0008_5472_CAN_16_3088 crossref_primary_10_1017_S0022215113003174 crossref_primary_10_1038_s41419_017_0129_x crossref_primary_10_1016_j_pan_2015_03_006 crossref_primary_10_1111_apm_12571 crossref_primary_10_1016_j_molcel_2012_06_027 crossref_primary_10_1093_nar_gkt017 crossref_primary_10_3390_ijms14011822 crossref_primary_10_1002_wrna_1825 crossref_primary_10_1016_j_arr_2012_02_006 crossref_primary_10_1002_wrna_1386 crossref_primary_10_1007_s11418_023_01752_4 crossref_primary_10_3390_ijms140817111 crossref_primary_10_1007_s00280_018_3541_8 crossref_primary_10_1038_onc_2015_339 crossref_primary_10_1186_s12967_023_04298_x crossref_primary_10_1038_s41417_021_00342_4 crossref_primary_10_1186_s12931_021_01916_4 crossref_primary_10_1016_j_gde_2013_01_003 crossref_primary_10_1124_mol_115_100701 crossref_primary_10_1016_j_cellsig_2018_01_009 crossref_primary_10_1007_s12033_016_9947_9 crossref_primary_10_1093_nar_gkx623 crossref_primary_10_3892_or_2021_8207 crossref_primary_10_1016_j_molimm_2020_04_014 crossref_primary_10_1371_journal_pone_0175471 crossref_primary_10_1074_jbc_M114_631937 crossref_primary_10_1016_j_gpb_2022_10_006 crossref_primary_10_1158_1541_7786_MCR_11_0208 crossref_primary_10_1016_j_tig_2011_04_003 crossref_primary_10_1093_carcin_bgt251 crossref_primary_10_3892_ijo_2024_5627 crossref_primary_10_1128_MCB_01277_12 crossref_primary_10_3390_biomedicines9020119 crossref_primary_10_1002_path_4916 crossref_primary_10_1038_s41388_024_02968_8 crossref_primary_10_3389_fmed_2015_00085 crossref_primary_10_1128_mcb_00018_22 crossref_primary_10_1016_j_trsl_2016_02_007 crossref_primary_10_1016_j_canlet_2017_02_010 crossref_primary_10_1016_j_lungcan_2015_05_008 crossref_primary_10_1038_s41598_024_78333_2 crossref_primary_10_1016_j_arr_2024_102413 crossref_primary_10_1038_cgt_2015_55 crossref_primary_10_1158_0008_5472_CAN_20_2858 crossref_primary_10_1093_nar_gkaa1151 crossref_primary_10_3390_ijms222212491 crossref_primary_10_1038_s41418_019_0377_7 crossref_primary_10_3390_cancers15041150 crossref_primary_10_1016_j_molcel_2012_08_005 crossref_primary_10_1111_jcmm_16859 crossref_primary_10_1002_cam4_710 crossref_primary_10_1007_s13277_013_1008_4 crossref_primary_10_3390_cells8080797 crossref_primary_10_1155_2021_9937243 crossref_primary_10_1002_wrna_1571 crossref_primary_10_1016_j_bcp_2025_116798 crossref_primary_10_1016_j_biopha_2021_111265 crossref_primary_10_1007_s12652_021_03544_8 crossref_primary_10_1111_his_12148 crossref_primary_10_1053_j_seminoncol_2014_12_015 crossref_primary_10_1111_febs_15670 crossref_primary_10_4049_jimmunol_1900769 crossref_primary_10_3390_molecules28114433 crossref_primary_10_3892_ijo_2018_4305 crossref_primary_10_1016_j_semcancer_2022_03_017 crossref_primary_10_1038_s41388_020_1213_8 crossref_primary_10_1089_ars_2013_5795 crossref_primary_10_1038_emboj_2011_24 crossref_primary_10_1126_sciadv_abe5708 crossref_primary_10_1007_s11302_024_10021_2 crossref_primary_10_1002_wrna_1469 crossref_primary_10_1016_j_tranon_2022_101434 crossref_primary_10_1186_s13046_019_1115_1 crossref_primary_10_1016_j_bbagrm_2012_01_001 crossref_primary_10_3727_096504018X15166183598572 crossref_primary_10_1186_1471_2407_12_611 crossref_primary_10_1007_s10517_018_4084_z crossref_primary_10_1158_0008_5472_CAN_15_2073 crossref_primary_10_1002_mc_22706 crossref_primary_10_1038_onc_2016_451 crossref_primary_10_1089_jir_2013_0140 crossref_primary_10_1038_s41419_021_03871_w crossref_primary_10_1097_CAD_0000000000001215 crossref_primary_10_1186_s12964_024_01916_z crossref_primary_10_5306_wjco_v5_i3_323 crossref_primary_10_4251_wjgo_v11_i2_71 crossref_primary_10_1016_j_bcp_2014_04_003 crossref_primary_10_1002_path_2889 crossref_primary_10_1038_s41388_025_03500_2 crossref_primary_10_3892_ol_2017_7289 crossref_primary_10_1074_jbc_M116_733253 crossref_primary_10_1038_s41598_019_43894_0 crossref_primary_10_1128_MCB_00333_14 crossref_primary_10_1016_j_taap_2012_06_012 crossref_primary_10_1080_15476286_2019_1657351 crossref_primary_10_1038_s41419_024_06570_4 crossref_primary_10_1016_j_neulet_2018_11_058 crossref_primary_10_1002_1878_0261_13478 crossref_primary_10_3390_cancers12051216 crossref_primary_10_1074_jbc_M113_504951 crossref_primary_10_4049_jimmunol_1301188 crossref_primary_10_1261_rna_058115_116 crossref_primary_10_3389_fonc_2024_1347402 crossref_primary_10_1016_j_tcm_2015_03_013 crossref_primary_10_1038_ncomms5186 crossref_primary_10_1074_jbc_M112_393678 crossref_primary_10_1002_wrna_1404 crossref_primary_10_1038_s41467_025_61725_x crossref_primary_10_1007_s10555_020_09884_9 crossref_primary_10_1016_j_gde_2012_12_006 crossref_primary_10_1002_wrna_101 crossref_primary_10_1002_wrna_1520 crossref_primary_10_1016_j_molcel_2011_07_016 crossref_primary_10_3892_mmr_2015_4455 crossref_primary_10_1172_JCI130379 crossref_primary_10_3390_cancers14112666 crossref_primary_10_1186_1471_2407_13_72 crossref_primary_10_1007_s13277_014_2637_y crossref_primary_10_1038_s41467_020_16918_x crossref_primary_10_15252_embj_2021110496 crossref_primary_10_1007_s00441_016_2451_5 crossref_primary_10_1016_j_apsb_2020_02_007 crossref_primary_10_3390_ijms140510015 crossref_primary_10_1128_MCB_00281_14 crossref_primary_10_1002_hep_24795 crossref_primary_10_1038_srep16478 crossref_primary_10_1093_nar_gky696 crossref_primary_10_1089_jir_2012_0062 crossref_primary_10_1158_0008_5472_CAN_15_3110 crossref_primary_10_1101_gad_219469_113 crossref_primary_10_1016_j_canlet_2018_08_013 crossref_primary_10_1002_ijc_27789 crossref_primary_10_1016_j_ymeth_2017_05_012 crossref_primary_10_1042_BCJ20200025 crossref_primary_10_1016_j_bbagrm_2014_10_001 crossref_primary_10_1158_0008_5472_CAN_17_1947 crossref_primary_10_1128_MCB_05955_11 crossref_primary_10_1371_journal_pone_0155354 crossref_primary_10_4049_jimmunol_2200453 crossref_primary_10_1002_glia_23696 crossref_primary_10_1186_s43556_021_00052_1 crossref_primary_10_1002_ddr_21031 crossref_primary_10_3390_ijms25115854 crossref_primary_10_1007_s11888_012_0141_6 crossref_primary_10_1007_s12539_019_00339_6 crossref_primary_10_1111_bph_13103 crossref_primary_10_1371_journal_pone_0095915 crossref_primary_10_1002_ctm2_706 crossref_primary_10_1016_j_semcancer_2021_03_007 crossref_primary_10_1002_wsbm_1179 crossref_primary_10_1016_j_bbagen_2014_07_005 crossref_primary_10_3390_cancers11122014 crossref_primary_10_3390_cancers13164092 crossref_primary_10_3390_ijms151120306 crossref_primary_10_1007_s13277_013_0872_2 crossref_primary_10_1038_s41420_022_01116_z crossref_primary_10_1016_j_anndiagpath_2017_12_002 crossref_primary_10_1038_s41598_020_68646_3 crossref_primary_10_3390_cancers12103069 crossref_primary_10_1093_nar_gkw017 crossref_primary_10_1093_nar_gkt663 crossref_primary_10_3389_fcell_2021_713852 crossref_primary_10_3389_fphar_2016_00251 crossref_primary_10_3390_biom5010263 crossref_primary_10_1146_annurev_immunol_101819_075147 crossref_primary_10_1016_j_celrep_2024_114238 |
| Cites_doi | 10.1002/mc.20582 10.1172/JCI12973 10.1038/35025215 10.1038/nchembio.2007.14 10.1002/1097-0029(20010215)52:4<387::AID-JEMT1023>3.0.CO;2-W 10.1158/0008-5472.CAN-03-1987 10.1200/JCO.2003.07.077 10.1073/pnas.0306453101 10.2174/138161209789649376 10.2174/1389557510909030386 10.1017/S1355838202021726 10.1261/rna.5224304 10.2741/3550 10.1111/j.1600-0714.2007.00526.x 10.1017/S1462399409001173 10.1038/nrm2233 10.1038/nrg2111 10.1016/S0962-8924(01)02225-5 10.1007/s10549-007-9751-0 10.1158/1078-0432.CCR-05-1036 10.1073/pnas.95.26.15293 10.1038/nrc2131 10.1007/s10555-006-7886-9 10.1128/MCB.00165-08 10.1083/jcb.200502088 10.4161/cc.6.11.4299 10.1158/1078-0432.CCR-05-0764 10.1016/0092-8674(94)90572-X 10.1158/0008-5472.CAN-08-1159 10.1128/MCB.17.1.453 10.1007/978-1-4615-5371-7_14 10.1093/emboj/21.1.165 10.1200/JCO.2005.02.047 10.1038/ng1001-117 10.4161/cc.7.20.6884 10.1007/s10555-008-9123-1 10.1007/s00018-008-8252-6 10.1128/MCB.21.17.5778-5789.2001 10.1016/j.tig.2008.05.004 10.1016/j.eururo.2008.04.043 10.1074/jbc.M206187200 10.1158/1541-7786.MCR-08-0476 10.1016/S1535-6108(03)00030-8 10.1038/sj.emboj.7600661 10.1016/S1535-6108(04)00115-1 10.1016/j.canlet.2005.02.026 10.1023/A:1023099415940 10.1128/MCB.22.20.7268-7278.2002 10.1002/ijc.20675 10.1158/0008-5472.CAN-05-3389 10.1158/1078-0432.CCR-07-4863 10.1073/pnas.87.4.1486 10.5483/BMBRep.2009.42.3.125 10.1038/nrc2562 10.1038/sj.onc.1201450 10.1073/pnas.0809376106 10.1016/S0092-8674(00)81683-9 10.4161/cc.7.21.6895 10.1016/j.bbrc.2004.07.173 10.1128/MCB.00210-09 10.1159/000088478 10.1038/sj.emboj.7600305 10.1074/jbc.M305722200 10.1038/emboj.2009.67 10.1006/scbi.1998.0091 10.1038/onc.2008.469 10.18632/aging.100073 10.4161/rna.2.1.1552 10.1172/JCI38263 10.1158/0008-5472.CAN-05-4362 10.1111/j.1349-7006.1995.tb02442.x 10.1083/jcb.200309008 10.1038/modpathol.3800645 10.1139/O08-034 10.1038/nrc1609 10.1007/PL00000854 10.1038/onc.2008.215 10.1111/j.1349-7006.2009.01123.x 10.1038/sj.onc.1206862 10.1083/jcb.200709030 10.1128/MCB.01495-08 10.1128/MCB.23.20.7177-7188.2003 10.1016/S0092-8674(01)00578-5 10.1038/sj.onc.1208613 10.1091/mbc.e06-09-0850 10.1101/gad.1812509 10.1038/sj.onc.1201895 10.1093/nar/gki603 10.1007/s00018-007-7082-2 10.1074/jbc.273.11.6417 10.1152/jappl.2000.88.4.1474 10.3727/000000004783992215 10.1074/jbc.M413103200 10.1128/MCB.00973-07 10.1016/j.cellsig.2007.03.013 10.1002/(SICI)1098-2264(199805)22:1<66::AID-GCC9>3.0.CO;2-5 10.1158/1078-0432.CCR-04-2661 10.1158/1078-0432.CCR-03-0656 10.1016/j.molcel.2007.01.011 10.1002/ijc.2910590209 10.1007/s10555-007-9093-8 10.1038/nrc2602 10.3892/ijo_00000215 10.1007/978-90-481-3415-1_10 10.1016/S0092-8674(02)00738-9 10.4161/cc.8.7.8093 10.1002/cncr.23904 10.1126/science.1076807 10.1101/gad.1645808 10.1111/j.1600-0560.2007.00762.x 10.1016/j.cell.2006.04.031 10.1016/S0092-8674(00)80108-7 10.1073/pnas.94.3.952 10.1111/j.1479-828X.2008.00937.x 10.1038/nrc1926 10.1101/gad.248902 10.1128/MCB.22.10.3425-3436.2002 10.1038/nrc745 10.1128/MCB.20.3.760-769.2000 10.1158/0008-5472.CAN-04-3765 10.1093/carcin/bgn185 10.1016/j.biocel.2004.04.007 10.1016/0092-8674(91)90184-Z 10.1038/onc.2008.312 10.1073/pnas.91.17.8022 10.1093/emboj/19.10.2340 10.1515/BC.2008.022 10.1126/science.1111443 10.1179/ortho.27.3.227 10.1074/jbc.M800017200 10.1111/j.1582-4934.2009.00842.x 10.1074/jbc.M301813200 10.1128/MCB.26.8.3295-3307.2006 10.4161/cbt.7.9.6490 10.1016/j.bbrc.2007.02.145 10.1097/MAJ.0b013e3181ad8cd3 10.1261/rna.5810203 10.1073/pnas.1432104100 10.1126/science.1064693 10.1158/0008-5472.CAN-07-5635 10.1096/fasebj.13.1.9 10.1002/ijc.21944 10.4049/jimmunol.0900377 10.1007/s00018-002-8510-y 10.1158/0008-5472.CAN-08-4238 10.1158/0008-5472.CAN-08-3365 10.1158/0008-5472.CAN-09-0371 10.4143/crt.2009.41.2.87 10.1007/978-1-4615-5371-7_10 10.1159/000216837 10.1126/science.275.5303.1129 10.1093/nar/gkl571 10.1073/pnas.0400342101 10.1038/sj.bjc.6605084 10.1016/j.molcel.2004.05.002 10.1158/1078-0432.CCR-07-1432 10.1128/MCB.01530-07 10.4161/rna.6.5.10079 10.1128/MCB.23.14.4901-4916.2003 10.1177/0003319708318378 10.2174/1381612043453126 10.1128/MCB.21.17.5889-5898.2001 10.1053/j.gastro.2009.01.010 |
| ContentType | Journal Article |
| Copyright | Copyright © 2010 John Wiley & Sons, Ltd. Copyright Wiley Subscription Services, Inc. Sep/Oct 2010 |
| Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons, Ltd. – notice: Copyright Wiley Subscription Services, Inc. Sep/Oct 2010 |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7X8 |
| DOI | 10.1002/wrna.4 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | Nucleic Acids Abstracts CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1757-7012 |
| EndPage | 229 |
| ExternalDocumentID | 21935886 10_1002_wrna_4 WRNA4 ark_67375_WNG_Q29QCNPV_C |
| Genre | miscellaneous Journal Article Review |
| GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z01 AG000393 – fundername: Intramural NIH HHS grantid: Z01 AG000511 |
| GroupedDBID | --- 05W 0R~ 1OC 1VH 31~ 33P 4.4 53G 5DZ 8-0 8-1 AAESR AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACGFO ACGFS ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADNMO ADOZA ADXAS ADZMN AEGXH AEIGN AEUYR AEYWJ AFBPY AFFPM AFGKR AFZJQ AGHNM AGQPQ AGYGG AHBTC AIAGR AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI BSCLL D-A DCZOG DRFUL DRSTM EBD EBS EJD EMOBN FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ SV3 WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR ZZTAW ~S- A00 AAHHS ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE WYJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7X8 |
| ID | FETCH-LOGICAL-c4444-b33fa3f8da2f82318bfdc60e166b977c8eb3774cb96da27233427fe74f03cef3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 345 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000208267200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1757-7004 1757-7012 |
| IngestDate | Sun Nov 09 11:02:58 EST 2025 Fri Jul 25 10:32:10 EDT 2025 Mon Jul 21 06:03:06 EDT 2025 Sat Nov 29 05:51:42 EST 2025 Tue Nov 18 22:18:54 EST 2025 Wed Jan 22 16:21:24 EST 2025 Sun Sep 21 06:18:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2010 John Wiley & Sons, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4444-b33fa3f8da2f82318bfdc60e166b977c8eb3774cb96da27233427fe74f03cef3 |
| Notes | ArticleID:WRNA4 ark:/67375/WNG-Q29QCNPV-C istex:A856CF74B897619E96F685CA53290C714F2775B2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| PMID | 21935886 |
| PQID | 2006737008 |
| PQPubID | 2034619 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_893722477 proquest_journals_2006737008 pubmed_primary_21935886 crossref_citationtrail_10_1002_wrna_4 crossref_primary_10_1002_wrna_4 wiley_primary_10_1002_wrna_4_WRNA4 istex_primary_ark_67375_WNG_Q29QCNPV_C |
| PublicationCentury | 2000 |
| PublicationDate | September/October 2010 |
| PublicationDateYYYYMMDD | 2010-09-01 |
| PublicationDate_xml | – month: 09 year: 2010 text: September/October 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Oxford |
| PublicationTitle | Wiley interdisciplinary reviews. RNA |
| PublicationTitleAlternate | WIREs RNA |
| PublicationYear | 2010 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | Wang J, Zhao W, Guo Y, Zhang B, Xie Q, et al. The expression of RNA-binding protein HuR in non-small cell lung cancer correlates with vascular endothelial growth factor-C expression and lymph node metastasis. Oncology 2009, 76: 420-429. López de Silanes I, Fan J, Galbán CJ, Spencer RG, Becker KG, et al. Global analysis of HuR-regulated gene expression in colon cancer systems of reducing complexity. Gene Expr 2004, 12: 49-59. Gallouzi IE, Steitz JA. Delineation of mRNA export pathways by the use of cell-permeable peptides. Science 2001, 294: 1895-1901. Yam CH, Fung TK, Poon RY. Cyclin A in cell cycle control and cancer. Cell Mol Life Sci 2002, 59: 1317-1326. Lafon I, Carballes F, Brewer G, Poiret M, Morello D. Developmental expression of AUF1 and HuR, two c-myc mRNA binding proteins. Oncogene 1998, 16: 3413-3421. Young LE, Sanduja S, Bemis-Standoli K, Pena EA, Price RL, et al. The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology 2009, 136: 1669-1679. Sahin M, Sahin E, Gümüslü S. Cyclooxygenase-2 in cancer and angiogenesis. Angiology 2009, 60: 242-253. Erkinheimo TL, Lassus H, Sivula A, Sengupta S, Furneaux H, et al. Cytoplasmic HuR expression correlates with poor outcome and with cyclooxygenase 2 expression in serous ovarian carcinoma. Cancer Res 2003, 63: 7591-7594. Hoffman B, Liebermann DA. Apoptotic signaling by c-MYC. Oncogene 2008, 27: 6462-6472. Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol 1999, 9: 211-220. Masuda K, Marasa B, Martindale JL, Halushka MK, Gorospe M. Tissue- and age-dependent expression of RNA-binding proteins that influence mRNA turnover and translation. Aging 2009, 1: 681-698. Ball KL. p21: structure and functions associated with cyclin-CDK binding. Prog Cell Cycle Res 1997, 3: 125-134. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006, 25: 9-34. Akool el-S, Kleinert H, Hamada FM, Abdelwahab MH, Forstermann U, et al. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 2003, 23: 4901-4916. Mukherjee D, Gao M, O'Connor JP, Raijmakers R, Pruijn G, et al. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. Embo J 2002, 21: 165-174. Beck C, Schreiber H, Rowley D. Role of TGF-beta in immune-evasion of cancer. Microsc Res Tech 2001, 52: 387-395. Ohtani N, Mann DJ, Hara E. Cellular senescence: its role in tumor suppression and aging. Cancer Sci 2009, 100: 792-797. Wang W, Fan J, Yang X, Fürer-Galban S, López de Silanes I, et al. AMP-activated kinase regulates cytoplasmic HuR. Mol Cell Biol 2002, 22: 3425-3436. López de Silanes I, Quesada MP, Esteller M. Aberrant regulation of messenger RNA 3′-untranslated region in human cancer. Cell Oncol 2007, 29: 1-17. Torre-Amione G, Beauchamp RD, Koeppen H, Park BH, Schreiber H, et al. A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. Proc Natl Acad Sci USA 1990, 87: 1486-1490. Costantino CL, Witkiewicz AK, Kuwano Y, Cozzitorto JA, Kennedy EP, et al. The role of HuR in gemcitabine efficacy in pancreatic cancer: HuR Up-regulates the expression of the gemcitabine metabolizing enzyme deoxycytidine kinase. Cancer Res 2009, 69: 4567-4572. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009, 9: 153-166. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000, 100: 57-70. Lu Z, Luo RZ, Peng H, Rosen DG, Atkinson EN, et al. Transcriptional and posttranscriptional down-regulation of the imprinted tumor suppressor gene ARHI (DRAS3) in ovarian cancer. Clin Cancer Res 2006, 12: 2404-2413. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001, 29: 117-129. Abdelmohsen K, Pullmann P Jr, Lal A, Kim HH, Galban S, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 2007, 25: 543-557. Lafarga V, Cuadrado A, López de Silanes I, Bengoechea R, Fernandez-Capetillo O, et al. p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21(Cip1) mRNA mediates the G(1)/S checkpoint. Mol Cell Biol 2009, 29: 4341-4351. Song IS, Tatebe S, Dai W, Kuo MT. Delayed mechanism for induction of gamma-glutamylcysteine synthetase heavy subunit mRNA stability by oxidative stress involving p38 mitogen-activated protein kinase signaling. J Biol Chem 2005, 280: 28230-28240. Clark JC, Thomas DM, Choong PF, Dass CR. RECK-a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer. Cancer Metastasis Rev 2007, 26: 675-683. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000, 88: 1474-1480. Ishimaru D, Ramalingam S, Sengupta TK, Bandyopadhyay S, Dellis S, et al. Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells. Mol Cancer Res 2009, 7: 1354-1166. Kuwano Y, Kim HH, Abdelmohsen K, Pullmann R Jr, Martindale JL, et al. MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol 2008, 28: 4562-4575. Suswam EA, Nabors LB, Huang Y, Yang X, King PH. IL-1beta induces stabilization of IL-8 mRNA in malignant breast cancer cells via the 3′ untranslated region: Involvement of divergent RNA-binding factors HuR, KSRP and TIAR. Int J Cancer 2005, 113: 911-919. Butler JS. The yin and yang of the exosome. Trends Cell Biol 2002, 12: 90-96. Hinman MN, Lou H. Diverse molecular functions of Hu proteins. Cell Mol Life Sci 2008, 65: 3168-3181. Zabrenetzky V, Harris CC, Steeg PS, Roberts DD. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int J Cancer 1994, 59: 191-195. Nabors LB, Gillespie GY, Harkins L, King PH. HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res 2001, 61: 2154-2161. Dong R, Lu JG, Wang Q, He XL, Chu YK, et al. Stabilization of Snail by HuR in the process of hydrogen peroxide induced cell migration. Biochem Biophys Res Commun 2007, 356: 318-321. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 1999, 13: 9-22. Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 2003, 299: 223-226. Hasegawa H, Kakuguchi W, Kuroshima T, Kitamura T, Tanaka S, et al. HuR is exported to the cytoplasm in oral cancer cells in a different manner from that of normal cells. Br J Cancer 2009, 100: 1943-1948. Ming XF, Stoecklin G, Lu M, Looser R, Moroni C. Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol 2001, 21: 5778-5789. Wojcik M, Mac-Marcjanek K, Wozniak LA. Physiological and pathophysiological functions of SIRT1. Mini Rev Med Chem 2009, 9: 386-394. Mrena J, Wiksten JP, Kokkola A, Nordling S, Haglund C, et al. Prognostic significance of cyclin A in gastric cancer. Int J Cancer 2006, 119: 1897-1901. Liu T, Liu PY, Marshall GM. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res 2009, 69: 1702-1705. Abdelmohsen K, Srikantan S, Yang X, Lal A, Kim HH, et al. Ubiquitin-mediated proteolysis of HuR by heat shock. Embo J 2009, 28: 1271-1282. Sheflin LG, Zou AP, Spaulding SW. Androgens regulate the binding of endogenous HuR to the AU-rich 3′UTRs of HIF-1α and EGF mRNA. Biochem Biophys Res Commun 2004, 322: 644-651. Gherzi R, Lee KY, Briata P, Wegmuller D, Moroni C, et al. A KH-domain RNA-binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 2004, 14: 571-583. Brooks CL, Gu W. How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 2009, 9: 123-128. Niesporek S, Kristiansen G, Thoma A, Weichert W, Noske A, et al. Expression of the ELAV-like protein HuR in human prostate carcinoma is an indicator of disease relapse and linked to COX-2 expression. Int J Oncol 2008, 32: 341-347. Hostetter C, Licata LA, Witkiewicz A, Costantino CL, Yeo CJ, et al. Cytoplasmic accumulation of the RNA binding protein HuR is central to tamoxifen resistance in estrogen receptor positive breast cancer cells. Cancer Biol Ther 2008, 7: 1496-1506. Lanas A. Nonsteroidal antiinflammatory drugs and cyclooxygenase inhibition in the gastrointestinal tract: a trip from peptic ulcer to colon cancer. Am J Med Sci 2009, 338: 96-106. Evans JF, Kargman SL. Cancer and cyclooxygenase-2 (COX-2) inhibition. Curr Pharm Des 2004, 10: 627-634. Topisirovic I, Siddiqui N, Borden KL. The eukaryotic translation initiation factor 4E (eIF4E) and HuR RNA operons collaboratively regulate the expression of survival and proliferative genes. Cell Cycle 2009, 8: 960-961. Abdelmohsen K, Kuwano Y, Kim HH, Gorospe M. Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol Chem 2008, 389: 243-255. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006, 125: 1111-1124. Dixon DA, Tolley ND, King PH, Nabors LB, McIntyre TM, et al. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest 2001, 108: 1657-1665. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005, 5: 341-354. Hosokawa Y, Arnold A. Mechanism of cyclin D1 (CCND1, PRAD1) overexpression in human cancer cells: analysis of allele-specific expression. Genes Chromosomes Cancer 1998, 22: 66-71. Heinonen M, Fager e_1_2_6_2_81_2 e_1_2_6_2_109_2 e_1_2_6_2_62_2 e_1_2_6_2_85_2 e_1_2_6_2_17_2 e_1_2_6_2_20_2 e_1_2_6_2_43_2 e_1_2_6_2_66_2 e_1_2_6_2_89_2 Gartel AL (e_1_2_6_2_111_2) 2002; 1 e_1_2_6_2_13_2 e_1_2_6_2_36_2 e_1_2_6_2_154_2 e_1_2_6_2_59_2 e_1_2_6_2_135_2 e_1_2_6_2_158_2 e_1_2_6_2_139_2 e_1_2_6_2_116_2 e_1_2_6_2_112_2 e_1_2_6_2_131_2 e_1_2_6_2_173_2 e_1_2_6_2_92_2 e_1_2_6_2_50_2 e_1_2_6_2_73_2 e_1_2_6_2_96_2 e_1_2_6_2_31_2 e_1_2_6_2_54_2 e_1_2_6_2_77_2 e_1_2_6_2_12_2 e_1_2_6_2_24_2 e_1_2_6_2_47_2 e_1_2_6_2_2_2 e_1_2_6_2_143_2 Gouble A (e_1_2_6_2_9_2) 2002; 62 e_1_2_6_2_124_2 e_1_2_6_2_166_2 e_1_2_6_2_28_2 e_1_2_6_2_6_2 e_1_2_6_2_147_2 e_1_2_6_2_128_2 e_1_2_6_2_105_2 e_1_2_6_2_101_2 e_1_2_6_2_120_2 e_1_2_6_2_108_2 e_1_2_6_2_63_2 e_1_2_6_2_18_2 e_1_2_6_2_82_2 e_1_2_6_2_40_2 e_1_2_6_2_21_2 e_1_2_6_2_67_2 e_1_2_6_2_14_2 e_1_2_6_2_44_2 e_1_2_6_2_86_2 e_1_2_6_2_37_2 e_1_2_6_2_79_2 e_1_2_6_2_134_2 e_1_2_6_2_157_2 e_1_2_6_2_138_2 e_1_2_6_2_115_2 e_1_2_6_2_130_2 e_1_2_6_2_153_2 e_1_2_6_2_172_2 Erkinheimo TL (e_1_2_6_2_132_2) 2003; 63 Wenger RH (e_1_2_6_2_117_2) 2005; 306 e_1_2_6_2_70_2 e_1_2_6_2_74_2 e_1_2_6_2_51_2 e_1_2_6_2_93_2 e_1_2_6_2_32_2 e_1_2_6_2_78_2 e_1_2_6_2_55_2 e_1_2_6_2_97_2 e_1_2_6_2_25_2 e_1_2_6_2_123_2 e_1_2_6_2_146_2 e_1_2_6_2_165_2 e_1_2_6_2_48_2 e_1_2_6_2_29_2 e_1_2_6_2_5_2 e_1_2_6_2_127_2 e_1_2_6_2_169_2 e_1_2_6_2_104_2 e_1_2_6_2_100_2 e_1_2_6_2_142_2 e_1_2_6_2_161_2 e_1_2_6_2_107_2 e_1_2_6_2_19_2 e_1_2_6_2_41_2 e_1_2_6_2_60_2 e_1_2_6_2_8_2 e_1_2_6_2_83_2 e_1_2_6_2_15_2 e_1_2_6_2_22_2 e_1_2_6_2_45_2 e_1_2_6_2_64_2 e_1_2_6_2_87_2 e_1_2_6_2_57_2 e_1_2_6_2_133_2 e_1_2_6_2_38_2 e_1_2_6_2_156_2 e_1_2_6_2_137_2 e_1_2_6_2_171_2 e_1_2_6_2_114_2 e_1_2_6_2_152_2 e_1_2_6_2_90_2 e_1_2_6_2_119_2 e_1_2_6_2_52_2 e_1_2_6_2_71_2 e_1_2_6_2_94_2 e_1_2_6_2_33_2 e_1_2_6_2_56_2 e_1_2_6_2_75_2 e_1_2_6_2_98_2 e_1_2_6_2_122_2 e_1_2_6_2_168_2 e_1_2_6_2_10_2 e_1_2_6_2_26_2 e_1_2_6_2_49_2 e_1_2_6_2_68_2 e_1_2_6_2_145_2 e_1_2_6_2_126_2 e_1_2_6_2_149_2 e_1_2_6_2_160_2 Gorospe M (e_1_2_6_2_110_2) 1999; 7 e_1_2_6_2_164_2 e_1_2_6_2_141_2 e_1_2_6_2_80_2 Agarwal R (e_1_2_6_2_150_2) 2006; 26 Nabors LB (e_1_2_6_2_76_2) 2001; 61 e_1_2_6_2_84_2 e_1_2_6_2_129_2 e_1_2_6_2_61_2 e_1_2_6_2_16_2 e_1_2_6_2_42_2 e_1_2_6_2_88_2 e_1_2_6_2_23_2 e_1_2_6_2_65_2 e_1_2_6_2_35_2 e_1_2_6_2_58_2 e_1_2_6_2_155_2 e_1_2_6_2_39_2 Letsas KP (e_1_2_6_2_103_2) 2006; 53 e_1_2_6_2_136_2 e_1_2_6_2_159_2 e_1_2_6_2_170_2 Niesporek S (e_1_2_6_2_162_2) 2008; 32 e_1_2_6_2_113_2 e_1_2_6_2_151_2 e_1_2_6_2_174_2 López de Silanes I (e_1_2_6_2_4_2) 2007; 29 e_1_2_6_2_91_2 e_1_2_6_2_118_2 e_1_2_6_2_95_2 e_1_2_6_2_30_2 e_1_2_6_2_72_2 e_1_2_6_2_53_2 e_1_2_6_2_99_2 e_1_2_6_2_34_2 e_1_2_6_2_3_2 e_1_2_6_2_121_2 e_1_2_6_2_144_2 e_1_2_6_2_167_2 e_1_2_6_2_11_2 e_1_2_6_2_46_2 e_1_2_6_2_27_2 e_1_2_6_2_69_2 e_1_2_6_2_7_2 e_1_2_6_2_125_2 e_1_2_6_2_148_2 e_1_2_6_2_106_2 e_1_2_6_2_102_2 e_1_2_6_2_140_2 e_1_2_6_2_163_2 |
| References_xml | – reference: Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000, 88: 1474-1480. – reference: López de Silanes I, Fan J, Yang X, Zonderman AB, Potapova O, et al. Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene 2003, 22: 7146-7154. – reference: Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev Cancer 2000, 2: 161-174. – reference: Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006, 25: 9-34. – reference: Guo X, Hartley RS. HuR contributes to cyclin E1 deregulation in MCF-7 breast cancer cells. Cancer Res 2006, 66: 7948-7956. – reference: Gallouzi IE, Steitz JA. Delineation of mRNA export pathways by the use of cell-permeable peptides. Science 2001, 294: 1895-1901. – reference: Sheflin LG, Zou AP, Spaulding SW. Androgens regulate the binding of endogenous HuR to the AU-rich 3′UTRs of HIF-1α and EGF mRNA. Biochem Biophys Res Commun 2004, 322: 644-651. – reference: Doller A, Huwiler A, Müller R, Radeke HH, Pfeilschifter J, et al. Protein kinase C alpha-dependent phosphorylation of the mRNA-stabilizing factor HuR: implications for posttranscriptional regulation of cyclooxygenase-2. Mol Biol Cell 2007, 18: 2137-2148. – reference: Lal A, Mazan-Mamczarz K, Kawai T, Yang X, Martindale JL, et al. Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. Embo J 2004, 23: 3092-3102. – reference: Musgrove EA, Lee CS, Buckley MF, Sutherland RL. Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci USA 1994, 91: 8022-8026. – reference: Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 2002, 1: 639-649. – reference: Moore MJ. From birth to death: the complex lives of eukaryotic mRNAs. Science 2005, 309: 1514-1518. – reference: Topisirovic I, Siddiqui N, Borden KL. The eukaryotic translation initiation factor 4E (eIF4E) and HuR RNA operons collaboratively regulate the expression of survival and proliferative genes. Cell Cycle 2009, 8: 960-961. – reference: Meisner NC, Hintersteiner M, Mueller K, Bauer R, Seifert JM, et al. Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR. Nat Chem Biol 2007, 3: 508-515. – reference: Guo X, Wu Y, Hartley RS. Cold-inducible RNA-binding protein contributes to human antigen R and cyclin E1 deregulation in breast cancer. Mol Carcinog 2009 (in press). – reference: Akool el-S, Kleinert H, Hamada FM, Abdelwahab MH, Forstermann U, et al. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 2003, 23: 4901-4916. – reference: Singhal S, Vachani A, Antin-Ozerkis D, Kaiser LR, Albelda SM. Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: a review. Clin Cancer Res 2005, 11: 3974-86. – reference: Zabrenetzky V, Harris CC, Steeg PS, Roberts DD. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int J Cancer 1994, 59: 191-195. – reference: Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007, 7: 415-428. – reference: Hoffman B, Liebermann DA. Apoptotic signaling by c-MYC. Oncogene 2008, 27: 6462-6472. – reference: Heinonen M, Fagerholm R, Aaltonen K, Kilpivaara O, Aittomäki K, et al. Prognostic role of HuR in hereditary breast cancer. Clin Cancer Res 2007, 13: 6959-6963. – reference: Cho NP, Han HS, Soh Y, Son HJ. Overexpression of cyclooxygenase-2 correlates with cytoplasmic HuR expression in salivary mucoepidermoid carcinoma but not in pleomorphic adenoma. J Oral Pathol Med 2007, 36: 297-303. – reference: Lukong KE, Chang KW, Khandjian EW, Richard S. RNA-binding proteins in human genetic disease. Trends Genet 2008, 24: 416-425. – reference: Butler JS. The yin and yang of the exosome. Trends Cell Biol 2002, 12: 90-96. – reference: Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994, 78: 59-66. – reference: Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci. STKE 2005, 306:re12. – reference: Doller A, Akool el-S, Huwiler A, Müller R, Radeke HH, et al. Posttranslational modification of the AU-rich element binding protein HuR by protein kinase Cδ elicits angiotensin II-induced stabilization and nuclear export of cyclooxygenase 2 mRNA. Mol Cell Biol 2008, 28: 2608-2625. – reference: Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 2005, 169: 871-884. – reference: Song IS, Tatebe S, Dai W, Kuo MT. Delayed mechanism for induction of gamma-glutamylcysteine synthetase heavy subunit mRNA stability by oxidative stress involving p38 mitogen-activated protein kinase signaling. J Biol Chem 2005, 280: 28230-28240. – reference: Kullmann M, Gopfert U, Siewe B, Hengst L. ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5′UTR. Genes Dev 2002, 16: 3087-3099. – reference: Wang W, Furneaux H, Cheng H, Caldwell MC, Hutter D, et al. HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol 2000, 20: 760-769. – reference: López de Silanes I, Zhan M, Lal A, Yang X, Gorospe M. Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci USA 2004, 101: 2987-2992. – reference: Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009, 9: 153-166. – reference: Evans JF, Kargman SL. Cancer and cyclooxygenase-2 (COX-2) inhibition. Curr Pharm Des 2004, 10: 627-634. – reference: Papadaki O, Milatos S, Grammenoudi S, Mukherjee N, Keene JD, et al. Control of thymic T cell maturation, deletion and egress by the RNA-binding protein HuR. J Immunol 2009, 182: 6779-6788. – reference: Erkinheimo TL, Lassus H, Sivula A, Sengupta S, Furneaux H, et al. Cytoplasmic HuR expression correlates with poor outcome and with cyclooxygenase 2 expression in serous ovarian carcinoma. Cancer Res 2003, 63: 7591-7594. – reference: Mrena J, Wiksten JP, Kokkola A, Nordling S, Haglund C, et al. Prognostic significance of cyclin A in gastric cancer. Int J Cancer 2006, 119: 1897-1901. – reference: Wang W, Fan J, Yang X, Fürer-Galban S, López de Silanes I, et al. AMP-activated kinase regulates cytoplasmic HuR. Mol Cell Biol 2002, 22: 3425-3436. – reference: Lanas A. Nonsteroidal antiinflammatory drugs and cyclooxygenase inhibition in the gastrointestinal tract: a trip from peptic ulcer to colon cancer. Am J Med Sci 2009, 338: 96-106. – reference: Wang X, Liu Y. Regulation of innate immune response by MAP kinase phosphatase-1. Cell Signal 2007, 19: 1372-1382. – reference: Huwiler A, Akool el-S, Aschrafi A, Hamada FM, Pfeilschifter J, et al. ATP potentiates interleukin-1 beta-induced MMP-9 expression in mesangial cells via recruitment of the ELAV protein HuR. J Biol Chem 2003, 278: 51758-51769. – reference: Ingelfinger D, Arndt-Jovin DJ, Luhrmann R, Achsel T. The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 2002, 8: 1489-1501. – reference: Wang W, Yang X, Cristofalo VJ, Holbrook NJ, Gorospe M. Loss of HuR is linked to reduced expression of proliferative genes during replicative senescence. Mol Cell Biol 2001, 21: 5889-5898. – reference: Wang X, Gorospe M, Huang Y, Holbrook NJ. p27Kip1 overexpression causes apoptotic death of mammalian cells. Oncogene 1997, 15: 2991-2997. – reference: Mrena J, Wiksten JP, Thiel A, Kokkola A, Pohjola L, et al. Cyclooxygenase-2 is an independent prognostic factor in gastric cancer and its expression is regulated by the messenger RNA stability factor HuR. Clin Cancer Res 2005, 11: 7362-7368. – reference: Dixon DA, Tolley ND, King PH, Nabors LB, McIntyre TM, et al. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest 2001, 108: 1657-1665. – reference: Brooks CL, Gu W. How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 2009, 9: 123-128. – reference: Barbisan F, Mazzucchelli R, Santinelli A, López-Beltran A, Cheng L, et al. Overexpression of ELAVlike protein HuR is associated with increased COX-2 expression in atrophy, high-grade prostatic intraepithelial neoplasia, and incidental prostate cancer in cystoprostatectomies. Eur Urol 2008, 56: 105-112. – reference: Poon E, Harris AL, Ashcroft M. Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med 2009, 11: e26. – reference: Kerrigan JJ, Mansell JP, Sandy JR. Matrix turnover. J Orthod 2000, 27: 227-233. – reference: Kim MY, Hur J, Jeong S. Emerging roles of RNA and RNA-binding protein network in cancer cells. BMB Rep 2009, 42: 125-130. – reference: Libra M, Scalisi A, Vella N, Clementi S, Sorio R, et al. Uterine cervical carcinoma: role of matrix metalloproteinases. Int J Oncol 2009, 34: 897-903. – reference: Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 2003, 299: 223-226. – reference: Ortega AD, Sala S, Espinosa E, González-Barón M, Cuezva JM. HuR and the bioenergetic signature of breast cancer: a low tumor expression of the RNA-binding protein predicts a higher risk of disease recurrence. Carcinogenesis 2008, 29: 2053-2061. – reference: Abdelmohsen K, Kuwano Y, Kim HH, Gorospe M. Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol Chem 2008, 389: 243-255. – reference: Ming XF, Stoecklin G, Lu M, Looser R, Moroni C. Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol 2001, 21: 5778-5789. – reference: Ball KL. p21: structure and functions associated with cyclin-CDK binding. Prog Cell Cycle Res 1997, 3: 125-134. – reference: Sonenberg N. eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochem Cell Biol 2008, 86: 178-183. – reference: Mazroui R, Di Marco S, Clair E, von Roretz C, Tenenbaum SA, et al. Caspase-mediated cleavage of HuR in the cytoplasm contributes to pp32/PHAP-I regulation of apoptosis. J Cell Biol 2008, 180: 113-127. – reference: Eystathioy T, Jakymiw A, Chan EK, Seraphin B, Cougot N, et al. The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 2003, 9: 1171-1173. – reference: Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007, 9: 729-740. – reference: Masuda K, Marasa B, Martindale JL, Halushka MK, Gorospe M. Tissue- and age-dependent expression of RNA-binding proteins that influence mRNA turnover and translation. Aging 2009, 1: 681-698. – reference: Hwang HC, Clurman BE. Cyclin E in normal and neoplastic cell cycles. Oncogene 2005, 24: 2776-2786. – reference: Gorospe M, Wang X, Holbrook NJ. Functional role of p21 during the cellular response to stress. Gene Expr 1999, 7: 377-385. – reference: Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 2001, 107: 451-464. – reference: Agarwal R, Agarwal C, Ichikawa H, Singh RP, Aggarwal BB. Anticancer potential of silymarin: from bench to bed side. Anticancer Res 2006, 26: 4457-4498. – reference: Denkert C, Weichert W, Pest S, Koch I, Licht D, et al. Overexpression of the embryonic-lethal abnormal vision-like protein HuR in ovarian carcinoma is a prognostic factor and is associated with increased cyclooxygenase 2 expression. Cancer Res 2004, 64: 189-195. – reference: Wang W, Caldwell MC, Lin S, Furneaux H, Gorospe M. HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. Embo J 2000, 19: 2340-2350. – reference: Mukherjee D, Gao M, O'Connor JP, Raijmakers R, Pruijn G, et al. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. Embo J 2002, 21: 165-174. – reference: Rau B, Sturm I, Lage H, Berger S, Schneider U, et al. Dynamic expression profile of p21WAF1/CIP1 and Ki-67 predicts survival in rectal carcinoma treated with preoperative radiochemotherapy. J Clin Oncol 2003, 21: 3391-3401. – reference: Maynard MA, Ohh M. The role of hypoxia-inducible factors in cancer. Cell Mol Life Sci 2007, 64: 2170-2180. – reference: López de Silanes I, Lal A, Gorospe M. HuR: post-transcriptional paths to malignancy. RNA Biol 2005, 2: 11-13. – reference: Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006, 125: 1111-1124. – reference: Li H, Park S, Kilburn B, Jelinek MA, Henschen-Edman A, et al. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J Biol Chem 2002, 277: 44623-44630. – reference: Heinonen M, Bono P, Narko K, Chang SH, Lundin J, et al. Cytoplasmic HuR expression is a prognostic factor in invasive ductal breast carcinoma. Cancer Res 2005, 65: 2157-2161. – reference: Pryzbylkowski P, Obajimi O, Keen JC. Trichostatin A and 5 Aza- 2′ deoxycytidine decrease estrogen receptor mRNA stability in ER positive MCF7 cells through modulation of HuR. Breast Cancer Res Treat 2008, 111: 15-25. – reference: López de Silanes I, Quesada MP, Esteller M. Aberrant regulation of messenger RNA 3′-untranslated region in human cancer. Cell Oncol 2007, 29: 1-17. – reference: Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 1999, 13: 9-22. – reference: Ishimaru D, Ramalingam S, Sengupta TK, Bandyopadhyay S, Dellis S, et al. Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells. Mol Cancer Res 2009, 7: 1354-1166. – reference: Cho NH, Kang S, Hong S, An HJ, Choi YH, et al. Elevation of cyclin B1, active cdc2, and HuR in cervical neoplasia with human papillomavirus type 18 infection. Cancer Lett 2006, 232: 170-178. – reference: Letsas KP, Frangou-Lazaridis M. Surfing on prothymosin alpha proliferation and anti-apoptotic properties. Neoplasma 2006, 53: 92-96. – reference: Pelengaris S, Khan M, Evan GI. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 2002, 109: 321-334. – reference: Young LE, Sanduja S, Bemis-Standoli K, Pena EA, Price RL, et al. The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology 2009, 136: 1669-1679. – reference: Ohtani N, Mann DJ, Hara E. Cellular senescence: its role in tumor suppression and aging. Cancer Sci 2009, 100: 792-797. – reference: Clark JC, Thomas DM, Choong PF, Dass CR. RECK-a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer. Cancer Metastasis Rev 2007, 26: 675-683. – reference: Galbán S, Kuwano Y, Pullmann R Jr, Martindale JL, Kim HH, et al. RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1alpha. Mol Cell Biol 2008, 28: 93-107. – reference: Hinman MN, Lou H. Diverse molecular functions of Hu proteins. Cell Mol Life Sci 2008, 65: 3168-3181. – reference: Izquierdo JM. Hu antigen R (HuR) functions as an alternative pre-mRNA splicing regulator of Fas apoptosis-promoting receptor on exon definition. J Biol Chem 2008, 283: 19077-19084. – reference: Graff JR, Konicek BW, Carter JH, Marcusson EG. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 2008, 68: 631-634. – reference: Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005, 69(Suppl 3): 4-10. – reference: Hasegawa H, Kakuguchi W, Kuroshima T, Kitamura T, Tanaka S, et al. HuR is exported to the cytoplasm in oral cancer cells in a different manner from that of normal cells. Br J Cancer 2009, 100: 1943-1948. – reference: Kawai T, Lal A, Yang X, Galban S, Mazan-Mamczarz K, et al. Translational control of cytochrome c by RNA-binding proteins TIA-1 and HuR. Mol Cell Biol 2006, 26: 3295-3307. – reference: Torre-Amione G, Beauchamp RD, Koeppen H, Park BH, Schreiber H, et al. A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. Proc Natl Acad Sci USA 1990, 87: 1486-1490. – reference: Bortner DM, Rosenberg MP. Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol Cell Biol 1997, 17: 453-459. – reference: Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005, 5: 341-354. – reference: Kuwano Y, Rabinovic A, Srikantan S, Gorospe M, Demple B. Analysis of nitric oxide-stabilized mRNAs in human fibroblasts reveals HuR-dependent heme oxygenase 1 upregulation. Mol Cell Biol 2009, 29: 2622-2635. – reference: Mazan-Mamczarz K, Hagner PR, Corl S, Srikantan S, Wood WH, et al. Post-transcriptional gene regulation by HuR promotes a more tumorigenic phenotype. Oncogene 2008, 27: 6151-6163. – reference: Takeuchi T, Hisanaga M, Nagao M, Ikeda N, Fujii H, et al. The membrane-anchored matrix metalloproteinase (MMP) regulator RECK in combination with MMP-9 serves as an informative prognostic indicator for colorectal cancer. Clin Cancer Res 2004, 10: 5572-5579. – reference: Costantino CL, Witkiewicz AK, Kuwano Y, Cozzitorto JA, Kennedy EP, et al. The role of HuR in gemcitabine efficacy in pancreatic cancer: HuR Up-regulates the expression of the gemcitabine metabolizing enzyme deoxycytidine kinase. Cancer Res 2009, 69: 4567-4572. – reference: Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001, 29: 117-129. – reference: Brennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, et al. The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res 2009, 69: 5168-5176. – reference: Tran H, Maurer F, Nagamine Y. Stabilization of urokinase and urokinase receptor mRNAs by HuR is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Mol Cell Biol 2003, 23: 7177-7188. – reference: Cougot N, Babajko S, Seraphin B. Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 2004, 165: 31-40. – reference: Koljonen V, Böhling T, Haglund C, Ristimäki A. Expression of HuR in Merkel cell carcinoma and in normal skin. J Cutan Pathol 2008, 35: 10-14. – reference: Hosokawa Y, Arnold A. Mechanism of cyclin D1 (CCND1, PRAD1) overexpression in human cancer cells: analysis of allele-specific expression. Genes Chromosomes Cancer 1998, 22: 66-71. – reference: Abdelmohsen K, Lal A, Kim HH, Gorospe M. Posttranscriptional orchestration of an anti-apoptotic program by HuR. Cell Cycle 2007, 6: 1288-1292. – reference: Meng Z, King PH, Nabors LB, Jackson NL, Chen CY, et al. The ELAV RNA-stability factor HuR binds the 59-untranslated region of the human IGF-IR transcript and differentially represses capdependent and IRES-mediated translation. Nucleic Acids Res 2005, 33: 2962-2979. – reference: Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 2003, 3: 219-231. – reference: Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol 1999, 9: 211-220. – reference: Yam CH, Fung TK, Poon RY. Cyclin A in cell cycle control and cancer. Cell Mol Life Sci 2002, 59: 1317-1326. – reference: D'Alessio S, Blasi F. The urokinase receptor as an entertainer of signal transduction. Front Biosci 2009, 14: 4575-4587. – reference: Sager R. Expression genetics in cancer: shifting the focus from DNA to RNA. Proc Natl Acad Sci USA 1997, 94: 952-955. – reference: Woo HH, Zhou Y, Yi X, David CL, Zheng W, et al. Regulation of non-AU-rich element containing c-fms proto-oncogene expression by HuR in breast cancer. Oncogene 2009, 28: 1176-1186. – reference: Güttinger S, Mühlhäusser P, Koller-Eichhorn R, Brennecke J, Kutay U. Transportin2 functions as importin and mediates nuclear import of HuR. Proc Natl Acad Sci USA 2004, 101: 2918-2923. – reference: Niesporek S, Kristiansen G, Thoma A, Weichert W, Noske A, et al. Expression of the ELAV-like protein HuR in human prostate carcinoma is an indicator of disease relapse and linked to COX-2 expression. Int J Oncol 2008, 32: 341-347. – reference: Sidenius N, Blasi F. The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev 2003, 22: 205-222. – reference: Fan XC, Steitz JA. HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 1998, 95: 15293-15298. – reference: Dong R, Lu JG, Wang Q, He XL, Chu YK, et al. Stabilization of Snail by HuR in the process of hydrogen peroxide induced cell migration. Biochem Biophys Res Commun 2007, 356: 318-321. – reference: Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000, 100: 57-70. – reference: Kim HH, Abdelmohsen K, Lal A, Pullmann R Jr, Yang X, et al. Nuclear HuR accumulation through phosphorylation by Cdk1. Genes Dev 2008, 22: 1804-1815. – reference: Elliott RL, Blobe GC. Role of transforming growth factor Beta in human cancer. J Clin Oncol 2005, 23: 2078-2093. – reference: Levy NS, Chung S, Furneaux H, Levy AP. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 1998, 273: 6417-6423. – reference: Lim SJ, Lee SH, Joo SH, Song JY, Choi SI. Cytoplasmic expression of HuR is related to cyclooxygenase-2 expression in colon cancer. Cancer Res Treat 2009, 41: 87-92. – reference: Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, et al. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 2009, 23: 1743-1748. – reference: Mazan-Mamczarz K, Galban S, López de Silanes I, Martindale JL, Atasoy U, et al. RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci USA 2003, 100: 8354-8359. – reference: Wang J, Zhao W, Guo Y, Zhang B, Xie Q, et al. The expression of RNA-binding protein HuR in non-small cell lung cancer correlates with vascular endothelial growth factor-C expression and lymph node metastasis. Oncology 2009, 76: 420-429. – reference: Beck C, Schreiber H, Rowley D. Role of TGF-beta in immune-evasion of cancer. Microsc Res Tech 2001, 52: 387-395. – reference: Szabo A, Dalmau J, Manley G, Rosenfeld M, Wong E, et al. HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell 1991, 67: 325-333. – reference: Keene JD. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 2007, 8: 533-543. – reference: Lafon I, Carballes F, Brewer G, Poiret M, Morello D. Developmental expression of AUF1 and HuR, two c-myc mRNA binding proteins. Oncogene 1998, 16: 3413-3421. – reference: Gherzi R, Lee KY, Briata P, Wegmuller D, Moroni C, et al. A KH-domain RNA-binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 2004, 14: 571-583. – reference: Lal A, Kawai T, Yang X, Mazan-Mamczarz K, Gorospe M. Antiapoptotic function of RNA-binding protein HuR effected through prothymosin alpha. Embo J 2005, 24: 1852-1862. – reference: Leandersson K, Riesbeck K, Andersson T. Wnt-5a mRNA translation is suppressed by the Elav-like protein HuR in human breast epithelial cells. Nucleic Acids Res 2006, 34: 3988-3999. – reference: Gouble A, Grazide S, Meggetto F, Mercier P, Delsol G, et al. A new player in oncogenesis: AUF1/hnRNPD overexpression leads to tumorigenesis in transgenic mice. Cancer Res 2002, 62: 1489-1495. – reference: Chen CY, Xu N, Shyu AB. Highly selective actions of HuR in antagonizing AU-rich element-mediated mRNA destabilization. Mol Cell Biol 2002, 22: 7268-7278. – reference: Sengupta S, Jang BC, Wu MT, Paik JH, Furneaux H, et al. The RNA-binding protein HuR regulates the expression of cyclooxygenase-2. J Biol Chem 2003, 278: 25227-22533. – reference: Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006, 6: 506-520. – reference: Rebane A, Aab A, Steitz JA. Transportins 1 and 2 are redundant nuclear import factors for hnRNP A1 and HuR. RNA 2004, 10: 590-599. – reference: Nabors LB, Gillespie GY, Harkins L, King PH. HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res 2001, 61: 2154-2161. – reference: Saunus JM, French JD, Edwards SL, Beveridge DJ, Hatchell EC, et al. Posttranscriptional regulation of the breast cancer susceptibility gene BRCA1 by the RNA binding protein HuR. Cancer Res 2008, 68: 9469-9478. – reference: Yi X, Zhou Y, Zheng W, Chambers SK. HuR expression in the nucleus correlates with high histological grade and poor disease-free survival in ovarian cancer. Aust N Z J Obstet Gynaecol 2009, 49: 93-98. – reference: López de Silanes I, Fan J, Galbán CJ, Spencer RG, Becker KG, et al. Global analysis of HuR-regulated gene expression in colon cancer systems of reducing complexity. Gene Expr 2004, 12: 49-59. – reference: Brennan CM, Steitz JA. HuR and mRNA stability. Cell Mol Life Sci 2001, 58: 266-277. – reference: Liu T, Liu PY, Marshall GM. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res 2009, 69: 1702-1705. – reference: Hostetter C, Licata LA, Witkiewicz A, Costantino CL, Yeo CJ, et al. Cytoplasmic accumulation of the RNA binding protein HuR is central to tamoxifen resistance in estrogen receptor positive breast cancer cells. Cancer Biol Ther 2008, 7: 1496-1506. – reference: Galbán S, Gorospe M. Factors interacting with HIF- 1a mRNA: novel therapeutic targets. Curr Pharm Des 2009, 15: 3853-3860. – reference: Guo X, Wu Y, Hartley RS. MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol 2009, 6: 575-583. – reference: Abdelmohsen K, Srikantan S, Yang X, Lal A, Kim HH, et al. Ubiquitin-mediated proteolysis of HuR by heat shock. Embo J 2009, 28: 1271-1282. – reference: Akama Y, Yasui W, Yokozaki H, Kuniyasu H, Kitahara K, et al. Frequent amplification of the cyclin E gene in human gastric carcinomas. Jpn J Cancer Res 1995, 86: 617-621. – reference: Kuwano Y, Kim HH, Abdelmohsen K, Pullmann R Jr, Martindale JL, et al. MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol 2008, 28: 4562-4575. – reference: Kim HH, Gorospe M. Phosphorylated HuR shuttles in cycles. Cell Cycle 2008, 7: 3124-3126. – reference: Egloff AM, Vella LA, Finn OJ. Cyclin B1 and other cyclins as tumor antigens in immunosurveillance and immunotherapy of cancer. Cancer Res 2006, 66: 6-9. – reference: Abdelmohsen K, Srikantan S, Kuwano Y, Gorospe M. miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci USA 2008, 105: 20297-20302. – reference: Lu Z, Luo RZ, Peng H, Rosen DG, Atkinson EN, et al. Transcriptional and posttranscriptional down-regulation of the imprinted tumor suppressor gene ARHI (DRAS3) in ovarian cancer. Clin Cancer Res 2006, 12: 2404-2413. – reference: Abdelmohsen K, Pullmann P Jr, Lal A, Kim HH, Galban S, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 2007, 25: 543-557. – reference: Sahin M, Sahin E, Gümüslü S. Cyclooxygenase-2 in cancer and angiogenesis. Angiology 2009, 60: 242-253. – reference: Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997, 275: 1129-1132. – reference: Keyomarsi K, Herliczek TW. The role of cyclin E in cell proliferation, development and cancer. Prog Cell Cycle Res 1997, 3: 171-191. – reference: Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, et al. Vascular-specific growth factors and blood vessel formation. Nature 2000, 407: 242-248. – reference: Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev 2008, 27: 253-261. – reference: Lafarga V, Cuadrado A, López de Silanes I, Bengoechea R, Fernandez-Capetillo O, et al. p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21(Cip1) mRNA mediates the G(1)/S checkpoint. Mol Cell Biol 2009, 29: 4341-4351. – reference: Wojcik M, Mac-Marcjanek K, Wozniak LA. Physiological and pathophysiological functions of SIRT1. Mini Rev Med Chem 2009, 9: 386-394. – reference: Kim HH, Yang X, Kuwano Y, Gorospe M. Modification at HuR(S242) alters HuR localization and proliferative influence. Cell Cycle 2008, 7: 3371-3377. – reference: Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004, 5: 429-441. – reference: Stoppoloni D, Cardillo I, Verdina A, Vincenzi B, Menegozzo S, et al. Expression of the embryonic lethal abnormal vision-like protein HuR in human mesothelioma: association with cyclooxygenase-2 and prognosis. Cancer 2008, 113: 2761-2769. – reference: Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996, 86: 353-364. – reference: Ghosh M, Aguila HL, Michaud J, Ai Y, Wu MT, et al. Essential role of the RNA-binding protein HuR in progenitor cell survival in mice. J Clin Invest 2009, 119: 3530-3543. – reference: Michels J, Johnson PW, Packham G. Mcl-1. Int J Biochem Cell Biol 2005, 37: 267-271. – reference: Suswam EA, Nabors LB, Huang Y, Yang X, King PH. IL-1beta induces stabilization of IL-8 mRNA in malignant breast cancer cells via the 3′ untranslated region: Involvement of divergent RNA-binding factors HuR, KSRP and TIAR. Int J Cancer 2005, 113: 911-919. – reference: Denkert C, Koch I, von Keyserlingk N, Noske A, Niesporek S, et al. Expression of the ELAV-like protein HuR in human colon cancer: association with tumor stage and cyclooxygenase-2. Mod Pathol 2006, 19: 1261-1269. – reference: Mazar AP. Urokinase plasminogen activator receptor choreographs multiple ligand interactions: implications for tumor progression and therapy. Clin Cancer Res 2008, 14: 5649-5655. – ident: e_1_2_6_2_64_2 doi: 10.1002/mc.20582 – ident: e_1_2_6_2_74_2 doi: 10.1172/JCI12973 – ident: e_1_2_6_2_126_2 doi: 10.1038/35025215 – ident: e_1_2_6_2_171_2 doi: 10.1038/nchembio.2007.14 – ident: e_1_2_6_2_141_2 doi: 10.1002/1097-0029(20010215)52:4<387::AID-JEMT1023>3.0.CO;2-W – ident: e_1_2_6_2_160_2 doi: 10.1158/0008-5472.CAN-03-1987 – ident: e_1_2_6_2_112_2 doi: 10.1200/JCO.2003.07.077 – ident: e_1_2_6_2_14_2 doi: 10.1073/pnas.0306453101 – ident: e_1_2_6_2_121_2 doi: 10.2174/138161209789649376 – ident: e_1_2_6_2_106_2 doi: 10.2174/1389557510909030386 – ident: e_1_2_6_2_47_2 doi: 10.1017/S1355838202021726 – ident: e_1_2_6_2_24_2 doi: 10.1261/rna.5224304 – ident: e_1_2_6_2_153_2 doi: 10.2741/3550 – ident: e_1_2_6_2_164_2 doi: 10.1111/j.1600-0714.2007.00526.x – ident: e_1_2_6_2_119_2 doi: 10.1017/S1462399409001173 – ident: e_1_2_6_2_84_2 doi: 10.1038/nrm2233 – ident: e_1_2_6_2_8_2 doi: 10.1038/nrg2111 – ident: e_1_2_6_2_44_2 doi: 10.1016/S0962-8924(01)02225-5 – ident: e_1_2_6_2_156_2 doi: 10.1007/s10549-007-9751-0 – ident: e_1_2_6_2_82_2 doi: 10.1158/1078-0432.CCR-05-1036 – ident: e_1_2_6_2_22_2 doi: 10.1073/pnas.95.26.15293 – ident: e_1_2_6_2_143_2 doi: 10.1038/nrc2131 – ident: e_1_2_6_2_146_2 doi: 10.1007/s10555-006-7886-9 – ident: e_1_2_6_2_59_2 doi: 10.1128/MCB.00165-08 – volume: 1 start-page: 639 year: 2002 ident: e_1_2_6_2_111_2 article-title: The role of the cyclin‐dependent kinase inhibitor p21 in apoptosis publication-title: Mol Cancer Ther – ident: e_1_2_6_2_50_2 doi: 10.1083/jcb.200502088 – volume: 32 start-page: 341 year: 2008 ident: e_1_2_6_2_162_2 article-title: Expression of the ELAV‐like protein HuR in human prostate carcinoma is an indicator of disease relapse and linked to COX‐2 expression publication-title: Int J Oncol – ident: e_1_2_6_2_40_2 doi: 10.4161/cc.6.11.4299 – ident: e_1_2_6_2_166_2 doi: 10.1158/1078-0432.CCR-05-0764 – ident: e_1_2_6_2_96_2 doi: 10.1016/0092-8674(94)90572-X – ident: e_1_2_6_2_80_2 doi: 10.1158/0008-5472.CAN-08-1159 – ident: e_1_2_6_2_89_2 doi: 10.1128/MCB.17.1.453 – ident: e_1_2_6_2_90_2 doi: 10.1007/978-1-4615-5371-7_14 – ident: e_1_2_6_2_45_2 doi: 10.1093/emboj/21.1.165 – ident: e_1_2_6_2_138_2 doi: 10.1200/JCO.2005.02.047 – ident: e_1_2_6_2_140_2 doi: 10.1038/ng1001-117 – ident: e_1_2_6_2_28_2 doi: 10.4161/cc.7.20.6884 – ident: e_1_2_6_2_136_2 doi: 10.1007/s10555-008-9123-1 – ident: e_1_2_6_2_12_2 doi: 10.1007/s00018-008-8252-6 – volume: 63 start-page: 7591 year: 2003 ident: e_1_2_6_2_132_2 article-title: Cytoplasmic HuR expression correlates with poor outcome and with cyclooxygenase 2 expression in serous ovarian carcinoma publication-title: Cancer Res – ident: e_1_2_6_2_34_2 doi: 10.1128/MCB.21.17.5778-5789.2001 – ident: e_1_2_6_2_5_2 doi: 10.1016/j.tig.2008.05.004 – ident: e_1_2_6_2_131_2 doi: 10.1016/j.eururo.2008.04.043 – volume: 26 start-page: 4457 year: 2006 ident: e_1_2_6_2_150_2 article-title: Anticancer potential of silymarin: from bench to bed side publication-title: Anticancer Res – ident: e_1_2_6_2_29_2 doi: 10.1074/jbc.M206187200 – ident: e_1_2_6_2_68_2 doi: 10.1158/1541-7786.MCR-08-0476 – ident: e_1_2_6_2_134_2 doi: 10.1016/S1535-6108(03)00030-8 – ident: e_1_2_6_2_56_2 doi: 10.1038/sj.emboj.7600661 – ident: e_1_2_6_2_122_2 doi: 10.1016/S1535-6108(04)00115-1 – ident: e_1_2_6_2_93_2 doi: 10.1016/j.canlet.2005.02.026 – ident: e_1_2_6_2_151_2 doi: 10.1023/A:1023099415940 – ident: e_1_2_6_2_35_2 doi: 10.1128/MCB.22.20.7268-7278.2002 – ident: e_1_2_6_2_155_2 doi: 10.1002/ijc.20675 – ident: e_1_2_6_2_95_2 doi: 10.1158/0008-5472.CAN-05-3389 – ident: e_1_2_6_2_152_2 doi: 10.1158/1078-0432.CCR-07-4863 – ident: e_1_2_6_2_142_2 doi: 10.1073/pnas.87.4.1486 – ident: e_1_2_6_2_6_2 doi: 10.5483/BMBRep.2009.42.3.125 – ident: e_1_2_6_2_108_2 doi: 10.1038/nrc2562 – ident: e_1_2_6_2_97_2 doi: 10.1038/sj.onc.1201450 – ident: e_1_2_6_2_169_2 doi: 10.1073/pnas.0809376106 – ident: e_1_2_6_2_2_2 doi: 10.1016/S0092-8674(00)81683-9 – ident: e_1_2_6_2_27_2 doi: 10.4161/cc.7.21.6895 – ident: e_1_2_6_2_66_2 doi: 10.1016/j.bbrc.2004.07.173 – ident: e_1_2_6_2_18_2 doi: 10.1128/MCB.00210-09 – ident: e_1_2_6_2_124_2 doi: 10.1159/000088478 – ident: e_1_2_6_2_38_2 doi: 10.1038/sj.emboj.7600305 – ident: e_1_2_6_2_79_2 doi: 10.1074/jbc.M305722200 – ident: e_1_2_6_2_19_2 doi: 10.1038/emboj.2009.67 – ident: e_1_2_6_2_125_2 doi: 10.1006/scbi.1998.0091 – ident: e_1_2_6_2_81_2 doi: 10.1038/onc.2008.469 – ident: e_1_2_6_2_13_2 doi: 10.18632/aging.100073 – ident: e_1_2_6_2_62_2 doi: 10.4161/rna.2.1.1552 – ident: e_1_2_6_2_69_2 doi: 10.1172/JCI38263 – ident: e_1_2_6_2_63_2 doi: 10.1158/0008-5472.CAN-05-4362 – ident: e_1_2_6_2_88_2 doi: 10.1111/j.1349-7006.1995.tb02442.x – ident: e_1_2_6_2_49_2 doi: 10.1083/jcb.200309008 – ident: e_1_2_6_2_159_2 doi: 10.1038/modpathol.3800645 – ident: e_1_2_6_2_99_2 doi: 10.1139/O08-034 – ident: e_1_2_6_2_98_2 doi: 10.1038/nrc1609 – ident: e_1_2_6_2_41_2 doi: 10.1007/PL00000854 – volume: 53 start-page: 92 year: 2006 ident: e_1_2_6_2_103_2 article-title: Surfing on prothymosin alpha proliferation and anti‐apoptotic properties publication-title: Neoplasma – ident: e_1_2_6_2_75_2 doi: 10.1038/onc.2008.215 – ident: e_1_2_6_2_85_2 doi: 10.1111/j.1349-7006.2009.01123.x – ident: e_1_2_6_2_61_2 doi: 10.1038/sj.onc.1206862 – volume: 306 year: 2005 ident: e_1_2_6_2_117_2 article-title: Integration of oxygen signaling at the consensus HRE publication-title: Sci. STKE – ident: e_1_2_6_2_30_2 doi: 10.1083/jcb.200709030 – ident: e_1_2_6_2_60_2 doi: 10.1128/MCB.01495-08 – ident: e_1_2_6_2_37_2 doi: 10.1128/MCB.23.20.7177-7188.2003 – ident: e_1_2_6_2_43_2 doi: 10.1016/S0092-8674(01)00578-5 – ident: e_1_2_6_2_91_2 doi: 10.1038/sj.onc.1208613 – ident: e_1_2_6_2_17_2 doi: 10.1091/mbc.e06-09-0850 – ident: e_1_2_6_2_54_2 doi: 10.1101/gad.1812509 – ident: e_1_2_6_2_70_2 doi: 10.1038/sj.onc.1201895 – ident: e_1_2_6_2_52_2 doi: 10.1093/nar/gki603 – ident: e_1_2_6_2_118_2 doi: 10.1007/s00018-007-7082-2 – ident: e_1_2_6_2_31_2 doi: 10.1074/jbc.273.11.6417 – ident: e_1_2_6_2_116_2 doi: 10.1152/jappl.2000.88.4.1474 – ident: e_1_2_6_2_173_2 doi: 10.3727/000000004783992215 – ident: e_1_2_6_2_39_2 doi: 10.1074/jbc.M413103200 – ident: e_1_2_6_2_71_2 doi: 10.1128/MCB.00973-07 – ident: e_1_2_6_2_137_2 doi: 10.1016/j.cellsig.2007.03.013 – volume: 29 start-page: 1 year: 2007 ident: e_1_2_6_2_4_2 article-title: Aberrant regulation of messenger RNA 3′‐untranslated region in human cancer publication-title: Cell Oncol – ident: e_1_2_6_2_86_2 doi: 10.1002/(SICI)1098-2264(199805)22:1<66::AID-GCC9>3.0.CO;2-5 – ident: e_1_2_6_2_94_2 doi: 10.1158/1078-0432.CCR-04-2661 – ident: e_1_2_6_2_148_2 doi: 10.1158/1078-0432.CCR-03-0656 – ident: e_1_2_6_2_15_2 doi: 10.1016/j.molcel.2007.01.011 – ident: e_1_2_6_2_135_2 doi: 10.1002/ijc.2910590209 – ident: e_1_2_6_2_149_2 doi: 10.1007/s10555-007-9093-8 – ident: e_1_2_6_2_83_2 doi: 10.1038/nrc2602 – ident: e_1_2_6_2_147_2 doi: 10.3892/ijo_00000215 – ident: e_1_2_6_2_101_2 doi: 10.1007/978-90-481-3415-1_10 – ident: e_1_2_6_2_113_2 doi: 10.1016/S0092-8674(02)00738-9 – ident: e_1_2_6_2_67_2 doi: 10.4161/cc.8.7.8093 – ident: e_1_2_6_2_133_2 doi: 10.1002/cncr.23904 – ident: e_1_2_6_2_102_2 doi: 10.1126/science.1076807 – ident: e_1_2_6_2_26_2 doi: 10.1101/gad.1645808 – ident: e_1_2_6_2_168_2 doi: 10.1111/j.1600-0560.2007.00762.x – ident: e_1_2_6_2_57_2 doi: 10.1016/j.cell.2006.04.031 – ident: e_1_2_6_2_115_2 doi: 10.1016/S0092-8674(00)80108-7 – ident: e_1_2_6_2_3_2 doi: 10.1073/pnas.94.3.952 – ident: e_1_2_6_2_161_2 doi: 10.1111/j.1479-828X.2008.00937.x – ident: e_1_2_6_2_139_2 doi: 10.1038/nrc1926 – ident: e_1_2_6_2_51_2 doi: 10.1101/gad.248902 – ident: e_1_2_6_2_25_2 doi: 10.1128/MCB.22.10.3425-3436.2002 – ident: e_1_2_6_2_145_2 doi: 10.1038/nrc745 – ident: e_1_2_6_2_33_2 doi: 10.1128/MCB.20.3.760-769.2000 – ident: e_1_2_6_2_154_2 doi: 10.1158/0008-5472.CAN-04-3765 – ident: e_1_2_6_2_172_2 doi: 10.1093/carcin/bgn185 – ident: e_1_2_6_2_105_2 doi: 10.1016/j.biocel.2004.04.007 – ident: e_1_2_6_2_11_2 doi: 10.1016/0092-8674(91)90184-Z – ident: e_1_2_6_2_114_2 doi: 10.1038/onc.2008.312 – ident: e_1_2_6_2_87_2 doi: 10.1073/pnas.91.17.8022 – ident: e_1_2_6_2_32_2 doi: 10.1093/emboj/19.10.2340 – ident: e_1_2_6_2_42_2 doi: 10.1515/BC.2008.022 – volume: 7 start-page: 377 year: 1999 ident: e_1_2_6_2_110_2 article-title: Functional role of p21 during the cellular response to stress publication-title: Gene Expr – ident: e_1_2_6_2_7_2 doi: 10.1126/science.1111443 – ident: e_1_2_6_2_144_2 doi: 10.1179/ortho.27.3.227 – ident: e_1_2_6_2_20_2 doi: 10.1074/jbc.M800017200 – ident: e_1_2_6_2_120_2 doi: 10.1111/j.1582-4934.2009.00842.x – ident: e_1_2_6_2_36_2 doi: 10.1074/jbc.M301813200 – ident: e_1_2_6_2_58_2 doi: 10.1128/MCB.26.8.3295-3307.2006 – ident: e_1_2_6_2_157_2 doi: 10.4161/cbt.7.9.6490 – ident: e_1_2_6_2_77_2 doi: 10.1016/j.bbrc.2007.02.145 – ident: e_1_2_6_2_73_2 doi: 10.1097/MAJ.0b013e3181ad8cd3 – ident: e_1_2_6_2_48_2 doi: 10.1261/rna.5810203 – ident: e_1_2_6_2_55_2 doi: 10.1073/pnas.1432104100 – ident: e_1_2_6_2_21_2 doi: 10.1126/science.1064693 – ident: e_1_2_6_2_100_2 doi: 10.1158/0008-5472.CAN-07-5635 – ident: e_1_2_6_2_123_2 doi: 10.1096/fasebj.13.1.9 – ident: e_1_2_6_2_167_2 doi: 10.1002/ijc.21944 – volume: 62 start-page: 1489 year: 2002 ident: e_1_2_6_2_9_2 article-title: A new player in oncogenesis: AUF1/hnRNPD overexpression leads to tumorigenesis in transgenic mice publication-title: Cancer Res – ident: e_1_2_6_2_174_2 doi: 10.4049/jimmunol.0900377 – ident: e_1_2_6_2_92_2 doi: 10.1007/s00018-002-8510-y – ident: e_1_2_6_2_10_2 doi: 10.1158/0008-5472.CAN-08-4238 – ident: e_1_2_6_2_107_2 doi: 10.1158/0008-5472.CAN-08-3365 – ident: e_1_2_6_2_163_2 doi: 10.1158/0008-5472.CAN-09-0371 – ident: e_1_2_6_2_130_2 doi: 10.4143/crt.2009.41.2.87 – ident: e_1_2_6_2_109_2 doi: 10.1007/978-1-4615-5371-7_10 – ident: e_1_2_6_2_72_2 doi: 10.1159/000216837 – ident: e_1_2_6_2_104_2 doi: 10.1126/science.275.5303.1129 – ident: e_1_2_6_2_53_2 doi: 10.1093/nar/gkl571 – ident: e_1_2_6_2_23_2 doi: 10.1073/pnas.0400342101 – ident: e_1_2_6_2_165_2 doi: 10.1038/sj.bjc.6605084 – volume: 61 start-page: 2154 year: 2001 ident: e_1_2_6_2_76_2 article-title: HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine‐ and uridine‐rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs publication-title: Cancer Res – ident: e_1_2_6_2_46_2 doi: 10.1016/j.molcel.2004.05.002 – ident: e_1_2_6_2_158_2 doi: 10.1158/1078-0432.CCR-07-1432 – ident: e_1_2_6_2_16_2 doi: 10.1128/MCB.01530-07 – ident: e_1_2_6_2_170_2 doi: 10.4161/rna.6.5.10079 – ident: e_1_2_6_2_78_2 doi: 10.1128/MCB.23.14.4901-4916.2003 – ident: e_1_2_6_2_128_2 doi: 10.1177/0003319708318378 – ident: e_1_2_6_2_127_2 doi: 10.2174/1381612043453126 – ident: e_1_2_6_2_65_2 doi: 10.1128/MCB.21.17.5889-5898.2001 – ident: e_1_2_6_2_129_2 doi: 10.1053/j.gastro.2009.01.010 |
| SSID | ssj0000402711 |
| Score | 2.4229956 |
| SecondaryResourceType | review_article |
| Snippet | Cancer‐related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA‐binding protein HuR is highly abundant in many... Cancer-related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA-binding protein HuR is highly abundant in many... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 214 |
| SubjectTerms | Adaptive Immunity - genetics Adaptive Immunity - physiology Angiogenesis Animals Cancer Carcinogenesis Cell Proliferation Cell survival Cell Survival - genetics Cell Survival - physiology ELAV Proteins - genetics ELAV Proteins - metabolism ELAV Proteins - physiology Gene expression Gene Expression Regulation, Neoplastic Humans HuR protein Medical prognosis Metastases Models, Biological Neoplasms - genetics Neoplasms - metabolism Post-transcription Proteins Quantitative Trait, Heritable RNA Processing, Post-Transcriptional RNA-binding protein |
| Title | Posttranscriptional regulation of cancer traits by HuR |
| URI | https://api.istex.fr/ark:/67375/WNG-Q29QCNPV-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwrna.4 https://www.ncbi.nlm.nih.gov/pubmed/21935886 https://www.proquest.com/docview/2006737008 https://www.proquest.com/docview/893722477 |
| Volume | 1 |
| WOSCitedRecordID | wos000208267200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1757-7012 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402711 issn: 1757-7004 databaseCode: DRFUL dateStart: 20100101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61uxy48CqPQCkWgt5Cs7Y3do6rhaUHFLWrQvdm2d5YQkAWJbtA_z0zeaEKkBC5xR4r1njG8_mR-QBeTIipThKhiZU-lhmuWRFU8zhovvbCCj9xoSGbUHmuV6vsbA90_y9Mmx9i2HAjz2jma3Jw6-qTX0lDv6OmX8l9GHM02ukIxq-Xi_fvhv0VNE6uGvpdDJAqpizuPbVQwk_axtdi0ZjU-uNPQPM6bm0Cz-L2_3f5DtzqwCabtdZxF_aK8h4czEpcaH-5Ysesuf7Z7KsfQEq0vVuKXP08gi2rlqkeX9gmME8WUjFildjWzF2x093yPlws3lzMT-OOVCH2Ep_YCRGsCHpteaAjQO3C2qdJMUlTh1jQa1xdIyT0LktRRHEhJFehUDIkwhdBPIBRuSmLR8ASm01FkmCZllKpSeYzbh1PsYBLl9kIXvbaNb5LOE49_GzaVMnckD6MjODZIPe1TbHxm8RxMzhDta0-0YU0NTWX-VtzzrPzeX72wcwjOOxHz3S-WBPRJski2ImADdXoRXQ0Ystis6sNoTYEM0pF8LAd9OFbOKWLqdZpBM-bsf1LH83lMp_Jx_8i9ARutncQ6KbaIYy21a54Cjf8t-3HujqCfbXSR505_wTU4vh1 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4xOmm8DDYGy2DDmjbeAqntxslj1a10oougKoM3y3FjCbGlU9pu8O-5S9IwBJMmLW-Jz4rlu_N9Plv3AXxoE1OdJEITI60vY9yzIqjmvov4xAojbDt1JdmESpLo4iI--YPqq6oP0STcyDPK9ZocnBLSh3dVQ3_jVB_IJ9CSaENo3K1Po_7ZsEmwoHVyVfLvYoRUPpVxX3ILBfyw6nwvGLVoXq8fQ5r3gWsZefrr_zHmDXhew03WrezjBaxk-UvY7Oa41f5xw_ZZeQG0zKxvQkjEvXOKXcuVBHsWFVc9vrCpY5ZspGDEKzGfsfSGDRajVzDufx73Bn5Nq-BbiY-fCuGMcNHEcEeHgFHqJjYMsnYYpogGbYT7awSFNo1DFFFcCMmVy5R0gbCZE1uwmk_z7DWwwMQdEQT4LZJSqXZsY25SHuIHLtPYePBxOb3a1iXHaYTfdVUsmWuaDy092GvkflZFNh5I7JfaaZpNcUVX0lRHnydH-pTHp73k5JvuebC7VJ-uvXFGVJski3DHA9Y0ox_R4YjJs-lipgm3IZxRyoPtSuvNv3BRF50oCj14Xyr3L2PU56OkK9_8i9AePBuMvw718EtyvANr1Y0Eure2C6vzYpG9haf21_xyVryrrfoWz6z7fQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9t7TTxsi8YhPFhTcBbILXdOHmsCh3TUFQqGLxZjhtLE5CitN3Gf89dkmZDbBISeUt8Vqz7sH-2T_cD2OkQU50kQhMjrS9j3LMiqOa-i_jYCiNsJ3Ul2YRKkujyMh7-RfVV1YdoDtwoMsr5mgI8ux27gz9VQ3-hqvflS2hLYpBpQftwNDg_aQ5Y0Du5Kvl3cYVUPpVxX3ALBfyg6vxgMWqTXn__C2k-BK7lyjN4-4wxv4M3Ndxkvco_3sOLLP8Ay70ct9o3d2yPlQmg5cn6MoRE3DujtWsxk2DPouKqxxc2ccySjxSMeCVmU5beseP5aAXOBkdn_WO_plXwrcTHT4VwRrhobLijS8AodWMbBlknDFNEgzbC_TWCQpvGIYooLoTkymVKukDYzImP0MonebYGLDBxVwQBfoukVKoT25iblIf4gcs0Nh7sLtSrbV1ynEZ4ratiyVyTPrT0YLuRu62KbDyS2Cut0zSb4opS0lRXXyRf9CmPT_vJ8Lvue7CxMJ-uo3FKVJski3DHA9Y0YxzR5YjJs8l8qgm3IZxRyoPVyurNv3BSF90oCj34XBr3P2PUF6OkJ9efIrQNr4eHA33yNfn2CZaqhARKW9uA1qyYZ5vwyv6c_ZgWW7VT3wNjQ_r4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Posttranscriptional+regulation+of+cancer+traits+by+HuR&rft.jtitle=Wiley+interdisciplinary+reviews.+RNA&rft.au=Abdelmohsen%2C+Kotb&rft.au=Gorospe%2C+Myriam&rft.date=2010-09-01&rft.eissn=1757-7012&rft.volume=1&rft.issue=2&rft.spage=214&rft_id=info:doi/10.1002%2Fwrna.4&rft_id=info%3Apmid%2F21935886&rft.externalDocID=21935886 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-7004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-7004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-7004&client=summon |