Posttranscriptional regulation of cancer traits by HuR

Cancer‐related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA‐binding protein HuR is highly abundant in many cancers. Numerous HuR‐regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. RNA Jg. 1; H. 2; S. 214 - 229
Hauptverfasser: Abdelmohsen, Kotb, Gorospe, Myriam
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.09.2010
Wiley Subscription Services, Inc
Schlagworte:
ISSN:1757-7004, 1757-7012, 1757-7012
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cancer‐related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA‐binding protein HuR is highly abundant in many cancers. Numerous HuR‐regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease
AbstractList Cancer‐related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA‐binding protein HuR is highly abundant in many cancers. Numerous HuR‐regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy. Copyright © 2010 John Wiley & Sons, Ltd.This article is categorized under:RNA Turnover and Surveillance > Regulation of RNA StabilityRNA in Disease and Development > RNA in Disease
Cancer‐related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA‐binding protein HuR is highly abundant in many cancers. Numerous HuR‐regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease
Cancer-related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA-binding protein HuR is highly abundant in many cancers. Numerous HuR-regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy.
Cancer-related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA-binding protein HuR is highly abundant in many cancers. Numerous HuR-regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy.Cancer-related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA-binding protein HuR is highly abundant in many cancers. Numerous HuR-regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy.
Author Gorospe, Myriam
Abdelmohsen, Kotb
Author_xml – sequence: 1
  givenname: Kotb
  surname: Abdelmohsen
  fullname: Abdelmohsen, Kotb
  email: myriam-gorospe@nih.gov
  organization: LCMB, NIA-IRP, NIH, Baltimore, MD 21224, USA
– sequence: 2
  givenname: Myriam
  surname: Gorospe
  fullname: Gorospe, Myriam
  organization: LCMB, NIA-IRP, NIH, Baltimore, MD 21224, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21935886$$D View this record in MEDLINE/PubMed
BookMark eNp10O1LAjEcwPERRprZnxAHQRF0tidvdy9FSgMxFcmXYze3ODvvbLvD_O_b5cMLo9-bbfDhB_teglqWZwqAawTbCEL8tDGZaNMz0ECsw3wGEa4d75DWQcvaJXRDIWYIXYA6RhHphGHQAME4t0VhRGalSdZFkmci9Yz6KFNRPbxce1JkUhnPoaSwXrz1BuX0CpxrkVrV2p9NMHt5nvUG_vCt_9rrDn1J3fgxIVoQHS4E1iEmKIz1QgZQoSCII8ZkqGLCGJVxFDjCMCEUM60Y1ZBIpUkT3O_Wrk3-VSpb8FVipUpTkam8tDyMCMOYMubk7Ylc5qXLklqOIQwYcSVCp272qoxXasHXJlkJs-WHHg487oA0ubVGaS6T4rdE9f2UI8ir4rwqzqnjdyf8sPEPfNjBTZKq7T-Kz6ejbmX9nU1sob6PVphPXv2jw-ejPp_gaNIbjd95j_wAhKecBw
CitedBy_id crossref_primary_10_1016_j_bbadis_2024_167453
crossref_primary_10_1172_JCI80046
crossref_primary_10_3390_ijms17010074
crossref_primary_10_1038_s42003_020_0933_1
crossref_primary_10_1074_jbc_M112_371203
crossref_primary_10_1242_jcs_192096
crossref_primary_10_1038_s41467_022_33552_x
crossref_primary_10_1007_s13277_016_5397_z
crossref_primary_10_1038_s41419_020_2728_1
crossref_primary_10_1038_s41420_023_01352_x
crossref_primary_10_1080_15384101_2021_1979773
crossref_primary_10_1128_MCB_00766_14
crossref_primary_10_1016_j_tig_2011_03_005
crossref_primary_10_1093_nar_gku686
crossref_primary_10_1016_j_jep_2021_113965
crossref_primary_10_1016_j_critrevonc_2024_104271
crossref_primary_10_1186_s13578_023_01137_w
crossref_primary_10_1007_s13277_013_0774_3
crossref_primary_10_1016_j_cellsig_2016_08_005
crossref_primary_10_3390_cells8101178
crossref_primary_10_1186_s12935_021_02244_9
crossref_primary_10_1158_1541_7786_MCR_15_0448
crossref_primary_10_3389_fcell_2021_656849
crossref_primary_10_1007_s13277_010_0141_6
crossref_primary_10_1016_j_neuint_2018_04_014
crossref_primary_10_1080_09273948_2020_1745244
crossref_primary_10_1080_02648725_2013_801236
crossref_primary_10_1093_abbs_gmx071
crossref_primary_10_1186_s13059_016_0990_4
crossref_primary_10_1038_ncomms6248
crossref_primary_10_1096_fj_201901930R
crossref_primary_10_1016_j_febslet_2015_05_015
crossref_primary_10_1097_HJH_0000000000000801
crossref_primary_10_1128_MCB_00508_18
crossref_primary_10_1080_0067270X_2018_1439558
crossref_primary_10_1016_j_semcancer_2022_02_023
crossref_primary_10_7555_JBR_35_20210067
crossref_primary_10_1038_nrg3724
crossref_primary_10_1016_j_gde_2017_11_004
crossref_primary_10_1080_07391102_2022_2073270
crossref_primary_10_1186_s13578_018_0208_4
crossref_primary_10_1038_nrg3160
crossref_primary_10_1016_j_arr_2012_01_005
crossref_primary_10_1007_s00439_017_1819_2
crossref_primary_10_1007_s00428_013_1452_y
crossref_primary_10_3390_cells11091515
crossref_primary_10_1158_0008_5472_CAN_13_1915
crossref_primary_10_1038_s41698_024_00780_x
crossref_primary_10_1186_s13046_022_02433_y
crossref_primary_10_3389_fimmu_2018_02732
crossref_primary_10_1016_j_yexcr_2014_09_010
crossref_primary_10_1261_rna_057588_116
crossref_primary_10_1002_iub_70049
crossref_primary_10_1186_s12885_021_07930_5
crossref_primary_10_3748_wjg_v21_i46_13004
crossref_primary_10_1002_jcp_27502
crossref_primary_10_1016_j_exger_2019_110752
crossref_primary_10_1038_s41388_021_02033_8
crossref_primary_10_1016_j_tranon_2024_102178
crossref_primary_10_3389_fgene_2025_1549304
crossref_primary_10_1073_pnas_1808696116
crossref_primary_10_1186_s12943_017_0751_3
crossref_primary_10_1007_s10549_013_2805_6
crossref_primary_10_1016_j_virol_2018_09_013
crossref_primary_10_1158_0008_5472_CAN_17_0015
crossref_primary_10_1016_j_bbagrm_2012_12_003
crossref_primary_10_1080_15476286_2025_2471133
crossref_primary_10_1016_j_arr_2012_01_003
crossref_primary_10_1158_1541_7786_MCR_14_0241
crossref_primary_10_1016_j_nano_2017_11_010
crossref_primary_10_1242_dmm_050120
crossref_primary_10_3892_ol_2019_10295
crossref_primary_10_1016_j_prp_2023_154348
crossref_primary_10_2147_CMAR_S268375
crossref_primary_10_3390_ijms241713127
crossref_primary_10_1016_j_diabres_2022_110142
crossref_primary_10_1016_j_drudis_2023_103580
crossref_primary_10_1128_MCB_05639_11
crossref_primary_10_1038_s41419_020_03205_2
crossref_primary_10_1002_cam4_1091
crossref_primary_10_4161_cc_10_19_17050
crossref_primary_10_1016_j_cellsig_2019_109410
crossref_primary_10_1158_1541_7786_MCR_11_0337
crossref_primary_10_1007_s10555_011_9300_5
crossref_primary_10_3390_cancers16203502
crossref_primary_10_3390_livers5030033
crossref_primary_10_1038_s41598_018_25443_3
crossref_primary_10_1093_jb_mvz067
crossref_primary_10_1101_gad_276022_115
crossref_primary_10_1186_s12915_025_02131_z
crossref_primary_10_7554_eLife_63600
crossref_primary_10_1002_ijc_32608
crossref_primary_10_1093_nar_gkt166
crossref_primary_10_1158_0008_5472_CAN_14_0747
crossref_primary_10_1089_dna_2017_3940
crossref_primary_10_1007_s13277_014_2485_9
crossref_primary_10_1186_s11658_022_00343_7
crossref_primary_10_1007_s11033_013_2960_1
crossref_primary_10_1002_wrna_1378
crossref_primary_10_1002_wrna_1499
crossref_primary_10_1002_wrna_1372
crossref_primary_10_1038_cddis_2015_43
crossref_primary_10_1038_onc_2015_325
crossref_primary_10_1158_0008_5472_CAN_16_3088
crossref_primary_10_1017_S0022215113003174
crossref_primary_10_1038_s41419_017_0129_x
crossref_primary_10_1016_j_pan_2015_03_006
crossref_primary_10_1111_apm_12571
crossref_primary_10_1016_j_molcel_2012_06_027
crossref_primary_10_1093_nar_gkt017
crossref_primary_10_3390_ijms14011822
crossref_primary_10_1002_wrna_1825
crossref_primary_10_1016_j_arr_2012_02_006
crossref_primary_10_1002_wrna_1386
crossref_primary_10_1007_s11418_023_01752_4
crossref_primary_10_3390_ijms140817111
crossref_primary_10_1007_s00280_018_3541_8
crossref_primary_10_1038_onc_2015_339
crossref_primary_10_1186_s12967_023_04298_x
crossref_primary_10_1038_s41417_021_00342_4
crossref_primary_10_1186_s12931_021_01916_4
crossref_primary_10_1016_j_gde_2013_01_003
crossref_primary_10_1124_mol_115_100701
crossref_primary_10_1016_j_cellsig_2018_01_009
crossref_primary_10_1007_s12033_016_9947_9
crossref_primary_10_1093_nar_gkx623
crossref_primary_10_3892_or_2021_8207
crossref_primary_10_1016_j_molimm_2020_04_014
crossref_primary_10_1371_journal_pone_0175471
crossref_primary_10_1074_jbc_M114_631937
crossref_primary_10_1016_j_gpb_2022_10_006
crossref_primary_10_1158_1541_7786_MCR_11_0208
crossref_primary_10_1016_j_tig_2011_04_003
crossref_primary_10_1093_carcin_bgt251
crossref_primary_10_3892_ijo_2024_5627
crossref_primary_10_1128_MCB_01277_12
crossref_primary_10_3390_biomedicines9020119
crossref_primary_10_1002_path_4916
crossref_primary_10_1038_s41388_024_02968_8
crossref_primary_10_3389_fmed_2015_00085
crossref_primary_10_1128_mcb_00018_22
crossref_primary_10_1016_j_trsl_2016_02_007
crossref_primary_10_1016_j_canlet_2017_02_010
crossref_primary_10_1016_j_lungcan_2015_05_008
crossref_primary_10_1038_s41598_024_78333_2
crossref_primary_10_1016_j_arr_2024_102413
crossref_primary_10_1038_cgt_2015_55
crossref_primary_10_1158_0008_5472_CAN_20_2858
crossref_primary_10_1093_nar_gkaa1151
crossref_primary_10_3390_ijms222212491
crossref_primary_10_1038_s41418_019_0377_7
crossref_primary_10_3390_cancers15041150
crossref_primary_10_1016_j_molcel_2012_08_005
crossref_primary_10_1111_jcmm_16859
crossref_primary_10_1002_cam4_710
crossref_primary_10_1007_s13277_013_1008_4
crossref_primary_10_3390_cells8080797
crossref_primary_10_1155_2021_9937243
crossref_primary_10_1002_wrna_1571
crossref_primary_10_1016_j_bcp_2025_116798
crossref_primary_10_1016_j_biopha_2021_111265
crossref_primary_10_1007_s12652_021_03544_8
crossref_primary_10_1111_his_12148
crossref_primary_10_1053_j_seminoncol_2014_12_015
crossref_primary_10_1111_febs_15670
crossref_primary_10_4049_jimmunol_1900769
crossref_primary_10_3390_molecules28114433
crossref_primary_10_3892_ijo_2018_4305
crossref_primary_10_1016_j_semcancer_2022_03_017
crossref_primary_10_1038_s41388_020_1213_8
crossref_primary_10_1089_ars_2013_5795
crossref_primary_10_1038_emboj_2011_24
crossref_primary_10_1126_sciadv_abe5708
crossref_primary_10_1007_s11302_024_10021_2
crossref_primary_10_1002_wrna_1469
crossref_primary_10_1016_j_tranon_2022_101434
crossref_primary_10_1186_s13046_019_1115_1
crossref_primary_10_1016_j_bbagrm_2012_01_001
crossref_primary_10_3727_096504018X15166183598572
crossref_primary_10_1186_1471_2407_12_611
crossref_primary_10_1007_s10517_018_4084_z
crossref_primary_10_1158_0008_5472_CAN_15_2073
crossref_primary_10_1002_mc_22706
crossref_primary_10_1038_onc_2016_451
crossref_primary_10_1089_jir_2013_0140
crossref_primary_10_1038_s41419_021_03871_w
crossref_primary_10_1097_CAD_0000000000001215
crossref_primary_10_1186_s12964_024_01916_z
crossref_primary_10_5306_wjco_v5_i3_323
crossref_primary_10_4251_wjgo_v11_i2_71
crossref_primary_10_1016_j_bcp_2014_04_003
crossref_primary_10_1002_path_2889
crossref_primary_10_1038_s41388_025_03500_2
crossref_primary_10_3892_ol_2017_7289
crossref_primary_10_1074_jbc_M116_733253
crossref_primary_10_1038_s41598_019_43894_0
crossref_primary_10_1128_MCB_00333_14
crossref_primary_10_1016_j_taap_2012_06_012
crossref_primary_10_1080_15476286_2019_1657351
crossref_primary_10_1038_s41419_024_06570_4
crossref_primary_10_1016_j_neulet_2018_11_058
crossref_primary_10_1002_1878_0261_13478
crossref_primary_10_3390_cancers12051216
crossref_primary_10_1074_jbc_M113_504951
crossref_primary_10_4049_jimmunol_1301188
crossref_primary_10_1261_rna_058115_116
crossref_primary_10_3389_fonc_2024_1347402
crossref_primary_10_1016_j_tcm_2015_03_013
crossref_primary_10_1038_ncomms5186
crossref_primary_10_1074_jbc_M112_393678
crossref_primary_10_1002_wrna_1404
crossref_primary_10_1038_s41467_025_61725_x
crossref_primary_10_1007_s10555_020_09884_9
crossref_primary_10_1016_j_gde_2012_12_006
crossref_primary_10_1002_wrna_101
crossref_primary_10_1002_wrna_1520
crossref_primary_10_1016_j_molcel_2011_07_016
crossref_primary_10_3892_mmr_2015_4455
crossref_primary_10_1172_JCI130379
crossref_primary_10_3390_cancers14112666
crossref_primary_10_1186_1471_2407_13_72
crossref_primary_10_1007_s13277_014_2637_y
crossref_primary_10_1038_s41467_020_16918_x
crossref_primary_10_15252_embj_2021110496
crossref_primary_10_1007_s00441_016_2451_5
crossref_primary_10_1016_j_apsb_2020_02_007
crossref_primary_10_3390_ijms140510015
crossref_primary_10_1128_MCB_00281_14
crossref_primary_10_1002_hep_24795
crossref_primary_10_1038_srep16478
crossref_primary_10_1093_nar_gky696
crossref_primary_10_1089_jir_2012_0062
crossref_primary_10_1158_0008_5472_CAN_15_3110
crossref_primary_10_1101_gad_219469_113
crossref_primary_10_1016_j_canlet_2018_08_013
crossref_primary_10_1002_ijc_27789
crossref_primary_10_1016_j_ymeth_2017_05_012
crossref_primary_10_1042_BCJ20200025
crossref_primary_10_1016_j_bbagrm_2014_10_001
crossref_primary_10_1158_0008_5472_CAN_17_1947
crossref_primary_10_1128_MCB_05955_11
crossref_primary_10_1371_journal_pone_0155354
crossref_primary_10_4049_jimmunol_2200453
crossref_primary_10_1002_glia_23696
crossref_primary_10_1186_s43556_021_00052_1
crossref_primary_10_1002_ddr_21031
crossref_primary_10_3390_ijms25115854
crossref_primary_10_1007_s11888_012_0141_6
crossref_primary_10_1007_s12539_019_00339_6
crossref_primary_10_1111_bph_13103
crossref_primary_10_1371_journal_pone_0095915
crossref_primary_10_1002_ctm2_706
crossref_primary_10_1016_j_semcancer_2021_03_007
crossref_primary_10_1002_wsbm_1179
crossref_primary_10_1016_j_bbagen_2014_07_005
crossref_primary_10_3390_cancers11122014
crossref_primary_10_3390_cancers13164092
crossref_primary_10_3390_ijms151120306
crossref_primary_10_1007_s13277_013_0872_2
crossref_primary_10_1038_s41420_022_01116_z
crossref_primary_10_1016_j_anndiagpath_2017_12_002
crossref_primary_10_1038_s41598_020_68646_3
crossref_primary_10_3390_cancers12103069
crossref_primary_10_1093_nar_gkw017
crossref_primary_10_1093_nar_gkt663
crossref_primary_10_3389_fcell_2021_713852
crossref_primary_10_3389_fphar_2016_00251
crossref_primary_10_3390_biom5010263
crossref_primary_10_1146_annurev_immunol_101819_075147
crossref_primary_10_1016_j_celrep_2024_114238
Cites_doi 10.1002/mc.20582
10.1172/JCI12973
10.1038/35025215
10.1038/nchembio.2007.14
10.1002/1097-0029(20010215)52:4<387::AID-JEMT1023>3.0.CO;2-W
10.1158/0008-5472.CAN-03-1987
10.1200/JCO.2003.07.077
10.1073/pnas.0306453101
10.2174/138161209789649376
10.2174/1389557510909030386
10.1017/S1355838202021726
10.1261/rna.5224304
10.2741/3550
10.1111/j.1600-0714.2007.00526.x
10.1017/S1462399409001173
10.1038/nrm2233
10.1038/nrg2111
10.1016/S0962-8924(01)02225-5
10.1007/s10549-007-9751-0
10.1158/1078-0432.CCR-05-1036
10.1073/pnas.95.26.15293
10.1038/nrc2131
10.1007/s10555-006-7886-9
10.1128/MCB.00165-08
10.1083/jcb.200502088
10.4161/cc.6.11.4299
10.1158/1078-0432.CCR-05-0764
10.1016/0092-8674(94)90572-X
10.1158/0008-5472.CAN-08-1159
10.1128/MCB.17.1.453
10.1007/978-1-4615-5371-7_14
10.1093/emboj/21.1.165
10.1200/JCO.2005.02.047
10.1038/ng1001-117
10.4161/cc.7.20.6884
10.1007/s10555-008-9123-1
10.1007/s00018-008-8252-6
10.1128/MCB.21.17.5778-5789.2001
10.1016/j.tig.2008.05.004
10.1016/j.eururo.2008.04.043
10.1074/jbc.M206187200
10.1158/1541-7786.MCR-08-0476
10.1016/S1535-6108(03)00030-8
10.1038/sj.emboj.7600661
10.1016/S1535-6108(04)00115-1
10.1016/j.canlet.2005.02.026
10.1023/A:1023099415940
10.1128/MCB.22.20.7268-7278.2002
10.1002/ijc.20675
10.1158/0008-5472.CAN-05-3389
10.1158/1078-0432.CCR-07-4863
10.1073/pnas.87.4.1486
10.5483/BMBRep.2009.42.3.125
10.1038/nrc2562
10.1038/sj.onc.1201450
10.1073/pnas.0809376106
10.1016/S0092-8674(00)81683-9
10.4161/cc.7.21.6895
10.1016/j.bbrc.2004.07.173
10.1128/MCB.00210-09
10.1159/000088478
10.1038/sj.emboj.7600305
10.1074/jbc.M305722200
10.1038/emboj.2009.67
10.1006/scbi.1998.0091
10.1038/onc.2008.469
10.18632/aging.100073
10.4161/rna.2.1.1552
10.1172/JCI38263
10.1158/0008-5472.CAN-05-4362
10.1111/j.1349-7006.1995.tb02442.x
10.1083/jcb.200309008
10.1038/modpathol.3800645
10.1139/O08-034
10.1038/nrc1609
10.1007/PL00000854
10.1038/onc.2008.215
10.1111/j.1349-7006.2009.01123.x
10.1038/sj.onc.1206862
10.1083/jcb.200709030
10.1128/MCB.01495-08
10.1128/MCB.23.20.7177-7188.2003
10.1016/S0092-8674(01)00578-5
10.1038/sj.onc.1208613
10.1091/mbc.e06-09-0850
10.1101/gad.1812509
10.1038/sj.onc.1201895
10.1093/nar/gki603
10.1007/s00018-007-7082-2
10.1074/jbc.273.11.6417
10.1152/jappl.2000.88.4.1474
10.3727/000000004783992215
10.1074/jbc.M413103200
10.1128/MCB.00973-07
10.1016/j.cellsig.2007.03.013
10.1002/(SICI)1098-2264(199805)22:1<66::AID-GCC9>3.0.CO;2-5
10.1158/1078-0432.CCR-04-2661
10.1158/1078-0432.CCR-03-0656
10.1016/j.molcel.2007.01.011
10.1002/ijc.2910590209
10.1007/s10555-007-9093-8
10.1038/nrc2602
10.3892/ijo_00000215
10.1007/978-90-481-3415-1_10
10.1016/S0092-8674(02)00738-9
10.4161/cc.8.7.8093
10.1002/cncr.23904
10.1126/science.1076807
10.1101/gad.1645808
10.1111/j.1600-0560.2007.00762.x
10.1016/j.cell.2006.04.031
10.1016/S0092-8674(00)80108-7
10.1073/pnas.94.3.952
10.1111/j.1479-828X.2008.00937.x
10.1038/nrc1926
10.1101/gad.248902
10.1128/MCB.22.10.3425-3436.2002
10.1038/nrc745
10.1128/MCB.20.3.760-769.2000
10.1158/0008-5472.CAN-04-3765
10.1093/carcin/bgn185
10.1016/j.biocel.2004.04.007
10.1016/0092-8674(91)90184-Z
10.1038/onc.2008.312
10.1073/pnas.91.17.8022
10.1093/emboj/19.10.2340
10.1515/BC.2008.022
10.1126/science.1111443
10.1179/ortho.27.3.227
10.1074/jbc.M800017200
10.1111/j.1582-4934.2009.00842.x
10.1074/jbc.M301813200
10.1128/MCB.26.8.3295-3307.2006
10.4161/cbt.7.9.6490
10.1016/j.bbrc.2007.02.145
10.1097/MAJ.0b013e3181ad8cd3
10.1261/rna.5810203
10.1073/pnas.1432104100
10.1126/science.1064693
10.1158/0008-5472.CAN-07-5635
10.1096/fasebj.13.1.9
10.1002/ijc.21944
10.4049/jimmunol.0900377
10.1007/s00018-002-8510-y
10.1158/0008-5472.CAN-08-4238
10.1158/0008-5472.CAN-08-3365
10.1158/0008-5472.CAN-09-0371
10.4143/crt.2009.41.2.87
10.1007/978-1-4615-5371-7_10
10.1159/000216837
10.1126/science.275.5303.1129
10.1093/nar/gkl571
10.1073/pnas.0400342101
10.1038/sj.bjc.6605084
10.1016/j.molcel.2004.05.002
10.1158/1078-0432.CCR-07-1432
10.1128/MCB.01530-07
10.4161/rna.6.5.10079
10.1128/MCB.23.14.4901-4916.2003
10.1177/0003319708318378
10.2174/1381612043453126
10.1128/MCB.21.17.5889-5898.2001
10.1053/j.gastro.2009.01.010
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
Copyright Wiley Subscription Services, Inc. Sep/Oct 2010
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Sep/Oct 2010
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7X8
DOI 10.1002/wrna.4
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList Nucleic Acids Abstracts
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1757-7012
EndPage 229
ExternalDocumentID 21935886
10_1002_wrna_4
WRNA4
ark_67375_WNG_Q29QCNPV_C
Genre miscellaneous
Journal Article
Review
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 AG000393
– fundername: Intramural NIH HHS
  grantid: Z01 AG000511
GroupedDBID ---
05W
0R~
1OC
1VH
31~
33P
4.4
53G
5DZ
8-0
8-1
AAESR
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADNMO
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AIAGR
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
BSCLL
D-A
DCZOG
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
SV3
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
ZZTAW
~S-
A00
AAHHS
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
WYJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7X8
ID FETCH-LOGICAL-c4444-b33fa3f8da2f82318bfdc60e166b977c8eb3774cb96da27233427fe74f03cef3
IEDL.DBID DRFUL
ISICitedReferencesCount 345
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000208267200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1757-7004
1757-7012
IngestDate Sun Nov 09 11:02:58 EST 2025
Fri Jul 25 10:32:10 EDT 2025
Mon Jul 21 06:03:06 EDT 2025
Sat Nov 29 05:51:42 EST 2025
Tue Nov 18 22:18:54 EST 2025
Wed Jan 22 16:21:24 EST 2025
Sun Sep 21 06:18:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2010 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4444-b33fa3f8da2f82318bfdc60e166b977c8eb3774cb96da27233427fe74f03cef3
Notes ArticleID:WRNA4
ark:/67375/WNG-Q29QCNPV-C
istex:A856CF74B897619E96F685CA53290C714F2775B2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 21935886
PQID 2006737008
PQPubID 2034619
PageCount 16
ParticipantIDs proquest_miscellaneous_893722477
proquest_journals_2006737008
pubmed_primary_21935886
crossref_citationtrail_10_1002_wrna_4
crossref_primary_10_1002_wrna_4
wiley_primary_10_1002_wrna_4_WRNA4
istex_primary_ark_67375_WNG_Q29QCNPV_C
PublicationCentury 2000
PublicationDate September/October 2010
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: September/October 2010
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Oxford
PublicationTitle Wiley interdisciplinary reviews. RNA
PublicationTitleAlternate WIREs RNA
PublicationYear 2010
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References Wang J, Zhao W, Guo Y, Zhang B, Xie Q, et al. The expression of RNA-binding protein HuR in non-small cell lung cancer correlates with vascular endothelial growth factor-C expression and lymph node metastasis. Oncology 2009, 76: 420-429.
López de Silanes I, Fan J, Galbán CJ, Spencer RG, Becker KG, et al. Global analysis of HuR-regulated gene expression in colon cancer systems of reducing complexity. Gene Expr 2004, 12: 49-59.
Gallouzi IE, Steitz JA. Delineation of mRNA export pathways by the use of cell-permeable peptides. Science 2001, 294: 1895-1901.
Yam CH, Fung TK, Poon RY. Cyclin A in cell cycle control and cancer. Cell Mol Life Sci 2002, 59: 1317-1326.
Lafon I, Carballes F, Brewer G, Poiret M, Morello D. Developmental expression of AUF1 and HuR, two c-myc mRNA binding proteins. Oncogene 1998, 16: 3413-3421.
Young LE, Sanduja S, Bemis-Standoli K, Pena EA, Price RL, et al. The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology 2009, 136: 1669-1679.
Sahin M, Sahin E, Gümüslü S. Cyclooxygenase-2 in cancer and angiogenesis. Angiology 2009, 60: 242-253.
Erkinheimo TL, Lassus H, Sivula A, Sengupta S, Furneaux H, et al. Cytoplasmic HuR expression correlates with poor outcome and with cyclooxygenase 2 expression in serous ovarian carcinoma. Cancer Res 2003, 63: 7591-7594.
Hoffman B, Liebermann DA. Apoptotic signaling by c-MYC. Oncogene 2008, 27: 6462-6472.
Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol 1999, 9: 211-220.
Masuda K, Marasa B, Martindale JL, Halushka MK, Gorospe M. Tissue- and age-dependent expression of RNA-binding proteins that influence mRNA turnover and translation. Aging 2009, 1: 681-698.
Ball KL. p21: structure and functions associated with cyclin-CDK binding. Prog Cell Cycle Res 1997, 3: 125-134.
Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006, 25: 9-34.
Akool el-S, Kleinert H, Hamada FM, Abdelwahab MH, Forstermann U, et al. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 2003, 23: 4901-4916.
Mukherjee D, Gao M, O'Connor JP, Raijmakers R, Pruijn G, et al. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. Embo J 2002, 21: 165-174.
Beck C, Schreiber H, Rowley D. Role of TGF-beta in immune-evasion of cancer. Microsc Res Tech 2001, 52: 387-395.
Ohtani N, Mann DJ, Hara E. Cellular senescence: its role in tumor suppression and aging. Cancer Sci 2009, 100: 792-797.
Wang W, Fan J, Yang X, Fürer-Galban S, López de Silanes I, et al. AMP-activated kinase regulates cytoplasmic HuR. Mol Cell Biol 2002, 22: 3425-3436.
López de Silanes I, Quesada MP, Esteller M. Aberrant regulation of messenger RNA 3′-untranslated region in human cancer. Cell Oncol 2007, 29: 1-17.
Torre-Amione G, Beauchamp RD, Koeppen H, Park BH, Schreiber H, et al. A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. Proc Natl Acad Sci USA 1990, 87: 1486-1490.
Costantino CL, Witkiewicz AK, Kuwano Y, Cozzitorto JA, Kennedy EP, et al. The role of HuR in gemcitabine efficacy in pancreatic cancer: HuR Up-regulates the expression of the gemcitabine metabolizing enzyme deoxycytidine kinase. Cancer Res 2009, 69: 4567-4572.
Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009, 9: 153-166.
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000, 100: 57-70.
Lu Z, Luo RZ, Peng H, Rosen DG, Atkinson EN, et al. Transcriptional and posttranscriptional down-regulation of the imprinted tumor suppressor gene ARHI (DRAS3) in ovarian cancer. Clin Cancer Res 2006, 12: 2404-2413.
Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001, 29: 117-129.
Abdelmohsen K, Pullmann P Jr, Lal A, Kim HH, Galban S, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 2007, 25: 543-557.
Lafarga V, Cuadrado A, López de Silanes I, Bengoechea R, Fernandez-Capetillo O, et al. p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21(Cip1) mRNA mediates the G(1)/S checkpoint. Mol Cell Biol 2009, 29: 4341-4351.
Song IS, Tatebe S, Dai W, Kuo MT. Delayed mechanism for induction of gamma-glutamylcysteine synthetase heavy subunit mRNA stability by oxidative stress involving p38 mitogen-activated protein kinase signaling. J Biol Chem 2005, 280: 28230-28240.
Clark JC, Thomas DM, Choong PF, Dass CR. RECK-a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer. Cancer Metastasis Rev 2007, 26: 675-683.
Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000, 88: 1474-1480.
Ishimaru D, Ramalingam S, Sengupta TK, Bandyopadhyay S, Dellis S, et al. Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells. Mol Cancer Res 2009, 7: 1354-1166.
Kuwano Y, Kim HH, Abdelmohsen K, Pullmann R Jr, Martindale JL, et al. MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol 2008, 28: 4562-4575.
Suswam EA, Nabors LB, Huang Y, Yang X, King PH. IL-1beta induces stabilization of IL-8 mRNA in malignant breast cancer cells via the 3′ untranslated region: Involvement of divergent RNA-binding factors HuR, KSRP and TIAR. Int J Cancer 2005, 113: 911-919.
Butler JS. The yin and yang of the exosome. Trends Cell Biol 2002, 12: 90-96.
Hinman MN, Lou H. Diverse molecular functions of Hu proteins. Cell Mol Life Sci 2008, 65: 3168-3181.
Zabrenetzky V, Harris CC, Steeg PS, Roberts DD. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int J Cancer 1994, 59: 191-195.
Nabors LB, Gillespie GY, Harkins L, King PH. HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res 2001, 61: 2154-2161.
Dong R, Lu JG, Wang Q, He XL, Chu YK, et al. Stabilization of Snail by HuR in the process of hydrogen peroxide induced cell migration. Biochem Biophys Res Commun 2007, 356: 318-321.
Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 1999, 13: 9-22.
Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 2003, 299: 223-226.
Hasegawa H, Kakuguchi W, Kuroshima T, Kitamura T, Tanaka S, et al. HuR is exported to the cytoplasm in oral cancer cells in a different manner from that of normal cells. Br J Cancer 2009, 100: 1943-1948.
Ming XF, Stoecklin G, Lu M, Looser R, Moroni C. Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol 2001, 21: 5778-5789.
Wojcik M, Mac-Marcjanek K, Wozniak LA. Physiological and pathophysiological functions of SIRT1. Mini Rev Med Chem 2009, 9: 386-394.
Mrena J, Wiksten JP, Kokkola A, Nordling S, Haglund C, et al. Prognostic significance of cyclin A in gastric cancer. Int J Cancer 2006, 119: 1897-1901.
Liu T, Liu PY, Marshall GM. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res 2009, 69: 1702-1705.
Abdelmohsen K, Srikantan S, Yang X, Lal A, Kim HH, et al. Ubiquitin-mediated proteolysis of HuR by heat shock. Embo J 2009, 28: 1271-1282.
Sheflin LG, Zou AP, Spaulding SW. Androgens regulate the binding of endogenous HuR to the AU-rich 3′UTRs of HIF-1α and EGF mRNA. Biochem Biophys Res Commun 2004, 322: 644-651.
Gherzi R, Lee KY, Briata P, Wegmuller D, Moroni C, et al. A KH-domain RNA-binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 2004, 14: 571-583.
Brooks CL, Gu W. How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 2009, 9: 123-128.
Niesporek S, Kristiansen G, Thoma A, Weichert W, Noske A, et al. Expression of the ELAV-like protein HuR in human prostate carcinoma is an indicator of disease relapse and linked to COX-2 expression. Int J Oncol 2008, 32: 341-347.
Hostetter C, Licata LA, Witkiewicz A, Costantino CL, Yeo CJ, et al. Cytoplasmic accumulation of the RNA binding protein HuR is central to tamoxifen resistance in estrogen receptor positive breast cancer cells. Cancer Biol Ther 2008, 7: 1496-1506.
Lanas A. Nonsteroidal antiinflammatory drugs and cyclooxygenase inhibition in the gastrointestinal tract: a trip from peptic ulcer to colon cancer. Am J Med Sci 2009, 338: 96-106.
Evans JF, Kargman SL. Cancer and cyclooxygenase-2 (COX-2) inhibition. Curr Pharm Des 2004, 10: 627-634.
Topisirovic I, Siddiqui N, Borden KL. The eukaryotic translation initiation factor 4E (eIF4E) and HuR RNA operons collaboratively regulate the expression of survival and proliferative genes. Cell Cycle 2009, 8: 960-961.
Abdelmohsen K, Kuwano Y, Kim HH, Gorospe M. Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol Chem 2008, 389: 243-255.
Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006, 125: 1111-1124.
Dixon DA, Tolley ND, King PH, Nabors LB, McIntyre TM, et al. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest 2001, 108: 1657-1665.
Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005, 5: 341-354.
Hosokawa Y, Arnold A. Mechanism of cyclin D1 (CCND1, PRAD1) overexpression in human cancer cells: analysis of allele-specific expression. Genes Chromosomes Cancer 1998, 22: 66-71.
Heinonen M, Fager
e_1_2_6_2_81_2
e_1_2_6_2_109_2
e_1_2_6_2_62_2
e_1_2_6_2_85_2
e_1_2_6_2_17_2
e_1_2_6_2_20_2
e_1_2_6_2_43_2
e_1_2_6_2_66_2
e_1_2_6_2_89_2
Gartel AL (e_1_2_6_2_111_2) 2002; 1
e_1_2_6_2_13_2
e_1_2_6_2_36_2
e_1_2_6_2_154_2
e_1_2_6_2_59_2
e_1_2_6_2_135_2
e_1_2_6_2_158_2
e_1_2_6_2_139_2
e_1_2_6_2_116_2
e_1_2_6_2_112_2
e_1_2_6_2_131_2
e_1_2_6_2_173_2
e_1_2_6_2_92_2
e_1_2_6_2_50_2
e_1_2_6_2_73_2
e_1_2_6_2_96_2
e_1_2_6_2_31_2
e_1_2_6_2_54_2
e_1_2_6_2_77_2
e_1_2_6_2_12_2
e_1_2_6_2_24_2
e_1_2_6_2_47_2
e_1_2_6_2_2_2
e_1_2_6_2_143_2
Gouble A (e_1_2_6_2_9_2) 2002; 62
e_1_2_6_2_124_2
e_1_2_6_2_166_2
e_1_2_6_2_28_2
e_1_2_6_2_6_2
e_1_2_6_2_147_2
e_1_2_6_2_128_2
e_1_2_6_2_105_2
e_1_2_6_2_101_2
e_1_2_6_2_120_2
e_1_2_6_2_108_2
e_1_2_6_2_63_2
e_1_2_6_2_18_2
e_1_2_6_2_82_2
e_1_2_6_2_40_2
e_1_2_6_2_21_2
e_1_2_6_2_67_2
e_1_2_6_2_14_2
e_1_2_6_2_44_2
e_1_2_6_2_86_2
e_1_2_6_2_37_2
e_1_2_6_2_79_2
e_1_2_6_2_134_2
e_1_2_6_2_157_2
e_1_2_6_2_138_2
e_1_2_6_2_115_2
e_1_2_6_2_130_2
e_1_2_6_2_153_2
e_1_2_6_2_172_2
Erkinheimo TL (e_1_2_6_2_132_2) 2003; 63
Wenger RH (e_1_2_6_2_117_2) 2005; 306
e_1_2_6_2_70_2
e_1_2_6_2_74_2
e_1_2_6_2_51_2
e_1_2_6_2_93_2
e_1_2_6_2_32_2
e_1_2_6_2_78_2
e_1_2_6_2_55_2
e_1_2_6_2_97_2
e_1_2_6_2_25_2
e_1_2_6_2_123_2
e_1_2_6_2_146_2
e_1_2_6_2_165_2
e_1_2_6_2_48_2
e_1_2_6_2_29_2
e_1_2_6_2_5_2
e_1_2_6_2_127_2
e_1_2_6_2_169_2
e_1_2_6_2_104_2
e_1_2_6_2_100_2
e_1_2_6_2_142_2
e_1_2_6_2_161_2
e_1_2_6_2_107_2
e_1_2_6_2_19_2
e_1_2_6_2_41_2
e_1_2_6_2_60_2
e_1_2_6_2_8_2
e_1_2_6_2_83_2
e_1_2_6_2_15_2
e_1_2_6_2_22_2
e_1_2_6_2_45_2
e_1_2_6_2_64_2
e_1_2_6_2_87_2
e_1_2_6_2_57_2
e_1_2_6_2_133_2
e_1_2_6_2_38_2
e_1_2_6_2_156_2
e_1_2_6_2_137_2
e_1_2_6_2_171_2
e_1_2_6_2_114_2
e_1_2_6_2_152_2
e_1_2_6_2_90_2
e_1_2_6_2_119_2
e_1_2_6_2_52_2
e_1_2_6_2_71_2
e_1_2_6_2_94_2
e_1_2_6_2_33_2
e_1_2_6_2_56_2
e_1_2_6_2_75_2
e_1_2_6_2_98_2
e_1_2_6_2_122_2
e_1_2_6_2_168_2
e_1_2_6_2_10_2
e_1_2_6_2_26_2
e_1_2_6_2_49_2
e_1_2_6_2_68_2
e_1_2_6_2_145_2
e_1_2_6_2_126_2
e_1_2_6_2_149_2
e_1_2_6_2_160_2
Gorospe M (e_1_2_6_2_110_2) 1999; 7
e_1_2_6_2_164_2
e_1_2_6_2_141_2
e_1_2_6_2_80_2
Agarwal R (e_1_2_6_2_150_2) 2006; 26
Nabors LB (e_1_2_6_2_76_2) 2001; 61
e_1_2_6_2_84_2
e_1_2_6_2_129_2
e_1_2_6_2_61_2
e_1_2_6_2_16_2
e_1_2_6_2_42_2
e_1_2_6_2_88_2
e_1_2_6_2_23_2
e_1_2_6_2_65_2
e_1_2_6_2_35_2
e_1_2_6_2_58_2
e_1_2_6_2_155_2
e_1_2_6_2_39_2
Letsas KP (e_1_2_6_2_103_2) 2006; 53
e_1_2_6_2_136_2
e_1_2_6_2_159_2
e_1_2_6_2_170_2
Niesporek S (e_1_2_6_2_162_2) 2008; 32
e_1_2_6_2_113_2
e_1_2_6_2_151_2
e_1_2_6_2_174_2
López de Silanes I (e_1_2_6_2_4_2) 2007; 29
e_1_2_6_2_91_2
e_1_2_6_2_118_2
e_1_2_6_2_95_2
e_1_2_6_2_30_2
e_1_2_6_2_72_2
e_1_2_6_2_53_2
e_1_2_6_2_99_2
e_1_2_6_2_34_2
e_1_2_6_2_3_2
e_1_2_6_2_121_2
e_1_2_6_2_144_2
e_1_2_6_2_167_2
e_1_2_6_2_11_2
e_1_2_6_2_46_2
e_1_2_6_2_27_2
e_1_2_6_2_69_2
e_1_2_6_2_7_2
e_1_2_6_2_125_2
e_1_2_6_2_148_2
e_1_2_6_2_106_2
e_1_2_6_2_102_2
e_1_2_6_2_140_2
e_1_2_6_2_163_2
References_xml – reference: Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000, 88: 1474-1480.
– reference: López de Silanes I, Fan J, Yang X, Zonderman AB, Potapova O, et al. Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene 2003, 22: 7146-7154.
– reference: Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev Cancer 2000, 2: 161-174.
– reference: Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006, 25: 9-34.
– reference: Guo X, Hartley RS. HuR contributes to cyclin E1 deregulation in MCF-7 breast cancer cells. Cancer Res 2006, 66: 7948-7956.
– reference: Gallouzi IE, Steitz JA. Delineation of mRNA export pathways by the use of cell-permeable peptides. Science 2001, 294: 1895-1901.
– reference: Sheflin LG, Zou AP, Spaulding SW. Androgens regulate the binding of endogenous HuR to the AU-rich 3′UTRs of HIF-1α and EGF mRNA. Biochem Biophys Res Commun 2004, 322: 644-651.
– reference: Doller A, Huwiler A, Müller R, Radeke HH, Pfeilschifter J, et al. Protein kinase C alpha-dependent phosphorylation of the mRNA-stabilizing factor HuR: implications for posttranscriptional regulation of cyclooxygenase-2. Mol Biol Cell 2007, 18: 2137-2148.
– reference: Lal A, Mazan-Mamczarz K, Kawai T, Yang X, Martindale JL, et al. Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. Embo J 2004, 23: 3092-3102.
– reference: Musgrove EA, Lee CS, Buckley MF, Sutherland RL. Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci USA 1994, 91: 8022-8026.
– reference: Gartel AL, Tyner AL. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 2002, 1: 639-649.
– reference: Moore MJ. From birth to death: the complex lives of eukaryotic mRNAs. Science 2005, 309: 1514-1518.
– reference: Topisirovic I, Siddiqui N, Borden KL. The eukaryotic translation initiation factor 4E (eIF4E) and HuR RNA operons collaboratively regulate the expression of survival and proliferative genes. Cell Cycle 2009, 8: 960-961.
– reference: Meisner NC, Hintersteiner M, Mueller K, Bauer R, Seifert JM, et al. Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR. Nat Chem Biol 2007, 3: 508-515.
– reference: Guo X, Wu Y, Hartley RS. Cold-inducible RNA-binding protein contributes to human antigen R and cyclin E1 deregulation in breast cancer. Mol Carcinog 2009 (in press).
– reference: Akool el-S, Kleinert H, Hamada FM, Abdelwahab MH, Forstermann U, et al. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 2003, 23: 4901-4916.
– reference: Singhal S, Vachani A, Antin-Ozerkis D, Kaiser LR, Albelda SM. Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer: a review. Clin Cancer Res 2005, 11: 3974-86.
– reference: Zabrenetzky V, Harris CC, Steeg PS, Roberts DD. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int J Cancer 1994, 59: 191-195.
– reference: Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007, 7: 415-428.
– reference: Hoffman B, Liebermann DA. Apoptotic signaling by c-MYC. Oncogene 2008, 27: 6462-6472.
– reference: Heinonen M, Fagerholm R, Aaltonen K, Kilpivaara O, Aittomäki K, et al. Prognostic role of HuR in hereditary breast cancer. Clin Cancer Res 2007, 13: 6959-6963.
– reference: Cho NP, Han HS, Soh Y, Son HJ. Overexpression of cyclooxygenase-2 correlates with cytoplasmic HuR expression in salivary mucoepidermoid carcinoma but not in pleomorphic adenoma. J Oral Pathol Med 2007, 36: 297-303.
– reference: Lukong KE, Chang KW, Khandjian EW, Richard S. RNA-binding proteins in human genetic disease. Trends Genet 2008, 24: 416-425.
– reference: Butler JS. The yin and yang of the exosome. Trends Cell Biol 2002, 12: 90-96.
– reference: Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994, 78: 59-66.
– reference: Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci. STKE 2005, 306:re12.
– reference: Doller A, Akool el-S, Huwiler A, Müller R, Radeke HH, et al. Posttranslational modification of the AU-rich element binding protein HuR by protein kinase Cδ elicits angiotensin II-induced stabilization and nuclear export of cyclooxygenase 2 mRNA. Mol Cell Biol 2008, 28: 2608-2625.
– reference: Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 2005, 169: 871-884.
– reference: Song IS, Tatebe S, Dai W, Kuo MT. Delayed mechanism for induction of gamma-glutamylcysteine synthetase heavy subunit mRNA stability by oxidative stress involving p38 mitogen-activated protein kinase signaling. J Biol Chem 2005, 280: 28230-28240.
– reference: Kullmann M, Gopfert U, Siewe B, Hengst L. ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5′UTR. Genes Dev 2002, 16: 3087-3099.
– reference: Wang W, Furneaux H, Cheng H, Caldwell MC, Hutter D, et al. HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol 2000, 20: 760-769.
– reference: López de Silanes I, Zhan M, Lal A, Yang X, Gorospe M. Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci USA 2004, 101: 2987-2992.
– reference: Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009, 9: 153-166.
– reference: Evans JF, Kargman SL. Cancer and cyclooxygenase-2 (COX-2) inhibition. Curr Pharm Des 2004, 10: 627-634.
– reference: Papadaki O, Milatos S, Grammenoudi S, Mukherjee N, Keene JD, et al. Control of thymic T cell maturation, deletion and egress by the RNA-binding protein HuR. J Immunol 2009, 182: 6779-6788.
– reference: Erkinheimo TL, Lassus H, Sivula A, Sengupta S, Furneaux H, et al. Cytoplasmic HuR expression correlates with poor outcome and with cyclooxygenase 2 expression in serous ovarian carcinoma. Cancer Res 2003, 63: 7591-7594.
– reference: Mrena J, Wiksten JP, Kokkola A, Nordling S, Haglund C, et al. Prognostic significance of cyclin A in gastric cancer. Int J Cancer 2006, 119: 1897-1901.
– reference: Wang W, Fan J, Yang X, Fürer-Galban S, López de Silanes I, et al. AMP-activated kinase regulates cytoplasmic HuR. Mol Cell Biol 2002, 22: 3425-3436.
– reference: Lanas A. Nonsteroidal antiinflammatory drugs and cyclooxygenase inhibition in the gastrointestinal tract: a trip from peptic ulcer to colon cancer. Am J Med Sci 2009, 338: 96-106.
– reference: Wang X, Liu Y. Regulation of innate immune response by MAP kinase phosphatase-1. Cell Signal 2007, 19: 1372-1382.
– reference: Huwiler A, Akool el-S, Aschrafi A, Hamada FM, Pfeilschifter J, et al. ATP potentiates interleukin-1 beta-induced MMP-9 expression in mesangial cells via recruitment of the ELAV protein HuR. J Biol Chem 2003, 278: 51758-51769.
– reference: Ingelfinger D, Arndt-Jovin DJ, Luhrmann R, Achsel T. The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 2002, 8: 1489-1501.
– reference: Wang W, Yang X, Cristofalo VJ, Holbrook NJ, Gorospe M. Loss of HuR is linked to reduced expression of proliferative genes during replicative senescence. Mol Cell Biol 2001, 21: 5889-5898.
– reference: Wang X, Gorospe M, Huang Y, Holbrook NJ. p27Kip1 overexpression causes apoptotic death of mammalian cells. Oncogene 1997, 15: 2991-2997.
– reference: Mrena J, Wiksten JP, Thiel A, Kokkola A, Pohjola L, et al. Cyclooxygenase-2 is an independent prognostic factor in gastric cancer and its expression is regulated by the messenger RNA stability factor HuR. Clin Cancer Res 2005, 11: 7362-7368.
– reference: Dixon DA, Tolley ND, King PH, Nabors LB, McIntyre TM, et al. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest 2001, 108: 1657-1665.
– reference: Brooks CL, Gu W. How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 2009, 9: 123-128.
– reference: Barbisan F, Mazzucchelli R, Santinelli A, López-Beltran A, Cheng L, et al. Overexpression of ELAVlike protein HuR is associated with increased COX-2 expression in atrophy, high-grade prostatic intraepithelial neoplasia, and incidental prostate cancer in cystoprostatectomies. Eur Urol 2008, 56: 105-112.
– reference: Poon E, Harris AL, Ashcroft M. Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med 2009, 11: e26.
– reference: Kerrigan JJ, Mansell JP, Sandy JR. Matrix turnover. J Orthod 2000, 27: 227-233.
– reference: Kim MY, Hur J, Jeong S. Emerging roles of RNA and RNA-binding protein network in cancer cells. BMB Rep 2009, 42: 125-130.
– reference: Libra M, Scalisi A, Vella N, Clementi S, Sorio R, et al. Uterine cervical carcinoma: role of matrix metalloproteinases. Int J Oncol 2009, 34: 897-903.
– reference: Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 2003, 299: 223-226.
– reference: Ortega AD, Sala S, Espinosa E, González-Barón M, Cuezva JM. HuR and the bioenergetic signature of breast cancer: a low tumor expression of the RNA-binding protein predicts a higher risk of disease recurrence. Carcinogenesis 2008, 29: 2053-2061.
– reference: Abdelmohsen K, Kuwano Y, Kim HH, Gorospe M. Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol Chem 2008, 389: 243-255.
– reference: Ming XF, Stoecklin G, Lu M, Looser R, Moroni C. Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol 2001, 21: 5778-5789.
– reference: Ball KL. p21: structure and functions associated with cyclin-CDK binding. Prog Cell Cycle Res 1997, 3: 125-134.
– reference: Sonenberg N. eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochem Cell Biol 2008, 86: 178-183.
– reference: Mazroui R, Di Marco S, Clair E, von Roretz C, Tenenbaum SA, et al. Caspase-mediated cleavage of HuR in the cytoplasm contributes to pp32/PHAP-I regulation of apoptosis. J Cell Biol 2008, 180: 113-127.
– reference: Eystathioy T, Jakymiw A, Chan EK, Seraphin B, Cougot N, et al. The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 2003, 9: 1171-1173.
– reference: Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007, 9: 729-740.
– reference: Masuda K, Marasa B, Martindale JL, Halushka MK, Gorospe M. Tissue- and age-dependent expression of RNA-binding proteins that influence mRNA turnover and translation. Aging 2009, 1: 681-698.
– reference: Hwang HC, Clurman BE. Cyclin E in normal and neoplastic cell cycles. Oncogene 2005, 24: 2776-2786.
– reference: Gorospe M, Wang X, Holbrook NJ. Functional role of p21 during the cellular response to stress. Gene Expr 1999, 7: 377-385.
– reference: Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 2001, 107: 451-464.
– reference: Agarwal R, Agarwal C, Ichikawa H, Singh RP, Aggarwal BB. Anticancer potential of silymarin: from bench to bed side. Anticancer Res 2006, 26: 4457-4498.
– reference: Denkert C, Weichert W, Pest S, Koch I, Licht D, et al. Overexpression of the embryonic-lethal abnormal vision-like protein HuR in ovarian carcinoma is a prognostic factor and is associated with increased cyclooxygenase 2 expression. Cancer Res 2004, 64: 189-195.
– reference: Wang W, Caldwell MC, Lin S, Furneaux H, Gorospe M. HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. Embo J 2000, 19: 2340-2350.
– reference: Mukherjee D, Gao M, O'Connor JP, Raijmakers R, Pruijn G, et al. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. Embo J 2002, 21: 165-174.
– reference: Rau B, Sturm I, Lage H, Berger S, Schneider U, et al. Dynamic expression profile of p21WAF1/CIP1 and Ki-67 predicts survival in rectal carcinoma treated with preoperative radiochemotherapy. J Clin Oncol 2003, 21: 3391-3401.
– reference: Maynard MA, Ohh M. The role of hypoxia-inducible factors in cancer. Cell Mol Life Sci 2007, 64: 2170-2180.
– reference: López de Silanes I, Lal A, Gorospe M. HuR: post-transcriptional paths to malignancy. RNA Biol 2005, 2: 11-13.
– reference: Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006, 125: 1111-1124.
– reference: Li H, Park S, Kilburn B, Jelinek MA, Henschen-Edman A, et al. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J Biol Chem 2002, 277: 44623-44630.
– reference: Heinonen M, Bono P, Narko K, Chang SH, Lundin J, et al. Cytoplasmic HuR expression is a prognostic factor in invasive ductal breast carcinoma. Cancer Res 2005, 65: 2157-2161.
– reference: Pryzbylkowski P, Obajimi O, Keen JC. Trichostatin A and 5 Aza- 2′ deoxycytidine decrease estrogen receptor mRNA stability in ER positive MCF7 cells through modulation of HuR. Breast Cancer Res Treat 2008, 111: 15-25.
– reference: López de Silanes I, Quesada MP, Esteller M. Aberrant regulation of messenger RNA 3′-untranslated region in human cancer. Cell Oncol 2007, 29: 1-17.
– reference: Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 1999, 13: 9-22.
– reference: Ishimaru D, Ramalingam S, Sengupta TK, Bandyopadhyay S, Dellis S, et al. Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells. Mol Cancer Res 2009, 7: 1354-1166.
– reference: Cho NH, Kang S, Hong S, An HJ, Choi YH, et al. Elevation of cyclin B1, active cdc2, and HuR in cervical neoplasia with human papillomavirus type 18 infection. Cancer Lett 2006, 232: 170-178.
– reference: Letsas KP, Frangou-Lazaridis M. Surfing on prothymosin alpha proliferation and anti-apoptotic properties. Neoplasma 2006, 53: 92-96.
– reference: Pelengaris S, Khan M, Evan GI. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 2002, 109: 321-334.
– reference: Young LE, Sanduja S, Bemis-Standoli K, Pena EA, Price RL, et al. The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology 2009, 136: 1669-1679.
– reference: Ohtani N, Mann DJ, Hara E. Cellular senescence: its role in tumor suppression and aging. Cancer Sci 2009, 100: 792-797.
– reference: Clark JC, Thomas DM, Choong PF, Dass CR. RECK-a newly discovered inhibitor of metastasis with prognostic significance in multiple forms of cancer. Cancer Metastasis Rev 2007, 26: 675-683.
– reference: Galbán S, Kuwano Y, Pullmann R Jr, Martindale JL, Kim HH, et al. RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1alpha. Mol Cell Biol 2008, 28: 93-107.
– reference: Hinman MN, Lou H. Diverse molecular functions of Hu proteins. Cell Mol Life Sci 2008, 65: 3168-3181.
– reference: Izquierdo JM. Hu antigen R (HuR) functions as an alternative pre-mRNA splicing regulator of Fas apoptosis-promoting receptor on exon definition. J Biol Chem 2008, 283: 19077-19084.
– reference: Graff JR, Konicek BW, Carter JH, Marcusson EG. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 2008, 68: 631-634.
– reference: Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005, 69(Suppl 3): 4-10.
– reference: Hasegawa H, Kakuguchi W, Kuroshima T, Kitamura T, Tanaka S, et al. HuR is exported to the cytoplasm in oral cancer cells in a different manner from that of normal cells. Br J Cancer 2009, 100: 1943-1948.
– reference: Kawai T, Lal A, Yang X, Galban S, Mazan-Mamczarz K, et al. Translational control of cytochrome c by RNA-binding proteins TIA-1 and HuR. Mol Cell Biol 2006, 26: 3295-3307.
– reference: Torre-Amione G, Beauchamp RD, Koeppen H, Park BH, Schreiber H, et al. A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. Proc Natl Acad Sci USA 1990, 87: 1486-1490.
– reference: Bortner DM, Rosenberg MP. Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol Cell Biol 1997, 17: 453-459.
– reference: Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005, 5: 341-354.
– reference: Kuwano Y, Rabinovic A, Srikantan S, Gorospe M, Demple B. Analysis of nitric oxide-stabilized mRNAs in human fibroblasts reveals HuR-dependent heme oxygenase 1 upregulation. Mol Cell Biol 2009, 29: 2622-2635.
– reference: Mazan-Mamczarz K, Hagner PR, Corl S, Srikantan S, Wood WH, et al. Post-transcriptional gene regulation by HuR promotes a more tumorigenic phenotype. Oncogene 2008, 27: 6151-6163.
– reference: Takeuchi T, Hisanaga M, Nagao M, Ikeda N, Fujii H, et al. The membrane-anchored matrix metalloproteinase (MMP) regulator RECK in combination with MMP-9 serves as an informative prognostic indicator for colorectal cancer. Clin Cancer Res 2004, 10: 5572-5579.
– reference: Costantino CL, Witkiewicz AK, Kuwano Y, Cozzitorto JA, Kennedy EP, et al. The role of HuR in gemcitabine efficacy in pancreatic cancer: HuR Up-regulates the expression of the gemcitabine metabolizing enzyme deoxycytidine kinase. Cancer Res 2009, 69: 4567-4572.
– reference: Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001, 29: 117-129.
– reference: Brennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, et al. The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res 2009, 69: 5168-5176.
– reference: Tran H, Maurer F, Nagamine Y. Stabilization of urokinase and urokinase receptor mRNAs by HuR is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Mol Cell Biol 2003, 23: 7177-7188.
– reference: Cougot N, Babajko S, Seraphin B. Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 2004, 165: 31-40.
– reference: Koljonen V, Böhling T, Haglund C, Ristimäki A. Expression of HuR in Merkel cell carcinoma and in normal skin. J Cutan Pathol 2008, 35: 10-14.
– reference: Hosokawa Y, Arnold A. Mechanism of cyclin D1 (CCND1, PRAD1) overexpression in human cancer cells: analysis of allele-specific expression. Genes Chromosomes Cancer 1998, 22: 66-71.
– reference: Abdelmohsen K, Lal A, Kim HH, Gorospe M. Posttranscriptional orchestration of an anti-apoptotic program by HuR. Cell Cycle 2007, 6: 1288-1292.
– reference: Meng Z, King PH, Nabors LB, Jackson NL, Chen CY, et al. The ELAV RNA-stability factor HuR binds the 59-untranslated region of the human IGF-IR transcript and differentially represses capdependent and IRES-mediated translation. Nucleic Acids Res 2005, 33: 2962-2979.
– reference: Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 2003, 3: 219-231.
– reference: Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol 1999, 9: 211-220.
– reference: Yam CH, Fung TK, Poon RY. Cyclin A in cell cycle control and cancer. Cell Mol Life Sci 2002, 59: 1317-1326.
– reference: D'Alessio S, Blasi F. The urokinase receptor as an entertainer of signal transduction. Front Biosci 2009, 14: 4575-4587.
– reference: Sager R. Expression genetics in cancer: shifting the focus from DNA to RNA. Proc Natl Acad Sci USA 1997, 94: 952-955.
– reference: Woo HH, Zhou Y, Yi X, David CL, Zheng W, et al. Regulation of non-AU-rich element containing c-fms proto-oncogene expression by HuR in breast cancer. Oncogene 2009, 28: 1176-1186.
– reference: Güttinger S, Mühlhäusser P, Koller-Eichhorn R, Brennecke J, Kutay U. Transportin2 functions as importin and mediates nuclear import of HuR. Proc Natl Acad Sci USA 2004, 101: 2918-2923.
– reference: Niesporek S, Kristiansen G, Thoma A, Weichert W, Noske A, et al. Expression of the ELAV-like protein HuR in human prostate carcinoma is an indicator of disease relapse and linked to COX-2 expression. Int J Oncol 2008, 32: 341-347.
– reference: Sidenius N, Blasi F. The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev 2003, 22: 205-222.
– reference: Fan XC, Steitz JA. HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 1998, 95: 15293-15298.
– reference: Dong R, Lu JG, Wang Q, He XL, Chu YK, et al. Stabilization of Snail by HuR in the process of hydrogen peroxide induced cell migration. Biochem Biophys Res Commun 2007, 356: 318-321.
– reference: Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000, 100: 57-70.
– reference: Kim HH, Abdelmohsen K, Lal A, Pullmann R Jr, Yang X, et al. Nuclear HuR accumulation through phosphorylation by Cdk1. Genes Dev 2008, 22: 1804-1815.
– reference: Elliott RL, Blobe GC. Role of transforming growth factor Beta in human cancer. J Clin Oncol 2005, 23: 2078-2093.
– reference: Levy NS, Chung S, Furneaux H, Levy AP. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 1998, 273: 6417-6423.
– reference: Lim SJ, Lee SH, Joo SH, Song JY, Choi SI. Cytoplasmic expression of HuR is related to cyclooxygenase-2 expression in colon cancer. Cancer Res Treat 2009, 41: 87-92.
– reference: Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, et al. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 2009, 23: 1743-1748.
– reference: Mazan-Mamczarz K, Galban S, López de Silanes I, Martindale JL, Atasoy U, et al. RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci USA 2003, 100: 8354-8359.
– reference: Wang J, Zhao W, Guo Y, Zhang B, Xie Q, et al. The expression of RNA-binding protein HuR in non-small cell lung cancer correlates with vascular endothelial growth factor-C expression and lymph node metastasis. Oncology 2009, 76: 420-429.
– reference: Beck C, Schreiber H, Rowley D. Role of TGF-beta in immune-evasion of cancer. Microsc Res Tech 2001, 52: 387-395.
– reference: Szabo A, Dalmau J, Manley G, Rosenfeld M, Wong E, et al. HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell 1991, 67: 325-333.
– reference: Keene JD. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 2007, 8: 533-543.
– reference: Lafon I, Carballes F, Brewer G, Poiret M, Morello D. Developmental expression of AUF1 and HuR, two c-myc mRNA binding proteins. Oncogene 1998, 16: 3413-3421.
– reference: Gherzi R, Lee KY, Briata P, Wegmuller D, Moroni C, et al. A KH-domain RNA-binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 2004, 14: 571-583.
– reference: Lal A, Kawai T, Yang X, Mazan-Mamczarz K, Gorospe M. Antiapoptotic function of RNA-binding protein HuR effected through prothymosin alpha. Embo J 2005, 24: 1852-1862.
– reference: Leandersson K, Riesbeck K, Andersson T. Wnt-5a mRNA translation is suppressed by the Elav-like protein HuR in human breast epithelial cells. Nucleic Acids Res 2006, 34: 3988-3999.
– reference: Gouble A, Grazide S, Meggetto F, Mercier P, Delsol G, et al. A new player in oncogenesis: AUF1/hnRNPD overexpression leads to tumorigenesis in transgenic mice. Cancer Res 2002, 62: 1489-1495.
– reference: Chen CY, Xu N, Shyu AB. Highly selective actions of HuR in antagonizing AU-rich element-mediated mRNA destabilization. Mol Cell Biol 2002, 22: 7268-7278.
– reference: Sengupta S, Jang BC, Wu MT, Paik JH, Furneaux H, et al. The RNA-binding protein HuR regulates the expression of cyclooxygenase-2. J Biol Chem 2003, 278: 25227-22533.
– reference: Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006, 6: 506-520.
– reference: Rebane A, Aab A, Steitz JA. Transportins 1 and 2 are redundant nuclear import factors for hnRNP A1 and HuR. RNA 2004, 10: 590-599.
– reference: Nabors LB, Gillespie GY, Harkins L, King PH. HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res 2001, 61: 2154-2161.
– reference: Saunus JM, French JD, Edwards SL, Beveridge DJ, Hatchell EC, et al. Posttranscriptional regulation of the breast cancer susceptibility gene BRCA1 by the RNA binding protein HuR. Cancer Res 2008, 68: 9469-9478.
– reference: Yi X, Zhou Y, Zheng W, Chambers SK. HuR expression in the nucleus correlates with high histological grade and poor disease-free survival in ovarian cancer. Aust N Z J Obstet Gynaecol 2009, 49: 93-98.
– reference: López de Silanes I, Fan J, Galbán CJ, Spencer RG, Becker KG, et al. Global analysis of HuR-regulated gene expression in colon cancer systems of reducing complexity. Gene Expr 2004, 12: 49-59.
– reference: Brennan CM, Steitz JA. HuR and mRNA stability. Cell Mol Life Sci 2001, 58: 266-277.
– reference: Liu T, Liu PY, Marshall GM. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res 2009, 69: 1702-1705.
– reference: Hostetter C, Licata LA, Witkiewicz A, Costantino CL, Yeo CJ, et al. Cytoplasmic accumulation of the RNA binding protein HuR is central to tamoxifen resistance in estrogen receptor positive breast cancer cells. Cancer Biol Ther 2008, 7: 1496-1506.
– reference: Galbán S, Gorospe M. Factors interacting with HIF- 1a mRNA: novel therapeutic targets. Curr Pharm Des 2009, 15: 3853-3860.
– reference: Guo X, Wu Y, Hartley RS. MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol 2009, 6: 575-583.
– reference: Abdelmohsen K, Srikantan S, Yang X, Lal A, Kim HH, et al. Ubiquitin-mediated proteolysis of HuR by heat shock. Embo J 2009, 28: 1271-1282.
– reference: Akama Y, Yasui W, Yokozaki H, Kuniyasu H, Kitahara K, et al. Frequent amplification of the cyclin E gene in human gastric carcinomas. Jpn J Cancer Res 1995, 86: 617-621.
– reference: Kuwano Y, Kim HH, Abdelmohsen K, Pullmann R Jr, Martindale JL, et al. MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol 2008, 28: 4562-4575.
– reference: Kim HH, Gorospe M. Phosphorylated HuR shuttles in cycles. Cell Cycle 2008, 7: 3124-3126.
– reference: Egloff AM, Vella LA, Finn OJ. Cyclin B1 and other cyclins as tumor antigens in immunosurveillance and immunotherapy of cancer. Cancer Res 2006, 66: 6-9.
– reference: Abdelmohsen K, Srikantan S, Kuwano Y, Gorospe M. miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci USA 2008, 105: 20297-20302.
– reference: Lu Z, Luo RZ, Peng H, Rosen DG, Atkinson EN, et al. Transcriptional and posttranscriptional down-regulation of the imprinted tumor suppressor gene ARHI (DRAS3) in ovarian cancer. Clin Cancer Res 2006, 12: 2404-2413.
– reference: Abdelmohsen K, Pullmann P Jr, Lal A, Kim HH, Galban S, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 2007, 25: 543-557.
– reference: Sahin M, Sahin E, Gümüslü S. Cyclooxygenase-2 in cancer and angiogenesis. Angiology 2009, 60: 242-253.
– reference: Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997, 275: 1129-1132.
– reference: Keyomarsi K, Herliczek TW. The role of cyclin E in cell proliferation, development and cancer. Prog Cell Cycle Res 1997, 3: 171-191.
– reference: Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, et al. Vascular-specific growth factors and blood vessel formation. Nature 2000, 407: 242-248.
– reference: Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev 2008, 27: 253-261.
– reference: Lafarga V, Cuadrado A, López de Silanes I, Bengoechea R, Fernandez-Capetillo O, et al. p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21(Cip1) mRNA mediates the G(1)/S checkpoint. Mol Cell Biol 2009, 29: 4341-4351.
– reference: Wojcik M, Mac-Marcjanek K, Wozniak LA. Physiological and pathophysiological functions of SIRT1. Mini Rev Med Chem 2009, 9: 386-394.
– reference: Kim HH, Yang X, Kuwano Y, Gorospe M. Modification at HuR(S242) alters HuR localization and proliferative influence. Cell Cycle 2008, 7: 3371-3377.
– reference: Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004, 5: 429-441.
– reference: Stoppoloni D, Cardillo I, Verdina A, Vincenzi B, Menegozzo S, et al. Expression of the embryonic lethal abnormal vision-like protein HuR in human mesothelioma: association with cyclooxygenase-2 and prognosis. Cancer 2008, 113: 2761-2769.
– reference: Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996, 86: 353-364.
– reference: Ghosh M, Aguila HL, Michaud J, Ai Y, Wu MT, et al. Essential role of the RNA-binding protein HuR in progenitor cell survival in mice. J Clin Invest 2009, 119: 3530-3543.
– reference: Michels J, Johnson PW, Packham G. Mcl-1. Int J Biochem Cell Biol 2005, 37: 267-271.
– reference: Suswam EA, Nabors LB, Huang Y, Yang X, King PH. IL-1beta induces stabilization of IL-8 mRNA in malignant breast cancer cells via the 3′ untranslated region: Involvement of divergent RNA-binding factors HuR, KSRP and TIAR. Int J Cancer 2005, 113: 911-919.
– reference: Denkert C, Koch I, von Keyserlingk N, Noske A, Niesporek S, et al. Expression of the ELAV-like protein HuR in human colon cancer: association with tumor stage and cyclooxygenase-2. Mod Pathol 2006, 19: 1261-1269.
– reference: Mazar AP. Urokinase plasminogen activator receptor choreographs multiple ligand interactions: implications for tumor progression and therapy. Clin Cancer Res 2008, 14: 5649-5655.
– ident: e_1_2_6_2_64_2
  doi: 10.1002/mc.20582
– ident: e_1_2_6_2_74_2
  doi: 10.1172/JCI12973
– ident: e_1_2_6_2_126_2
  doi: 10.1038/35025215
– ident: e_1_2_6_2_171_2
  doi: 10.1038/nchembio.2007.14
– ident: e_1_2_6_2_141_2
  doi: 10.1002/1097-0029(20010215)52:4<387::AID-JEMT1023>3.0.CO;2-W
– ident: e_1_2_6_2_160_2
  doi: 10.1158/0008-5472.CAN-03-1987
– ident: e_1_2_6_2_112_2
  doi: 10.1200/JCO.2003.07.077
– ident: e_1_2_6_2_14_2
  doi: 10.1073/pnas.0306453101
– ident: e_1_2_6_2_121_2
  doi: 10.2174/138161209789649376
– ident: e_1_2_6_2_106_2
  doi: 10.2174/1389557510909030386
– ident: e_1_2_6_2_47_2
  doi: 10.1017/S1355838202021726
– ident: e_1_2_6_2_24_2
  doi: 10.1261/rna.5224304
– ident: e_1_2_6_2_153_2
  doi: 10.2741/3550
– ident: e_1_2_6_2_164_2
  doi: 10.1111/j.1600-0714.2007.00526.x
– ident: e_1_2_6_2_119_2
  doi: 10.1017/S1462399409001173
– ident: e_1_2_6_2_84_2
  doi: 10.1038/nrm2233
– ident: e_1_2_6_2_8_2
  doi: 10.1038/nrg2111
– ident: e_1_2_6_2_44_2
  doi: 10.1016/S0962-8924(01)02225-5
– ident: e_1_2_6_2_156_2
  doi: 10.1007/s10549-007-9751-0
– ident: e_1_2_6_2_82_2
  doi: 10.1158/1078-0432.CCR-05-1036
– ident: e_1_2_6_2_22_2
  doi: 10.1073/pnas.95.26.15293
– ident: e_1_2_6_2_143_2
  doi: 10.1038/nrc2131
– ident: e_1_2_6_2_146_2
  doi: 10.1007/s10555-006-7886-9
– ident: e_1_2_6_2_59_2
  doi: 10.1128/MCB.00165-08
– volume: 1
  start-page: 639
  year: 2002
  ident: e_1_2_6_2_111_2
  article-title: The role of the cyclin‐dependent kinase inhibitor p21 in apoptosis
  publication-title: Mol Cancer Ther
– ident: e_1_2_6_2_50_2
  doi: 10.1083/jcb.200502088
– volume: 32
  start-page: 341
  year: 2008
  ident: e_1_2_6_2_162_2
  article-title: Expression of the ELAV‐like protein HuR in human prostate carcinoma is an indicator of disease relapse and linked to COX‐2 expression
  publication-title: Int J Oncol
– ident: e_1_2_6_2_40_2
  doi: 10.4161/cc.6.11.4299
– ident: e_1_2_6_2_166_2
  doi: 10.1158/1078-0432.CCR-05-0764
– ident: e_1_2_6_2_96_2
  doi: 10.1016/0092-8674(94)90572-X
– ident: e_1_2_6_2_80_2
  doi: 10.1158/0008-5472.CAN-08-1159
– ident: e_1_2_6_2_89_2
  doi: 10.1128/MCB.17.1.453
– ident: e_1_2_6_2_90_2
  doi: 10.1007/978-1-4615-5371-7_14
– ident: e_1_2_6_2_45_2
  doi: 10.1093/emboj/21.1.165
– ident: e_1_2_6_2_138_2
  doi: 10.1200/JCO.2005.02.047
– ident: e_1_2_6_2_140_2
  doi: 10.1038/ng1001-117
– ident: e_1_2_6_2_28_2
  doi: 10.4161/cc.7.20.6884
– ident: e_1_2_6_2_136_2
  doi: 10.1007/s10555-008-9123-1
– ident: e_1_2_6_2_12_2
  doi: 10.1007/s00018-008-8252-6
– volume: 63
  start-page: 7591
  year: 2003
  ident: e_1_2_6_2_132_2
  article-title: Cytoplasmic HuR expression correlates with poor outcome and with cyclooxygenase 2 expression in serous ovarian carcinoma
  publication-title: Cancer Res
– ident: e_1_2_6_2_34_2
  doi: 10.1128/MCB.21.17.5778-5789.2001
– ident: e_1_2_6_2_5_2
  doi: 10.1016/j.tig.2008.05.004
– ident: e_1_2_6_2_131_2
  doi: 10.1016/j.eururo.2008.04.043
– volume: 26
  start-page: 4457
  year: 2006
  ident: e_1_2_6_2_150_2
  article-title: Anticancer potential of silymarin: from bench to bed side
  publication-title: Anticancer Res
– ident: e_1_2_6_2_29_2
  doi: 10.1074/jbc.M206187200
– ident: e_1_2_6_2_68_2
  doi: 10.1158/1541-7786.MCR-08-0476
– ident: e_1_2_6_2_134_2
  doi: 10.1016/S1535-6108(03)00030-8
– ident: e_1_2_6_2_56_2
  doi: 10.1038/sj.emboj.7600661
– ident: e_1_2_6_2_122_2
  doi: 10.1016/S1535-6108(04)00115-1
– ident: e_1_2_6_2_93_2
  doi: 10.1016/j.canlet.2005.02.026
– ident: e_1_2_6_2_151_2
  doi: 10.1023/A:1023099415940
– ident: e_1_2_6_2_35_2
  doi: 10.1128/MCB.22.20.7268-7278.2002
– ident: e_1_2_6_2_155_2
  doi: 10.1002/ijc.20675
– ident: e_1_2_6_2_95_2
  doi: 10.1158/0008-5472.CAN-05-3389
– ident: e_1_2_6_2_152_2
  doi: 10.1158/1078-0432.CCR-07-4863
– ident: e_1_2_6_2_142_2
  doi: 10.1073/pnas.87.4.1486
– ident: e_1_2_6_2_6_2
  doi: 10.5483/BMBRep.2009.42.3.125
– ident: e_1_2_6_2_108_2
  doi: 10.1038/nrc2562
– ident: e_1_2_6_2_97_2
  doi: 10.1038/sj.onc.1201450
– ident: e_1_2_6_2_169_2
  doi: 10.1073/pnas.0809376106
– ident: e_1_2_6_2_2_2
  doi: 10.1016/S0092-8674(00)81683-9
– ident: e_1_2_6_2_27_2
  doi: 10.4161/cc.7.21.6895
– ident: e_1_2_6_2_66_2
  doi: 10.1016/j.bbrc.2004.07.173
– ident: e_1_2_6_2_18_2
  doi: 10.1128/MCB.00210-09
– ident: e_1_2_6_2_124_2
  doi: 10.1159/000088478
– ident: e_1_2_6_2_38_2
  doi: 10.1038/sj.emboj.7600305
– ident: e_1_2_6_2_79_2
  doi: 10.1074/jbc.M305722200
– ident: e_1_2_6_2_19_2
  doi: 10.1038/emboj.2009.67
– ident: e_1_2_6_2_125_2
  doi: 10.1006/scbi.1998.0091
– ident: e_1_2_6_2_81_2
  doi: 10.1038/onc.2008.469
– ident: e_1_2_6_2_13_2
  doi: 10.18632/aging.100073
– ident: e_1_2_6_2_62_2
  doi: 10.4161/rna.2.1.1552
– ident: e_1_2_6_2_69_2
  doi: 10.1172/JCI38263
– ident: e_1_2_6_2_63_2
  doi: 10.1158/0008-5472.CAN-05-4362
– ident: e_1_2_6_2_88_2
  doi: 10.1111/j.1349-7006.1995.tb02442.x
– ident: e_1_2_6_2_49_2
  doi: 10.1083/jcb.200309008
– ident: e_1_2_6_2_159_2
  doi: 10.1038/modpathol.3800645
– ident: e_1_2_6_2_99_2
  doi: 10.1139/O08-034
– ident: e_1_2_6_2_98_2
  doi: 10.1038/nrc1609
– ident: e_1_2_6_2_41_2
  doi: 10.1007/PL00000854
– volume: 53
  start-page: 92
  year: 2006
  ident: e_1_2_6_2_103_2
  article-title: Surfing on prothymosin alpha proliferation and anti‐apoptotic properties
  publication-title: Neoplasma
– ident: e_1_2_6_2_75_2
  doi: 10.1038/onc.2008.215
– ident: e_1_2_6_2_85_2
  doi: 10.1111/j.1349-7006.2009.01123.x
– ident: e_1_2_6_2_61_2
  doi: 10.1038/sj.onc.1206862
– volume: 306
  year: 2005
  ident: e_1_2_6_2_117_2
  article-title: Integration of oxygen signaling at the consensus HRE
  publication-title: Sci. STKE
– ident: e_1_2_6_2_30_2
  doi: 10.1083/jcb.200709030
– ident: e_1_2_6_2_60_2
  doi: 10.1128/MCB.01495-08
– ident: e_1_2_6_2_37_2
  doi: 10.1128/MCB.23.20.7177-7188.2003
– ident: e_1_2_6_2_43_2
  doi: 10.1016/S0092-8674(01)00578-5
– ident: e_1_2_6_2_91_2
  doi: 10.1038/sj.onc.1208613
– ident: e_1_2_6_2_17_2
  doi: 10.1091/mbc.e06-09-0850
– ident: e_1_2_6_2_54_2
  doi: 10.1101/gad.1812509
– ident: e_1_2_6_2_70_2
  doi: 10.1038/sj.onc.1201895
– ident: e_1_2_6_2_52_2
  doi: 10.1093/nar/gki603
– ident: e_1_2_6_2_118_2
  doi: 10.1007/s00018-007-7082-2
– ident: e_1_2_6_2_31_2
  doi: 10.1074/jbc.273.11.6417
– ident: e_1_2_6_2_116_2
  doi: 10.1152/jappl.2000.88.4.1474
– ident: e_1_2_6_2_173_2
  doi: 10.3727/000000004783992215
– ident: e_1_2_6_2_39_2
  doi: 10.1074/jbc.M413103200
– ident: e_1_2_6_2_71_2
  doi: 10.1128/MCB.00973-07
– ident: e_1_2_6_2_137_2
  doi: 10.1016/j.cellsig.2007.03.013
– volume: 29
  start-page: 1
  year: 2007
  ident: e_1_2_6_2_4_2
  article-title: Aberrant regulation of messenger RNA 3′‐untranslated region in human cancer
  publication-title: Cell Oncol
– ident: e_1_2_6_2_86_2
  doi: 10.1002/(SICI)1098-2264(199805)22:1<66::AID-GCC9>3.0.CO;2-5
– ident: e_1_2_6_2_94_2
  doi: 10.1158/1078-0432.CCR-04-2661
– ident: e_1_2_6_2_148_2
  doi: 10.1158/1078-0432.CCR-03-0656
– ident: e_1_2_6_2_15_2
  doi: 10.1016/j.molcel.2007.01.011
– ident: e_1_2_6_2_135_2
  doi: 10.1002/ijc.2910590209
– ident: e_1_2_6_2_149_2
  doi: 10.1007/s10555-007-9093-8
– ident: e_1_2_6_2_83_2
  doi: 10.1038/nrc2602
– ident: e_1_2_6_2_147_2
  doi: 10.3892/ijo_00000215
– ident: e_1_2_6_2_101_2
  doi: 10.1007/978-90-481-3415-1_10
– ident: e_1_2_6_2_113_2
  doi: 10.1016/S0092-8674(02)00738-9
– ident: e_1_2_6_2_67_2
  doi: 10.4161/cc.8.7.8093
– ident: e_1_2_6_2_133_2
  doi: 10.1002/cncr.23904
– ident: e_1_2_6_2_102_2
  doi: 10.1126/science.1076807
– ident: e_1_2_6_2_26_2
  doi: 10.1101/gad.1645808
– ident: e_1_2_6_2_168_2
  doi: 10.1111/j.1600-0560.2007.00762.x
– ident: e_1_2_6_2_57_2
  doi: 10.1016/j.cell.2006.04.031
– ident: e_1_2_6_2_115_2
  doi: 10.1016/S0092-8674(00)80108-7
– ident: e_1_2_6_2_3_2
  doi: 10.1073/pnas.94.3.952
– ident: e_1_2_6_2_161_2
  doi: 10.1111/j.1479-828X.2008.00937.x
– ident: e_1_2_6_2_139_2
  doi: 10.1038/nrc1926
– ident: e_1_2_6_2_51_2
  doi: 10.1101/gad.248902
– ident: e_1_2_6_2_25_2
  doi: 10.1128/MCB.22.10.3425-3436.2002
– ident: e_1_2_6_2_145_2
  doi: 10.1038/nrc745
– ident: e_1_2_6_2_33_2
  doi: 10.1128/MCB.20.3.760-769.2000
– ident: e_1_2_6_2_154_2
  doi: 10.1158/0008-5472.CAN-04-3765
– ident: e_1_2_6_2_172_2
  doi: 10.1093/carcin/bgn185
– ident: e_1_2_6_2_105_2
  doi: 10.1016/j.biocel.2004.04.007
– ident: e_1_2_6_2_11_2
  doi: 10.1016/0092-8674(91)90184-Z
– ident: e_1_2_6_2_114_2
  doi: 10.1038/onc.2008.312
– ident: e_1_2_6_2_87_2
  doi: 10.1073/pnas.91.17.8022
– ident: e_1_2_6_2_32_2
  doi: 10.1093/emboj/19.10.2340
– ident: e_1_2_6_2_42_2
  doi: 10.1515/BC.2008.022
– volume: 7
  start-page: 377
  year: 1999
  ident: e_1_2_6_2_110_2
  article-title: Functional role of p21 during the cellular response to stress
  publication-title: Gene Expr
– ident: e_1_2_6_2_7_2
  doi: 10.1126/science.1111443
– ident: e_1_2_6_2_144_2
  doi: 10.1179/ortho.27.3.227
– ident: e_1_2_6_2_20_2
  doi: 10.1074/jbc.M800017200
– ident: e_1_2_6_2_120_2
  doi: 10.1111/j.1582-4934.2009.00842.x
– ident: e_1_2_6_2_36_2
  doi: 10.1074/jbc.M301813200
– ident: e_1_2_6_2_58_2
  doi: 10.1128/MCB.26.8.3295-3307.2006
– ident: e_1_2_6_2_157_2
  doi: 10.4161/cbt.7.9.6490
– ident: e_1_2_6_2_77_2
  doi: 10.1016/j.bbrc.2007.02.145
– ident: e_1_2_6_2_73_2
  doi: 10.1097/MAJ.0b013e3181ad8cd3
– ident: e_1_2_6_2_48_2
  doi: 10.1261/rna.5810203
– ident: e_1_2_6_2_55_2
  doi: 10.1073/pnas.1432104100
– ident: e_1_2_6_2_21_2
  doi: 10.1126/science.1064693
– ident: e_1_2_6_2_100_2
  doi: 10.1158/0008-5472.CAN-07-5635
– ident: e_1_2_6_2_123_2
  doi: 10.1096/fasebj.13.1.9
– ident: e_1_2_6_2_167_2
  doi: 10.1002/ijc.21944
– volume: 62
  start-page: 1489
  year: 2002
  ident: e_1_2_6_2_9_2
  article-title: A new player in oncogenesis: AUF1/hnRNPD overexpression leads to tumorigenesis in transgenic mice
  publication-title: Cancer Res
– ident: e_1_2_6_2_174_2
  doi: 10.4049/jimmunol.0900377
– ident: e_1_2_6_2_92_2
  doi: 10.1007/s00018-002-8510-y
– ident: e_1_2_6_2_10_2
  doi: 10.1158/0008-5472.CAN-08-4238
– ident: e_1_2_6_2_107_2
  doi: 10.1158/0008-5472.CAN-08-3365
– ident: e_1_2_6_2_163_2
  doi: 10.1158/0008-5472.CAN-09-0371
– ident: e_1_2_6_2_130_2
  doi: 10.4143/crt.2009.41.2.87
– ident: e_1_2_6_2_109_2
  doi: 10.1007/978-1-4615-5371-7_10
– ident: e_1_2_6_2_72_2
  doi: 10.1159/000216837
– ident: e_1_2_6_2_104_2
  doi: 10.1126/science.275.5303.1129
– ident: e_1_2_6_2_53_2
  doi: 10.1093/nar/gkl571
– ident: e_1_2_6_2_23_2
  doi: 10.1073/pnas.0400342101
– ident: e_1_2_6_2_165_2
  doi: 10.1038/sj.bjc.6605084
– volume: 61
  start-page: 2154
  year: 2001
  ident: e_1_2_6_2_76_2
  article-title: HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine‐ and uridine‐rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs
  publication-title: Cancer Res
– ident: e_1_2_6_2_46_2
  doi: 10.1016/j.molcel.2004.05.002
– ident: e_1_2_6_2_158_2
  doi: 10.1158/1078-0432.CCR-07-1432
– ident: e_1_2_6_2_16_2
  doi: 10.1128/MCB.01530-07
– ident: e_1_2_6_2_170_2
  doi: 10.4161/rna.6.5.10079
– ident: e_1_2_6_2_78_2
  doi: 10.1128/MCB.23.14.4901-4916.2003
– ident: e_1_2_6_2_128_2
  doi: 10.1177/0003319708318378
– ident: e_1_2_6_2_127_2
  doi: 10.2174/1381612043453126
– ident: e_1_2_6_2_65_2
  doi: 10.1128/MCB.21.17.5889-5898.2001
– ident: e_1_2_6_2_129_2
  doi: 10.1053/j.gastro.2009.01.010
SSID ssj0000402711
Score 2.4229956
SecondaryResourceType review_article
Snippet Cancer‐related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA‐binding protein HuR is highly abundant in many...
Cancer-related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA-binding protein HuR is highly abundant in many...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 214
SubjectTerms Adaptive Immunity - genetics
Adaptive Immunity - physiology
Angiogenesis
Animals
Cancer
Carcinogenesis
Cell Proliferation
Cell survival
Cell Survival - genetics
Cell Survival - physiology
ELAV Proteins - genetics
ELAV Proteins - metabolism
ELAV Proteins - physiology
Gene expression
Gene Expression Regulation, Neoplastic
Humans
HuR protein
Medical prognosis
Metastases
Models, Biological
Neoplasms - genetics
Neoplasms - metabolism
Post-transcription
Proteins
Quantitative Trait, Heritable
RNA Processing, Post-Transcriptional
RNA-binding protein
Title Posttranscriptional regulation of cancer traits by HuR
URI https://api.istex.fr/ark:/67375/WNG-Q29QCNPV-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwrna.4
https://www.ncbi.nlm.nih.gov/pubmed/21935886
https://www.proquest.com/docview/2006737008
https://www.proquest.com/docview/893722477
Volume 1
WOSCitedRecordID wos000208267200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1757-7012
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402711
  issn: 1757-7004
  databaseCode: DRFUL
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61uxy48CqPQCkWgt5Cs7Y3do6rhaUHFLWrQvdm2d5YQkAWJbtA_z0zeaEKkBC5xR4r1njG8_mR-QBeTIipThKhiZU-lhmuWRFU8zhovvbCCj9xoSGbUHmuV6vsbA90_y9Mmx9i2HAjz2jma3Jw6-qTX0lDv6OmX8l9GHM02ukIxq-Xi_fvhv0VNE6uGvpdDJAqpizuPbVQwk_axtdi0ZjU-uNPQPM6bm0Cz-L2_3f5DtzqwCabtdZxF_aK8h4czEpcaH-5Ysesuf7Z7KsfQEq0vVuKXP08gi2rlqkeX9gmME8WUjFildjWzF2x093yPlws3lzMT-OOVCH2Ep_YCRGsCHpteaAjQO3C2qdJMUlTh1jQa1xdIyT0LktRRHEhJFehUDIkwhdBPIBRuSmLR8ASm01FkmCZllKpSeYzbh1PsYBLl9kIXvbaNb5LOE49_GzaVMnckD6MjODZIPe1TbHxm8RxMzhDta0-0YU0NTWX-VtzzrPzeX72wcwjOOxHz3S-WBPRJski2ImADdXoRXQ0Ystis6sNoTYEM0pF8LAd9OFbOKWLqdZpBM-bsf1LH83lMp_Jx_8i9ARutncQ6KbaIYy21a54Cjf8t-3HujqCfbXSR505_wTU4vh1
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4xOmm8DDYGy2DDmjbeAqntxslj1a10oougKoM3y3FjCbGlU9pu8O-5S9IwBJMmLW-Jz4rlu_N9Plv3AXxoE1OdJEITI60vY9yzIqjmvov4xAojbDt1JdmESpLo4iI--YPqq6oP0STcyDPK9ZocnBLSh3dVQ3_jVB_IJ9CSaENo3K1Po_7ZsEmwoHVyVfLvYoRUPpVxX3ILBfyw6nwvGLVoXq8fQ5r3gWsZefrr_zHmDXhew03WrezjBaxk-UvY7Oa41f5xw_ZZeQG0zKxvQkjEvXOKXcuVBHsWFVc9vrCpY5ZspGDEKzGfsfSGDRajVzDufx73Bn5Nq-BbiY-fCuGMcNHEcEeHgFHqJjYMsnYYpogGbYT7awSFNo1DFFFcCMmVy5R0gbCZE1uwmk_z7DWwwMQdEQT4LZJSqXZsY25SHuIHLtPYePBxOb3a1iXHaYTfdVUsmWuaDy092GvkflZFNh5I7JfaaZpNcUVX0lRHnydH-pTHp73k5JvuebC7VJ-uvXFGVJski3DHA9Y0ox_R4YjJs-lipgm3IZxRyoPtSuvNv3BRF50oCj14Xyr3L2PU56OkK9_8i9AePBuMvw718EtyvANr1Y0Eure2C6vzYpG9haf21_xyVryrrfoWz6z7fQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9t7TTxsi8YhPFhTcBbILXdOHmsCh3TUFQqGLxZjhtLE5CitN3Gf89dkmZDbBISeUt8Vqz7sH-2T_cD2OkQU50kQhMjrS9j3LMiqOa-i_jYCiNsJ3Ul2YRKkujyMh7-RfVV1YdoDtwoMsr5mgI8ux27gz9VQ3-hqvflS2hLYpBpQftwNDg_aQ5Y0Du5Kvl3cYVUPpVxX3ALBfyg6vxgMWqTXn__C2k-BK7lyjN4-4wxv4M3Ndxkvco_3sOLLP8Ay70ct9o3d2yPlQmg5cn6MoRE3DujtWsxk2DPouKqxxc2ccySjxSMeCVmU5beseP5aAXOBkdn_WO_plXwrcTHT4VwRrhobLijS8AodWMbBlknDFNEgzbC_TWCQpvGIYooLoTkymVKukDYzImP0MonebYGLDBxVwQBfoukVKoT25iblIf4gcs0Nh7sLtSrbV1ynEZ4ratiyVyTPrT0YLuRu62KbDyS2Cut0zSb4opS0lRXXyRf9CmPT_vJ8Lvue7CxMJ-uo3FKVJski3DHA9Y0YxzR5YjJs8l8qgm3IZxRyoPVyurNv3BSF90oCj34XBr3P2PUF6OkJ9efIrQNr4eHA33yNfn2CZaqhARKW9uA1qyYZ5vwyv6c_ZgWW7VT3wNjQ_r4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Posttranscriptional+regulation+of+cancer+traits+by+HuR&rft.jtitle=Wiley+interdisciplinary+reviews.+RNA&rft.au=Abdelmohsen%2C+Kotb&rft.au=Gorospe%2C+Myriam&rft.date=2010-09-01&rft.eissn=1757-7012&rft.volume=1&rft.issue=2&rft.spage=214&rft_id=info:doi/10.1002%2Fwrna.4&rft_id=info%3Apmid%2F21935886&rft.externalDocID=21935886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-7004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-7004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-7004&client=summon