RNA interference technology in crop protection against arthropod pests, pathogens and nematodes

Scientists have made significant progress in understanding and unraveling several aspects of double‐stranded RNA (dsRNA)‐mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge...

Full description

Saved in:
Bibliographic Details
Published in:Pest management science Vol. 74; no. 6; pp. 1239 - 1250
Main Authors: Zotti, Moises, dos Santos, Ericmar Avila, Cagliari, Deise, Christiaens, Olivier, Taning, Clauvis Nji Tizi, Smagghe, Guy
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01.06.2018
Wiley Subscription Services, Inc
Subjects:
ISSN:1526-498X, 1526-4998, 1526-4998
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Scientists have made significant progress in understanding and unraveling several aspects of double‐stranded RNA (dsRNA)‐mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi‐based products are already available for farmers and more are expected to reach the market soon. Tailor‐made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence‐dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant‐incorporated protectants through plant transformation, but also by non‐transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest‐insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide‐resistant weeds and insects. Finally, this review reports on the advances in non‐transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry Easy and cheap production, efficient delivery, bioinformatics for biosafety and selectivity in design of dsRNA. Control of pest insects, mites, ticks, plant pathogenic fungi, root‐knot nematodes, weeds and viruses.
AbstractList Scientists have made significant progress in understanding and unraveling several aspects of double‐stranded RNA (dsRNA)‐mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi‐based products are already available for farmers and more are expected to reach the market soon. Tailor‐made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence‐dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant‐incorporated protectants through plant transformation, but also by non‐transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest‐insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide‐resistant weeds and insects. Finally, this review reports on the advances in non‐transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry
Scientists have made significant progress in understanding and unraveling several aspects of double‐stranded RNA (dsRNA)‐mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi‐based products are already available for farmers and more are expected to reach the market soon. Tailor‐made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence‐dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant‐incorporated protectants through plant transformation, but also by non‐transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest‐insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide‐resistant weeds and insects. Finally, this review reports on the advances in non‐transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry Easy and cheap production, efficient delivery, bioinformatics for biosafety and selectivity in design of dsRNA. Control of pest insects, mites, ticks, plant pathogenic fungi, root‐knot nematodes, weeds and viruses.
Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry.
Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry.Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry.
Author dos Santos, Ericmar Avila
Smagghe, Guy
Taning, Clauvis Nji Tizi
Cagliari, Deise
Zotti, Moises
Christiaens, Olivier
Author_xml – sequence: 1
  givenname: Moises
  surname: Zotti
  fullname: Zotti, Moises
  email: moises.zotti@ufpel.edu.br
  organization: Federal University of Pelotas
– sequence: 2
  givenname: Ericmar Avila
  surname: dos Santos
  fullname: dos Santos, Ericmar Avila
  organization: Federal University of Pelotas
– sequence: 3
  givenname: Deise
  surname: Cagliari
  fullname: Cagliari, Deise
  organization: Federal University of Pelotas
– sequence: 4
  givenname: Olivier
  surname: Christiaens
  fullname: Christiaens, Olivier
  organization: Ghent University
– sequence: 5
  givenname: Clauvis Nji Tizi
  surname: Taning
  fullname: Taning, Clauvis Nji Tizi
  organization: Ghent University
– sequence: 6
  givenname: Guy
  orcidid: 0000-0001-8334-3313
  surname: Smagghe
  fullname: Smagghe, Guy
  email: guy.smagghe@ugent.be
  organization: Ghent University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29194942$$D View this record in MEDLINE/PubMed
BookMark eNqF0V1LHDEUBuAgSv1o8R9IwAsFHZtkspnkcpFqC9KWVsG7kMmc7I7MJmOSpey_b7ZrvRDFq4STh8PJe_bRtg8eEDqk5IISwj6P6YJLWm-hPTphouJKye3nu7zfRfspPRBClFLsA9pliiquONtD-tf3Ke59hugggreAM9i5D0OYrUod2xhGPMZQqrkPHpuZ6X3K2MQ8L0-hwyOknM7xaPI8zMAnbHyHPSxMDh2kj2jHmSHBp6fzAN1dfbm9_Frd_Lj-djm9qSznvK5g0lrJhLOmtrKhtFMdtA1xjgPjQrWcAm-JrZVgNW1aogTtXEOM6FrjXOPqA3S66VtmfVyWkfSiTxaGwXgIy6QZkZw0UqrmXUpVQ4XigqhCj1_Qh7CMvnykNKwnQtaMsKKOntSyXUCnx9gvTFzp_ykXcLIBJc2UIrhnQole70-PSa_3V2T1Qto-m3XyOZp-eMWfbfyffoDVW231z9__9F-ij6m8
CitedBy_id crossref_primary_10_1111_imb_13004
crossref_primary_10_3390_jof7020125
crossref_primary_10_3389_fpls_2023_1123523
crossref_primary_10_3390_app12062954
crossref_primary_10_1016_j_copbio_2021_06_005
crossref_primary_10_3390_cells8040371
crossref_primary_10_1016_j_vetpar_2020_109128
crossref_primary_10_1093_jxb_erad023
crossref_primary_10_1016_j_aspen_2022_101908
crossref_primary_10_1016_j_pestbp_2019_10_005
crossref_primary_10_3389_fmars_2023_1112913
crossref_primary_10_1111_1744_7917_13403
crossref_primary_10_1016_j_bbagrm_2021_194704
crossref_primary_10_1016_j_cbpc_2019_108644
crossref_primary_10_1007_s00299_023_03048_z
crossref_primary_10_1016_j_jinsphys_2020_104176
crossref_primary_10_1007_s10343_025_01150_8
crossref_primary_10_1016_j_cej_2025_165790
crossref_primary_10_1111_mve_12677
crossref_primary_10_3390_ijms23169236
crossref_primary_10_3390_insects13010040
crossref_primary_10_3390_insects16070737
crossref_primary_10_1002_ps_5086
crossref_primary_10_1111_1750_3841_15816
crossref_primary_10_1007_s13562_024_00922_z
crossref_primary_10_1016_j_pestbp_2020_02_016
crossref_primary_10_1111_imb_12965
crossref_primary_10_1111_lam_13337
crossref_primary_10_1111_raq_12951
crossref_primary_10_1016_j_pestbp_2024_106216
crossref_primary_10_1111_jipb_13887
crossref_primary_10_3390_agriculture9080179
crossref_primary_10_51694_AdvWeedSci_2022_40_seventy_five006
crossref_primary_10_1002_ps_8479
crossref_primary_10_1093_jee_toy238
crossref_primary_10_3389_ffunb_2022_977502
crossref_primary_10_1111_imb_12731
crossref_primary_10_1002_ps_7271
crossref_primary_10_3389_fbioe_2022_980592
crossref_primary_10_1038_s41598_020_60078_3
crossref_primary_10_3390_ijms21165701
crossref_primary_10_3390_plants8120565
crossref_primary_10_1016_j_ijbiomac_2024_137000
crossref_primary_10_18474_JES24_59
crossref_primary_10_1007_s42994_021_00036_3
crossref_primary_10_1016_j_fsi_2025_110877
crossref_primary_10_1016_j_jia_2022_07_015
crossref_primary_10_1111_pce_14652
crossref_primary_10_3390_plants8060178
crossref_primary_10_1002_ps_5415
crossref_primary_10_1007_s00253_021_11494_6
crossref_primary_10_1016_j_cois_2023_101033
crossref_primary_10_1007_s10340_021_01374_3
crossref_primary_10_12677_ojns_2025_133048
crossref_primary_10_3389_fpls_2020_00940
crossref_primary_10_3389_fpls_2020_00946
crossref_primary_10_1186_s40538_021_00281_0
crossref_primary_10_1016_j_aac_2025_08_001
crossref_primary_10_3389_fpls_2025_1527944
crossref_primary_10_1016_j_jinsphys_2021_104325
crossref_primary_10_3390_ijms26146773
crossref_primary_10_1038_s41598_020_69068_x
crossref_primary_10_3390_ijms24065121
crossref_primary_10_1007_s10343_022_00672_9
crossref_primary_10_1002_ps_7849
crossref_primary_10_1002_sae2_12014
crossref_primary_10_1016_j_bbagen_2023_130544
crossref_primary_10_3389_fpls_2021_733129
crossref_primary_10_1038_s41598_021_92553_w
crossref_primary_10_1002_ps_6993
crossref_primary_10_1042_BSR20230817
crossref_primary_10_1039_D2EN01076C
crossref_primary_10_1007_s12038_020_00082_x
crossref_primary_10_1038_s41598_023_36523_4
crossref_primary_10_3390_insects11110739
crossref_primary_10_1016_j_ibmb_2020_103408
crossref_primary_10_3390_genes15091200
crossref_primary_10_3389_fbioe_2021_798097
crossref_primary_10_3390_insects15120983
crossref_primary_10_3390_ijms24119266
crossref_primary_10_3390_insects9040185
crossref_primary_10_1016_j_pestbp_2025_106361
crossref_primary_10_3390_ijms24021041
crossref_primary_10_55446_IJE_2025_3176
crossref_primary_10_1111_ppl_70274
crossref_primary_10_1002_ps_70040
crossref_primary_10_1080_03235408_2021_1910415
crossref_primary_10_1093_jimb_kuae028
crossref_primary_10_1007_s10530_019_02146_y
crossref_primary_10_1016_j_plantsci_2020_110670
crossref_primary_10_3389_fmicb_2022_1020461
crossref_primary_10_1007_s41348_024_00878_1
crossref_primary_10_1002_ps_5601
crossref_primary_10_1016_j_xplc_2025_101316
crossref_primary_10_3390_ijms22105362
crossref_primary_10_1002_ps_5048
crossref_primary_10_3390_plants10040650
crossref_primary_10_1016_j_pestbp_2022_105166
crossref_primary_10_1111_1748_5967_12621
crossref_primary_10_1007_s00122_022_04074_3
crossref_primary_10_1038_s44264_025_00057_1
crossref_primary_10_3389_fpls_2021_733608
crossref_primary_10_1038_s41598_019_49178_x
crossref_primary_10_1002_ps_6708
crossref_primary_10_1016_j_pestbp_2022_105295
crossref_primary_10_1111_1744_7917_13103
crossref_primary_10_3389_fbioe_2022_1080576
crossref_primary_10_3389_finsc_2023_1198252
crossref_primary_10_3390_v17010049
crossref_primary_10_1038_s42003_023_05618_z
crossref_primary_10_3390_insects13090846
crossref_primary_10_1039_D5CS00458F
crossref_primary_10_1002_ps_5612
crossref_primary_10_1007_s10340_019_01140_6
crossref_primary_10_1017_S0007485321000420
crossref_primary_10_1007_s11033_020_05810_y
crossref_primary_10_1002_ps_6153
crossref_primary_10_3390_cells9020363
crossref_primary_10_1093_jxb_eraa001
crossref_primary_10_3390_insects12100931
crossref_primary_10_1007_s11105_024_01513_x
crossref_primary_10_1111_mpp_13329
crossref_primary_10_1016_j_cois_2018_10_009
crossref_primary_10_1016_j_pestbp_2022_105183
crossref_primary_10_1007_s10340_021_01388_x
crossref_primary_10_3389_fagro_2021_701974
crossref_primary_10_3389_fpls_2020_00451
crossref_primary_10_1099_jgv_0_001770
crossref_primary_10_1038_s41467_024_53468_y
crossref_primary_10_1111_jipb_13860
crossref_primary_10_1186_s13019_021_01540_9
crossref_primary_10_1186_s40643_022_00596_2
crossref_primary_10_1186_s12951_021_01216_5
crossref_primary_10_1039_D2RA06541J
crossref_primary_10_1002_fee_2325
crossref_primary_10_1016_j_cropro_2019_05_025
crossref_primary_10_1016_j_ibmb_2020_103325
crossref_primary_10_3389_fphys_2022_836106
crossref_primary_10_1002_ps_70067
crossref_primary_10_1002_ps_5599
crossref_primary_10_1007_s11240_025_03021_6
crossref_primary_10_1098_rsob_220372
crossref_primary_10_1186_s40066_022_00369_2
crossref_primary_10_1016_j_ijbiomac_2022_123123
crossref_primary_10_1007_s10327_019_00865_7
crossref_primary_10_1002_ps_6692
crossref_primary_10_3390_insects11070449
crossref_primary_10_1016_j_ijbiomac_2025_147195
crossref_primary_10_3389_fphys_2020_591569
crossref_primary_10_3389_fphys_2019_00794
crossref_primary_10_1016_j_aquaculture_2024_740763
crossref_primary_10_3390_ijms222212148
crossref_primary_10_1007_s11033_023_08266_y
crossref_primary_10_3389_ffgc_2023_1219685
crossref_primary_10_1002_ps_8638
crossref_primary_10_1016_j_jbiosc_2019_03_003
crossref_primary_10_1002_ps_5128
crossref_primary_10_3389_fmolb_2022_944774
crossref_primary_10_1021_acs_jafc_5c02537
crossref_primary_10_3390_genes12030407
crossref_primary_10_1146_annurev_ento_011019_025224
crossref_primary_10_7554_eLife_51029
crossref_primary_10_1016_j_aspen_2025_102440
crossref_primary_10_3389_fenvs_2024_1430170
crossref_primary_10_1002_ps_5250
crossref_primary_10_1111_mpp_13354
crossref_primary_10_3389_fgene_2022_835324
crossref_primary_10_3389_fphys_2018_01560
crossref_primary_10_3390_ijms232415836
crossref_primary_10_1016_j_pestbp_2024_105968
crossref_primary_10_1186_s40538_025_00738_6
crossref_primary_10_1002_ps_5809
crossref_primary_10_1111_pbi_13605
crossref_primary_10_1016_j_jspr_2023_102096
crossref_primary_10_1111_1744_7917_12853
crossref_primary_10_3390_ijms23020765
crossref_primary_10_3390_agronomy15040859
crossref_primary_10_1111_brv_12627
crossref_primary_10_3389_fpls_2020_00424
crossref_primary_10_1002_ps_7313
crossref_primary_10_1186_s40694_022_00143_w
crossref_primary_10_1002_ps_6594
crossref_primary_10_1007_s11816_022_00750_4
crossref_primary_10_1111_mpp_13361
crossref_primary_10_1002_arch_21522
crossref_primary_10_1007_s10340_024_01779_w
crossref_primary_10_1080_23311932_2024_2334096
crossref_primary_10_3390_insects16060645
crossref_primary_10_1016_j_pestbp_2021_104828
crossref_primary_10_3390_plants9060673
crossref_primary_10_1007_s13744_019_00722_4
crossref_primary_10_1016_j_ibmb_2018_09_003
crossref_primary_10_1016_j_biotechadv_2019_107463
crossref_primary_10_1016_j_aspen_2020_09_012
crossref_primary_10_1016_j_pestbp_2021_104853
crossref_primary_10_1016_j_dci_2021_104126
crossref_primary_10_1016_j_pestbp_2023_105548
crossref_primary_10_1002_adfm_202213143
crossref_primary_10_1016_j_aac_2024_06_001
crossref_primary_10_1016_S2095_3119_20_63394_9
crossref_primary_10_55446_hexa_2024_51
crossref_primary_10_1007_s11033_020_05583_4
crossref_primary_10_1007_s10658_021_02408_3
crossref_primary_10_3389_fpls_2022_885128
crossref_primary_10_36253_phyto_14576
crossref_primary_10_1016_j_pmpp_2024_102241
crossref_primary_10_1111_pbi_13116
crossref_primary_10_3390_f14020422
crossref_primary_10_3390_plants9121780
crossref_primary_10_3389_fbioe_2023_1197666
crossref_primary_10_3390_plants8120572
crossref_primary_10_3389_fpls_2019_01319
crossref_primary_10_1007_s00427_018_0614_y
crossref_primary_10_1016_j_ijpara_2018_04_006
crossref_primary_10_3390_plants10050963
crossref_primary_10_3389_fphys_2018_00805
crossref_primary_10_1016_j_neubiorev_2020_03_005
crossref_primary_10_1002_ps_5686
crossref_primary_10_1002_ps_7078
crossref_primary_10_1007_s40858_022_00534_9
crossref_primary_10_1016_j_comtox_2024_100340
crossref_primary_10_1016_j_pestbp_2020_104555
crossref_primary_10_3389_fvets_2019_00079
crossref_primary_10_3390_insects11010034
crossref_primary_10_1111_mpp_12866
crossref_primary_10_3390_ijms23126639
crossref_primary_10_3389_fpls_2020_00740
crossref_primary_10_1016_j_tibtech_2025_07_027
crossref_primary_10_1016_j_gep_2022_119233
crossref_primary_10_3390_jof7110942
crossref_primary_10_1007_s10340_021_01350_x
crossref_primary_10_1007_s11274_024_04079_8
crossref_primary_10_3389_fpls_2021_755203
crossref_primary_10_3390_plants13192712
crossref_primary_10_1007_s11274_024_04143_3
crossref_primary_10_1146_annurev_arplant_050718_100025
crossref_primary_10_1016_j_pestbp_2020_104569
crossref_primary_10_1016_j_scitotenv_2024_175311
crossref_primary_10_1002_arch_70080
crossref_primary_10_1016_j_pmpp_2025_102886
crossref_primary_10_1111_phen_12428
crossref_primary_10_1016_j_ijbiomac_2024_135401
crossref_primary_10_1007_s10340_020_01238_2
crossref_primary_10_1016_j_jinsphys_2025_104881
crossref_primary_10_1094_PHYTO_09_23_0334_R
crossref_primary_10_1111_1744_7917_12784
crossref_primary_10_3389_fpls_2020_00051
crossref_primary_10_1016_j_pestbp_2021_104870
crossref_primary_10_3390_nano14231874
Cites_doi 10.1371/journal.pone.0080603
10.1002/ps.2291
10.1186/1472-6750-3-3
10.2307/3869076
10.1016/j.chemosphere.2011.12.061
10.1016/B978-0-12-800197-4.00005-1
10.1016/j.jinsphys.2007.04.003
10.1186/1756-3305-3-73
10.1038/nbt1107-1231
10.1016/j.jinsphys.2008.12.005
10.1525/bio.2013.63.8.8
10.1371/journal.pone.0038572
10.1016/j.ibmb.2009.09.007
10.1371/journal.pone.0006225
10.1007/s11103-013-0022-7
10.1016/j.ijpara.2006.11.005
10.1038/emboj.2011.274
10.1038/nplants.2016.151
10.1002/ps.2048
10.4161/rna.19986
10.1073/pnas.1306373110
10.1093/jxb/erv094
10.1073/pnas.1232238100
10.1128/AEM.01067-10
10.1016/j.jinsphys.2010.11.006
10.1371/journal.pone.0031347
10.1186/1758-907X-3-5
10.1007/s10142-015-0446-z
10.1002/ps.3706
10.1002/ps.4407
10.1128/EC.05109-11
10.1002/ps.4324
10.1111/j.1467-7652.2010.00555.x
10.1111/imb.12052
10.3958/059.037.0110
10.1242/dev.113.2.503
10.1016/0022-2836(81)90087-5
10.1002/ps.4056
10.1016/j.tibtech.2008.04.004
10.1098/rspb.2016.0042
10.1093/nar/gki324
10.1111/j.1467-7652.2008.00366.x
10.1016/j.cois.2014.09.011
10.1038/nrg2968
10.1093/nar/gku1054
10.1016/j.jip.2012.07.012
10.1371/journal.ppat.1003035
10.1002/ps.4337
10.1016/j.jinsphys.2013.08.014
10.1016/j.ibmb.2004.04.004
10.1038/nrm4085
10.1007/s13744-015-0291-8
10.1007/s00427-007-0132-9
10.1016/j.pestbp.2012.12.001
10.3389/fphys.2016.00553
10.1016/S1046-2023(03)00037-9
10.1073/pnas.0604698103
10.1016/j.ibmb.2008.10.011
10.1111/pbi.12352
10.1126/science.341.6147.732
10.1038/27579
10.1111/j.1365-294X.2012.05548.x
10.1016/j.jinsphys.2009.10.004
10.1002/ps.2049
10.1371/journal.pone.0093155
10.1111/eea.12544
10.1111/j.1365-313X.2005.02441.x
10.1016/j.cell.2009.01.035
10.1016/j.pt.2007.07.002
10.1016/j.exppara.2013.03.009
10.1038/nplants.2016.207
10.3390/v7062765
10.1016/j.cell.2005.11.006
10.1186/gb-2008-9-1-r10
10.1038/nbt1352
10.1073/pnas.0307669100
10.1002/ps.4554
10.1016/j.bbrc.2005.07.036
10.1128/MMBR.67.4.657-685.2003
10.1016/j.pestbp.2014.02.003
10.1038/nrg2504
10.1111/j.1365-2958.1992.tb02202.x
10.1016/j.pestbp.2015.11.005
10.1371/journal.ppat.1005901
10.1073/pnas.0308698100
10.1016/j.ibmb.2008.05.005
10.1038/35888
10.1007/s12038-011-9009-1
10.1002/ps.4492
10.1101/gr.113985.110
10.1038/nrd3010
10.1371/journal.ppat.1001160
10.1038/nbt1359
10.1186/1471-2164-14-668
10.1094/MPMI-20-6-0717
10.1111/pce.12546
10.1016/j.ibmb.2006.05.012
10.1016/j.ibmb.2012.09.004
10.1007/s11248-013-9739-y
10.1146/annurev-biophys-083012-130404
10.1007/s11240-013-0339-6
10.3389/fphys.2017.00399
10.1105/tpc.110.077040
10.5772/61612
10.1111/pbi.12307
10.1016/j.ibmb.2017.06.009
10.1371/journal.pone.0110874
ContentType Journal Article
Copyright 2017 Society of Chemical Industry
2017 Society of Chemical Industry.
2018 Society of Chemical Industry
Copyright_xml – notice: 2017 Society of Chemical Industry
– notice: 2017 Society of Chemical Industry.
– notice: 2018 Society of Chemical Industry
DBID AAYXX
CITATION
NPM
7QR
7SS
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1002/ps.4813
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

PubMed
Entomology Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1526-4998
EndPage 1250
ExternalDocumentID 29194942
10_1002_ps_4813
PS4813
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Fund for Scientific Research (FWO‐Vlaanderen)
– fundername: Ghent University (BOF‐UGent)
– fundername: Coordination for the Improvement of Higher Education Personnel (CAPES)
– fundername: National Council for Scientific and Technological Development (CNPq)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
29O
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
1OB
7QR
7SS
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4443-e5bc826fca3c8711d9deb70ff4e2469b41e4b0c3962317b0961df70a6dbaff7f3
IEDL.DBID DRFUL
ISICitedReferencesCount 292
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431670200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1526-498X
1526-4998
IngestDate Thu Oct 02 23:53:17 EDT 2025
Sun Nov 09 12:39:43 EST 2025
Wed Aug 13 08:50:09 EDT 2025
Wed Feb 19 02:44:26 EST 2025
Sat Nov 29 07:06:10 EST 2025
Tue Nov 18 22:26:59 EST 2025
Wed Jan 22 16:54:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords biopesticides
double-stranded RNA
plant pathogens
RNA interference-based
resistance management
pest insects
Language English
License 2017 Society of Chemical Industry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4443-e5bc826fca3c8711d9deb70ff4e2469b41e4b0c3962317b0961df70a6dbaff7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8334-3313
PMID 29194942
PQID 2035683202
PQPubID 46069
PageCount 13
ParticipantIDs proquest_miscellaneous_2084078897
proquest_miscellaneous_1971694609
proquest_journals_2035683202
pubmed_primary_29194942
crossref_primary_10_1002_ps_4813
crossref_citationtrail_10_1002_ps_4813
wiley_primary_10_1002_ps_4813_PS4813
PublicationCentury 2000
PublicationDate June 2018
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: London
PublicationTitle Pest management science
PublicationTitleAlternate Pest Manag Sci
PublicationYear 2018
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 1991; 113
1981; 147
2005; 334
2017; 87
2008; 38
2006; 36
2013; 63
2011; 57
2013; 8
2014; 23
1998; 395
1992; 6
2017; 73
2010; 22
2007; 217
2013; 59
2009; 10
2013; 115
2004; 34
2013; 112
2008; 26
2017; 162
2011; 67
2013; 110
2010; 3
2012; 21
2010; 6
2010; 9
2013; 105
1928; 3
2013; 341
2012; 37
2003; 30
2016; 12
2016; 283
2014; 43
2011; 9
2016; 4
1990; 2
1998; 391
2016; 7
2016; 2
2005; 123
2015; 66
2013; 81
2003; 100
2012; 42
2006; 103
2010; 56
2017; 8
2014; 70
2015; 38
2017; 3
2013; 22
2010; 427
2008; 9
2011; 10
2016; 73
2016; 72
2011; 12
2007; 37
2009; 55
2013; 14
2015; 44
2003; 3
2011; 21
2014; 9
2007; 20
2012; 68
2007; 23
2014; 6
2005; 33
2007; 25
2004; 101
2015; 13
2010; 76
2015; 15
2015; 16
2012
2013; 42
2011; 30
2005; 43
2011; 36
2014; 110
2007; 53
2015; 7
2009; 136
2012; 3
2013; 134
2017
2016
2009; 7
2015
2014
2013
2009; 4
2012; 7
2012; 87
2016; 130
2012; 8
2003; 67
2009; 39
2012; 9
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
Gonsalves D (e_1_2_9_51_1) 2014
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_14_1
e_1_2_9_37_1
Dolgov S (e_1_2_9_52_1) 2010; 427
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_115_1
Tabassum B (e_1_2_9_23_1) 2012
e_1_2_9_26_1
e_1_2_9_49_1
Nandety RS (e_1_2_9_78_1) 2014; 6
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
EFSA ‐ European Food Safety Authority (e_1_2_9_83_1) 2014
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_118_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
Wingard SA (e_1_2_9_2_1) 1928; 3
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
Baduel P (e_1_2_9_124_1) 2015
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
Yang Y (e_1_2_9_57_1) 2013; 8
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_116_1
Zhu F (e_1_2_9_10_1) 2014
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 23
  start-page: 427
  year: 2007
  end-page: 433
  article-title: RNA interference for the study and genetic manipulation of ticks
  publication-title: Trends Parasitol
– volume: 4
  start-page: e6225
  year: 2009
  article-title: Developmental control of a lepidopteran pest by ingestion of bacteria expressing dsRNA of a non‐midgut gene
  publication-title: PLoS One
– volume: 6
  start-page: 8
  year: 2014
  end-page: 19
  article-title: Emerging strategies for RNA interference (RNAi) applications in insects
  publication-title: Bioeng Bugs
– volume: 13
  start-page: 875
  year: 2015
  end-page: 883
  article-title: Host‐induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce
  publication-title: Plant Biotechnol J
– volume: 101
  start-page: 1141
  year: 2004
  end-page: 1146
  article-title: Disruption of anticoagulation by using RNA interference
  publication-title: Proc Natl Acad Sci U S A
– volume: 334
  start-page: 1336
  year: 2005
  end-page: 1342
  article-title: RNAi‐mediated gene silencing to assess the role of synaptobrevin and cystatin in tick blood feeding
  publication-title: Biochem Biophys Res Commun
– volume: 66
  start-page: 2785
  year: 2015
  end-page: 2794
  article-title: Plant‐mediated gene silencing restricts growth of the potato late blight pathogen
  publication-title: J Exp Bot
– volume: 4
  start-page: 801
  year: 2016
  end-page: 809
  article-title: The next generation of insecticides: DsRNA is stable as a foliar‐applied insecticide
  publication-title: Pest Manag Sci
– volume: 123
  start-page: 543
  year: 2005
  end-page: 545
  article-title: RNAi: RISC gets loaded
  publication-title: Cell
– volume: 391
  start-page: 806
  year: 1998
  end-page: 811
  article-title: Potent and specific genetic interference by double‐stranded RNA in
  publication-title: Nature
– start-page: 391
  year: 2016
  end-page: 409
– volume: 7
  start-page: e38572
  year: 2012
  article-title: Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect‐associated gene EcR
  publication-title: PLoS One
– volume: 10
  start-page: 94
  year: 2009
  end-page: 108
  article-title: Small silencing RNAs: an expanding universe
  publication-title: Nat Rev Genet
– volume: 76
  start-page: 5960
  year: 2010
  end-page: 5964
  article-title: Effective gene silencing in a microsporidian parasite associated with honeybee ( ) colony declines
  publication-title: Appl Environ Microbiol
– volume: 9
  start-page: 1
  year: 2014
  end-page: 7
  article-title: Environmental fate of double‐stranded RNA in agricultural soils
  publication-title: PLoS One
– volume: 44
  start-page: 197
  year: 2015
  end-page: 213
  article-title: RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments
  publication-title: Neotrop Entomol
– volume: 9
  start-page: e110874
  year: 2014
  article-title: Clathrin heavy chain is important for viability, oviposition, embryogenesis and, possibly, systemic RNAi response in the predatory mite
  publication-title: PLoS One
– year: 2014
– volume: 20
  start-page: 717
  year: 2007
  end-page: 726
  article-title: RNAi‐mediated resistance to Bean golden mosaic virus in genetically engineered common bean ( )
  publication-title: Mol Plant Microbe Interact
– volume: 3
  start-page: 5
  year: 2012
  article-title: Application of RNA silencing to plant disease resistance
  publication-title: Silence
– volume: 8
  year: 2012
  article-title: Bidirectional Transfer of RNAi between Honey Bee and Varroa destructor: Varroa Gene Silencing Reduces Varroa Population
  publication-title: PLoS Patho
– volume: 34
  start-page: 799
  year: 2004
  end-page: 808
  article-title: Cloning and molecular characterization of a cubilin‐related serine proteinase from the hard tick
  publication-title: Insect Biochem Mol Biol
– volume: 33
  year: 2005
  article-title: A computational study of off‐target effects of RNA interference
  publication-title: Nucleic Acids Res
– start-page: 595
  year: 2014
  end-page: 619
– volume: 25
  start-page: 1307
  year: 2007
  end-page: 1313
  article-title: Silencing a cotton bollworm P450 monooxygenase gene by plant‐mediated RNAi impairs larval tolerance of gossypol
  publication-title: Nat Biotechnol
– volume: 57
  start-page: 231
  year: 2011
  end-page: 245
  article-title: RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design
  publication-title: J Insect Physiol
– volume: 8
  start-page: 1
  year: 2017
  end-page: 24
  article-title: Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges
  publication-title: Front Physiol
– volume: 73
  start-page: 44
  year: 2017
  end-page: 52
  article-title: RNAi‐based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil (Coleoptera: Brentidae)
  publication-title: Pest Manag Sci
– volume: 22
  start-page: 3130
  year: 2010
  end-page: 3141
  article-title: HIGS: Host‐Induced Gene Silencing in the Obligate Biotrophic Fungal Pathogen
  publication-title: Plant Cell
– volume: 59
  start-page: 1212
  year: 2013
  end-page: 1221
  article-title: Towards the elements of successful insect RNAi
  publication-title: J Insect Physiol
– volume: 43
  start-page: D720
  year: 2014
  end-page: D725
  article-title: iBeetle‐Base: a database for RNAi phenotypes in the red flour beetle
  publication-title: Nucleic Acids Res
– volume: 15
  start-page: 697
  year: 2015
  end-page: 706
  article-title: Host‐mediated gene silencing of a single effector gene from the potato pathogen imparts partial resistance to late blight disease
  publication-title: Funct Integr Genomics
– volume: 87
  start-page: 136
  year: 2017
  end-page: 146
  article-title: Characterization and expression patterns of key ecdysteroid biosynthesis and signaling genes in a spider mite ( )
  publication-title: Insect Biochem Mol Biol
– volume: 8
  year: 2013
  article-title: Molecular Characteristics and Efficacy of 16D10 siRNAs in Inhibiting Root‐Knot Nematode Infection in Transgenic Grape Hairy Roots
  publication-title: PLoS One
– volume: 110
  start-page: 19324
  year: 2013
  end-page: 19329
  article-title: Host‐induced gene silencing of cytochrome P450 lanosterol C14‐demethylase‐encoding genes confers strong resistance to species
  publication-title: Proc Natl Acad Sci
– volume: 7
  year: 2012
  article-title: Tobacco rattle virus vector: A rapid and transient means of silencing manduca sexta genes by plant mediated RNA interference
  publication-title: PLoS One
– volume: 30
  start-page: 3553
  year: 2011
  end-page: 3563
  article-title: Intercellular and systemic movement of RNA silencing signals
  publication-title: EMBO J
– volume: 73
  start-page: 960
  year: 2016
  end-page: 966
  article-title: Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response
  publication-title: Pest Manag Sci
– volume: 38
  start-page: 2277
  year: 2015
  end-page: 2285
  article-title: New insights into an RNAi approach for plant defence against piercing‐sucking and stem‐borer insect pests
  publication-title: Plant Cell Environ
– volume: 12
  start-page: e1005901
  year: 2016
  article-title: An RNAi‐based control of infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery
  publication-title: PLOS Pathog
– volume: 37
  start-page: 653
  year: 2007
  end-page: 662
  article-title: Gene silencing of the tick protective antigens, Bm86, Bm91 and subolesin, in the one‐host tick by RNA interference
  publication-title: Int J Parasitol
– volume: 7
  start-page: 553
  year: 2016
  article-title: RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: What we know so far
  publication-title: Front Physiol
– volume: 217
  start-page: 241
  year: 2007
  end-page: 251
  article-title: Gene silencing in the spider mite : dsRNA and siRNA parental silencing of the Distal‐less gene
  publication-title: Dev Genes Evol
– volume: 100
  start-page: 6289
  year: 2003
  end-page: 6291
  article-title: The specifics of small interfering RNA specificity
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 329
  year: 2011
  end-page: 340
  article-title: Current prospects for RNA interference‐based therapies
  publication-title: Nat Rev Genet
– volume: 147
  start-page: 195
  year: 1981
  end-page: 197
  article-title: Identification of common molecular subsequences
  publication-title: J Mol Biol
– volume: 103
  start-page: 14302
  year: 2006
  end-page: 14306
  article-title: Engineering broad root‐knot resistance in transgenic plants by RNAi silencing of a conserved and essential root‐knot nematode parasitism gene
  publication-title: Proc Natl Acad Sci USA
– volume: 36
  start-page: 683
  year: 2006
  end-page: 693
  article-title: RNA interference of the salivary gland nitrophorin 2 in the triatomine bug (Hemiptera: Reduviidae) by dsRNA ingestion or injection
  publication-title: Insect Biochem Mol Biol
– volume: 43
  start-page: 299
  year: 2005
  end-page: 308
  article-title: Virus‐induced gene silencing in tomato fruit
  publication-title: Plant J
– volume: 9
  start-page: 394
  year: 2011
  end-page: 407
  article-title: Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against subsp.
  publication-title: Plant Biotechnol J
– volume: 110
  start-page: 1
  year: 2014
  end-page: 6
  article-title: Differential effects of RNAi treatments on field populations of the western corn rootworm
  publication-title: Pestic Biochem Physiol
– year: 2016
– volume: 42
  start-page: 217
  year: 2013
  end-page: 239
  article-title: Molecular Mechanisms of RNA Interference
  publication-title: Annu Rev Biophys
– volume: 16
  start-page: 727
  year: 2015
  end-page: 741
  article-title: The expanding world of small RNAs in plants
  publication-title: Nature Rev Mol Cell Biol
– volume: 3
  start-page: 73
  year: 2010
  article-title: Gene‐knockdown in the honey bee mite Varroa destructor by a non‐invasive approach: studies on a glutathione S‐transferase
  publication-title: Parasit Vectors
– volume: 67
  start-page: 183
  year: 2011
  end-page: 190
  article-title: Genomics‐based approaches to screening carboxylesterase‐like genes potentially involved in malathion resistance in oriental migratory locust ( )
  publication-title: Pest Manag Sci
– volume: 38
  start-page: 805
  year: 2008
  end-page: 15
  article-title: RNA interference in the termite through ingestion of double‐stranded RNA
  publication-title: Insect Biochem Mol Biol
– volume: 22
  start-page: 648
  year: 2013
  end-page: 658
  article-title: Silencing of P‐glycoprotein increases mortality in temephos‐treated larvae
  publication-title: Insect Mol Biol
– start-page: 8575328
  year: 2013
– volume: 8
  year: 2013
  article-title: Utility of host delivered RNAi of two FMRF amide like peptides, flp‐14 and flp‐18, for the management of root knot nematode,
  publication-title: PLoS One
– volume: 112
  start-page: S68
  year: 2013
  end-page: S74
  article-title: RNAi: future in insect management
  publication-title: J Invertebr Pathol
– volume: 7
  start-page: 24
  year: 2009
  end-page: 32
  article-title: Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus
  publication-title: Plant Biotechnol J
– volume: 162
  start-page: 389
  year: 2017
  end-page: 396
  article-title: RNAi feeding bioassay: development of a non‐transgenic approach to control Asian citrus psyllid and other hemipterans
  publication-title: Entomol Exp Appl
– year: 2013
– volume: 56
  start-page: 227
  year: 2010
  end-page: 235
  article-title: Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review
  publication-title: J Insect Physiol
– volume: 7
  start-page: 3172
  year: 2015
  end-page: 3185
  article-title: The effect of oral administration of dsRNA on viral replication and mortality in
  publication-title: Viruses
– volume: 13
  start-page: 1335
  year: 2015
  end-page: 1345
  article-title: Host‐induced gene silencing of an essential chitin synthase gene confers durable resistance to head blight and seedling blight in wheat
  publication-title: Plant Biotechnol J
– volume: 3
  start-page: 16207
  year: 2017
  article-title: Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses
  publication-title: Nat Plants
– year: 2014
  article-title: Transgenic Virus Resistant Papaya : From Hope to Reality for Controlling Papaya Ringspot Virus in Hawaii
  publication-title: APSnet
– volume: 10
  start-page: 1148
  year: 2011
  end-page: 1155
  article-title: RNA interference in fungi: Pathways, functions, and applications
  publication-title: Eukaryot Cell
– volume: 6
  start-page: 1
  year: 2014
  end-page: 8
  article-title: RNA interference in Colorado potato beetle: Steps toward development of dsRNA as a commercial insecticide
  publication-title: Curr Opin Insect Sci
– volume: 6
  start-page: 3343
  year: 1992
  end-page: 3353
  article-title: Quelling: transient inactivation of gene expression in by transformation with homologous sequences
  publication-title: Mol Microbiol
– volume: 113
  start-page: 503
  year: 1991
  end-page: 514
  article-title: Production of antisense RNA leads to effective and specific inhibition of gene expression in muscle
  publication-title: Development
– volume: 341
  start-page: 732
  year: 2013
  end-page: 733
  article-title: of RNA
  publication-title: Science
– volume: 36
  start-page: 153
  year: 2011
  end-page: 161
  article-title: RNA interference for the control of whiteflies ( ) by oral route
  publication-title: J Biosci
– volume: 283
  start-page: 20160042
  year: 2016
  article-title: Symbiont‐mediated RNA interference in insects
  publication-title: Proc R Soc B
– volume: 130
  start-page: 1
  year: 2016
  end-page: 7
  article-title: Screening of target genes for RNAi in and RNAi toxicity enhancement by chimeric genes
  publication-title: Pestic Biochem Physiol
– volume: 427
  start-page: 133
  year: 2010
  end-page: 140
  article-title: Pathogen‐derived methods for improving resistance of transgenic plums ( L.) for Plum pox virus infection
  publication-title: 21St Int Confererence Viruses Other Graft Transm Dis Fruit Crop. Julius‐Kühn‐Archiv
– volume: 101
  year: 2004
  article-title: Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells
  publication-title: Proc Natl Acad Sci
– volume: 42
  start-page: 911
  year: 2012
  end-page: 917
  article-title: Tissue‐dependence and sensitivity of the systemic RNA interference response in the desert locust,
  publication-title: Insect Biochem Mol Biol
– volume: 21
  start-page: 4371
  year: 2012
  end-page: 4385
  article-title: Gossypol‐enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide
  publication-title: Mol Ecol
– volume: 39
  start-page: 824
  year: 2009
  end-page: 832
  article-title: Ingested double‐stranded RNAs can act as species‐specific insecticides
  publication-title: Insect Biochem Mol Biol
– volume: 2
  start-page: 279
  year: 1990
  end-page: 289
  article-title: Introduction of a chimeric chalcone synthase gene into results in reversible co‐suppression of homologous genes in trans
  publication-title: Plant cell
– volume: 67
  start-page: 175
  year: 2011
  end-page: 182
  article-title: interference for managing the populations of the Colorado potato beetle,
  publication-title: Pest Manag Sci
– volume: 3
  start-page: 127
  year: 1928
  end-page: 153
  article-title: Host and symptoms of ring spot, a virus disease of plants
  publication-title: J Agric Res
– volume: 73
  start-page: 1883
  year: 2017
  end-page: 1899
  article-title: Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management
  publication-title: Pest Manag Sci
– volume: 55
  start-page: 273
  year: 2009
  end-page: 278
  article-title: Silencing of acetylcholinesterase gene of by siRNA affects larval growth and its life cycle
  publication-title: J Insect Physiol
– volume: 26
  start-page: 393
  year: 2008
  end-page: 400
  article-title: RNAi‐mediated crop protection against insects
  publication-title: Trends Biotechnol
– volume: 25
  start-page: 1231
  year: 2007
  end-page: 1232
  article-title: RNAi for insect‐proof plants
  publication-title: Nat Biotechnol
– volume: 25
  start-page: 1322
  year: 2007
  end-page: 1326
  article-title: Control of coleopteran insect pests through RNA interference
  publication-title: Nat Biotechnol
– volume: 87
  start-page: 709
  year: 2012
  end-page: 717
  article-title: Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in
  publication-title: Chemosphere
– volume: 115
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Genetic engineering of Plum pox virus resistance: “HoneySweet” plum‐from concept to product
  publication-title: Plant Cell Tissue Organ Cult
– volume: 81
  start-page: 595
  year: 2013
  end-page: 608
  article-title: Host‐induced gene silencing of wheat leaf rust fungus pathogenicity genes mediated by the Barley stripe mosaic virus
  publication-title: Plant Mol Biol
– volume: 63
  start-page: 657
  year: 2013
  end-page: 665
  article-title: RNAi‐based insecticidal crops: Potential effects on nontarget species
  publication-title: Bioscience
– volume: 134
  start-page: 266
  year: 2013
  end-page: 274
  article-title: Post‐transcriptional gene silencing of the gene encoding aldolase from soybean cyst nematode by transformed soybean roots
  publication-title: Exp Parasitol
– volume: 2
  start-page: 16151
  year: 2016
  article-title: Bidirectional cross‐kingdom RNAi and fungal uptake of external RNAs confer plant protection
  publication-title: Nat Plants
– volume: 23
  start-page: 145
  year: 2014
  end-page: 152
  article-title: Plant‐mediated RNAi of a gap gene‐enhanced tobacco tolerance against the
  publication-title: Transgenic Res
– volume: 6
  start-page: 1
  year: 2010
  end-page: 10
  article-title: Large‐scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees ( , Hymenoptera: Apidae)
  publication-title: PLoS Pathog
– volume: 3
  start-page: 3
  year: 2003
  article-title: Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections
  publication-title: BMC Biotechnol
– year: 2015
  article-title: Epigenetics in Plant Breeding: Hard Science, Soft Tool. Harvard Graduate School of Arts and
  publication-title: Sciences
– volume: 9
  start-page: 57
  year: 2010
  end-page: 67
  article-title: Recognizing and avoiding siRNA off‐target effects for target identification and therapeutic application
  publication-title: Nat Rev Drug Discov
– volume: 395
  start-page: 854
  year: 1998
  article-title: Specific interference by ingested dsRNA
  publication-title: Nature
– volume: 67
  start-page: 657
  year: 2003
  end-page: 685
  article-title: RNA interference: biology, mechanism, and applications
  publication-title: Microbiol Mol Biol Rev.
– volume: 30
  start-page: 296
  year: 2003
  end-page: 303
  article-title: Virus‐induced gene silencing in plants
  publication-title: Methods
– volume: 14
  start-page: 668
  year: 2013
  article-title: Stacking resistance to crown gall and nematodes in walnut rootstocks
  publication-title: BMC Genomics
– volume: 37
  start-page: 85
  year: 2012
  end-page: 87
  article-title: Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression
  publication-title: Southwest Entomol
– volume: 73
  start-page: 1529
  year: 2017
  end-page: 1537
  article-title: MicroRNA and dsRNA targeting chitin synthase A reveal a great potential for pest management of the hemipteran insect
  publication-title: Pest Manag Sci
– volume: 70
  start-page: 1329
  year: 2014
  end-page: 1339
  article-title: The future for weed control and technology
  publication-title: Pest Manag Sci
– volume: 68
  start-page: 149
  year: 2012
  end-page: 154
  article-title: Do we have the tools to manage resistance in the future?
  publication-title: Pest Manag Sci
– volume: 72
  start-page: 1652
  year: 2016
  end-page: 1663
  article-title: RNAi as a management tool for the western corn rootworm,
  publication-title: Pest Manag Sci
– volume: 105
  start-page: 69
  year: 2013
  end-page: 75
  article-title: Screening of lethal genes for feeding RNAi by leaf disc‐mediated systematic delivery of dsRNA in
  publication-title: Pestic Biochem Physiol
– start-page: 38
  year: 2014
  article-title: International scientific workshop ‘Risk assessment considerations for RNAi‐based GM plants
  publication-title: EFSA Support Publ
– volume: 136
  start-page: 642
  year: 2009
  end-page: 655
  article-title: Origins and Mechanisms of miRNAs and siRNAs
  publication-title: Cell
– volume: 39
  start-page: 157
  year: 2009
  end-page: 160
  article-title: A non‐invasive method for silencing gene transcription in honeybees maintained under natural conditions
  publication-title: Insect Biochem Mol Biol
– start-page: 113 130
  year: 2012
– year: 2017
– volume: 21
  start-page: 487
  year: 2011
  end-page: 493
  article-title: Adaptive seeds tame genomic sequence comparison
  publication-title: Genome Res
– volume: 53
  start-page: 840
  year: 2007
  end-page: 848
  article-title: RNA interference suggests sulfakinins as satiety effectors in the cricket
  publication-title: J Insect Physiol
– volume: 9
  start-page: 663
  year: 2012
  end-page: 671
  article-title: The SID‐1 double‐stranded RNA transporter is not required for systemic RNAi in the migratory locust
  publication-title: RNA Biol
– volume: 9
  start-page: R10
  year: 2008
  article-title: Exploring systemic RNA interference in insects: a genome‐wide survey for RNAi genes in
  publication-title: Genome Biol
– ident: e_1_2_9_81_1
– ident: e_1_2_9_58_1
  doi: 10.1371/journal.pone.0080603
– ident: e_1_2_9_66_1
  doi: 10.1002/ps.2291
– ident: e_1_2_9_24_1
  doi: 10.1186/1472-6750-3-3
– ident: e_1_2_9_107_1
– ident: e_1_2_9_3_1
  doi: 10.2307/3869076
– ident: e_1_2_9_68_1
  doi: 10.1016/j.chemosphere.2011.12.061
– ident: e_1_2_9_41_1
  doi: 10.1016/B978-0-12-800197-4.00005-1
– ident: e_1_2_9_106_1
  doi: 10.1016/j.jinsphys.2007.04.003
– ident: e_1_2_9_60_1
  doi: 10.1186/1756-3305-3-73
– ident: e_1_2_9_6_1
  doi: 10.1038/nbt1107-1231
– start-page: 113
  volume-title: How RNA interference combat viruses in plants, in Functional Genomics
  year: 2012
  ident: e_1_2_9_23_1
– ident: e_1_2_9_109_1
  doi: 10.1016/j.jinsphys.2008.12.005
– ident: e_1_2_9_86_1
  doi: 10.1525/bio.2013.63.8.8
– ident: e_1_2_9_108_1
  doi: 10.1371/journal.pone.0038572
– ident: e_1_2_9_96_1
  doi: 10.1016/j.ibmb.2009.09.007
– year: 2014
  ident: e_1_2_9_51_1
  article-title: Transgenic Virus Resistant Papaya : From Hope to Reality for Controlling Papaya Ringspot Virus in Hawaii
  publication-title: APSnet
– ident: e_1_2_9_82_1
– year: 2015
  ident: e_1_2_9_124_1
  article-title: Epigenetics in Plant Breeding: Hard Science, Soft Tool. Harvard Graduate School of Arts and
  publication-title: Sciences
– ident: e_1_2_9_110_1
  doi: 10.1371/journal.pone.0006225
– ident: e_1_2_9_121_1
  doi: 10.1007/s11103-013-0022-7
– ident: e_1_2_9_114_1
  doi: 10.1016/j.ijpara.2006.11.005
– start-page: 595
  volume-title: Short Views on Insect Biochemistry and Molecular Biology
  year: 2014
  ident: e_1_2_9_10_1
– ident: e_1_2_9_70_1
  doi: 10.1038/emboj.2011.274
– ident: e_1_2_9_19_1
  doi: 10.1038/nplants.2016.151
– ident: e_1_2_9_98_1
  doi: 10.1002/ps.2048
– ident: e_1_2_9_104_1
  doi: 10.4161/rna.19986
– ident: e_1_2_9_17_1
  doi: 10.1073/pnas.1306373110
– ident: e_1_2_9_21_1
  doi: 10.1093/jxb/erv094
– ident: e_1_2_9_84_1
  doi: 10.1073/pnas.1232238100
– ident: e_1_2_9_61_1
  doi: 10.1128/AEM.01067-10
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jinsphys.2010.11.006
– volume: 8
  year: 2013
  ident: e_1_2_9_57_1
  article-title: Molecular Characteristics and Efficacy of 16D10 siRNAs in Inhibiting Root‐Knot Nematode Infection in Transgenic Grape Hairy Roots
  publication-title: PLoS One
– ident: e_1_2_9_79_1
  doi: 10.1371/journal.pone.0031347
– ident: e_1_2_9_22_1
  doi: 10.1186/1758-907X-3-5
– ident: e_1_2_9_123_1
  doi: 10.1007/s10142-015-0446-z
– ident: e_1_2_9_67_1
  doi: 10.1002/ps.3706
– ident: e_1_2_9_112_1
  doi: 10.1002/ps.4407
– volume: 3
  start-page: 127
  year: 1928
  ident: e_1_2_9_2_1
  article-title: Host and symptoms of ring spot, a virus disease of plants
  publication-title: J Agric Res
– ident: e_1_2_9_49_1
  doi: 10.1128/EC.05109-11
– ident: e_1_2_9_48_1
  doi: 10.1002/ps.4324
– ident: e_1_2_9_122_1
  doi: 10.1111/j.1467-7652.2010.00555.x
– ident: e_1_2_9_99_1
  doi: 10.1111/imb.12052
– ident: e_1_2_9_71_1
  doi: 10.3958/059.037.0110
– ident: e_1_2_9_5_1
  doi: 10.1242/dev.113.2.503
– ident: e_1_2_9_91_1
  doi: 10.1016/0022-2836(81)90087-5
– ident: e_1_2_9_13_1
  doi: 10.1002/ps.4056
– ident: e_1_2_9_7_1
  doi: 10.1016/j.tibtech.2008.04.004
– ident: e_1_2_9_76_1
  doi: 10.1098/rspb.2016.0042
– ident: e_1_2_9_88_1
  doi: 10.1093/nar/gki324
– ident: e_1_2_9_118_1
  doi: 10.1111/j.1467-7652.2008.00366.x
– ident: e_1_2_9_75_1
  doi: 10.1016/j.cois.2014.09.011
– ident: e_1_2_9_85_1
  doi: 10.1038/nrg2968
– ident: e_1_2_9_92_1
  doi: 10.1093/nar/gku1054
– ident: e_1_2_9_94_1
  doi: 10.1016/j.jip.2012.07.012
– ident: e_1_2_9_63_1
  doi: 10.1371/journal.ppat.1003035
– ident: e_1_2_9_95_1
  doi: 10.1002/ps.4337
– ident: e_1_2_9_62_1
  doi: 10.1016/j.jinsphys.2013.08.014
– ident: e_1_2_9_115_1
  doi: 10.1016/j.ibmb.2004.04.004
– ident: e_1_2_9_36_1
  doi: 10.1038/nrm4085
– ident: e_1_2_9_9_1
  doi: 10.1007/s13744-015-0291-8
– ident: e_1_2_9_37_1
– volume: 6
  start-page: 8
  year: 2014
  ident: e_1_2_9_78_1
  article-title: Emerging strategies for RNA interference (RNAi) applications in insects
  publication-title: Bioeng Bugs
– ident: e_1_2_9_45_1
  doi: 10.1007/s00427-007-0132-9
– ident: e_1_2_9_46_1
  doi: 10.1016/j.pestbp.2012.12.001
– ident: e_1_2_9_12_1
  doi: 10.3389/fphys.2016.00553
– ident: e_1_2_9_77_1
  doi: 10.1016/S1046-2023(03)00037-9
– ident: e_1_2_9_56_1
  doi: 10.1073/pnas.0604698103
– ident: e_1_2_9_111_1
  doi: 10.1016/j.ibmb.2008.10.011
– ident: e_1_2_9_117_1
  doi: 10.1111/pbi.12352
– ident: e_1_2_9_44_1
  doi: 10.1126/science.341.6147.732
– ident: e_1_2_9_55_1
  doi: 10.1038/27579
– ident: e_1_2_9_39_1
– ident: e_1_2_9_65_1
  doi: 10.1111/j.1365-294X.2012.05548.x
– start-page: 38
  year: 2014
  ident: e_1_2_9_83_1
  article-title: International scientific workshop ‘Risk assessment considerations for RNAi‐based GM plants
  publication-title: EFSA Support Publ
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jinsphys.2009.10.004
– ident: e_1_2_9_69_1
  doi: 10.1002/ps.2049
– ident: e_1_2_9_74_1
  doi: 10.1371/journal.pone.0093155
– ident: e_1_2_9_15_1
  doi: 10.1111/eea.12544
– ident: e_1_2_9_20_1
  doi: 10.1111/j.1365-313X.2005.02441.x
– ident: e_1_2_9_31_1
  doi: 10.1016/j.cell.2009.01.035
– ident: e_1_2_9_28_1
  doi: 10.1016/j.pt.2007.07.002
– ident: e_1_2_9_38_1
– ident: e_1_2_9_29_1
  doi: 10.1016/j.exppara.2013.03.009
– ident: e_1_2_9_73_1
  doi: 10.1038/nplants.2016.207
– ident: e_1_2_9_59_1
  doi: 10.3390/v7062765
– ident: e_1_2_9_33_1
  doi: 10.1016/j.cell.2005.11.006
– ident: e_1_2_9_97_1
  doi: 10.1186/gb-2008-9-1-r10
– ident: e_1_2_9_64_1
  doi: 10.1038/nbt1352
– ident: e_1_2_9_116_1
  doi: 10.1073/pnas.0307669100
– volume: 427
  start-page: 133
  year: 2010
  ident: e_1_2_9_52_1
  article-title: Pathogen‐derived methods for improving resistance of transgenic plums (Prunus domestica L.) for Plum pox virus infection
  publication-title: 21St Int Confererence Viruses Other Graft Transm Dis Fruit Crop. Julius‐Kühn‐Archiv
– ident: e_1_2_9_43_1
  doi: 10.1002/ps.4554
– ident: e_1_2_9_113_1
  doi: 10.1016/j.bbrc.2005.07.036
– ident: e_1_2_9_32_1
  doi: 10.1128/MMBR.67.4.657-685.2003
– ident: e_1_2_9_47_1
  doi: 10.1016/j.pestbp.2014.02.003
– ident: e_1_2_9_34_1
  doi: 10.1038/nrg2504
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1365-2958.1992.tb02202.x
– ident: e_1_2_9_26_1
  doi: 10.1016/j.pestbp.2015.11.005
– ident: e_1_2_9_18_1
  doi: 10.1371/journal.ppat.1005901
– ident: e_1_2_9_90_1
  doi: 10.1073/pnas.0308698100
– ident: e_1_2_9_16_1
  doi: 10.1016/j.ibmb.2008.05.005
– ident: e_1_2_9_54_1
  doi: 10.1038/35888
– ident: e_1_2_9_100_1
  doi: 10.1007/s12038-011-9009-1
– ident: e_1_2_9_102_1
  doi: 10.1002/ps.4492
– ident: e_1_2_9_89_1
– ident: e_1_2_9_93_1
  doi: 10.1101/gr.113985.110
– ident: e_1_2_9_87_1
  doi: 10.1038/nrd3010
– ident: e_1_2_9_8_1
  doi: 10.1371/journal.ppat.1001160
– ident: e_1_2_9_42_1
  doi: 10.1038/nbt1359
– ident: e_1_2_9_30_1
  doi: 10.1186/1471-2164-14-668
– ident: e_1_2_9_50_1
  doi: 10.1094/MPMI-20-6-0717
– ident: e_1_2_9_72_1
  doi: 10.1111/pce.12546
– ident: e_1_2_9_103_1
  doi: 10.1016/j.ibmb.2006.05.012
– ident: e_1_2_9_105_1
  doi: 10.1016/j.ibmb.2012.09.004
– ident: e_1_2_9_101_1
  doi: 10.1007/s11248-013-9739-y
– ident: e_1_2_9_35_1
  doi: 10.1146/annurev-biophys-083012-130404
– ident: e_1_2_9_53_1
  doi: 10.1007/s11240-013-0339-6
– ident: e_1_2_9_80_1
  doi: 10.3389/fphys.2017.00399
– ident: e_1_2_9_120_1
  doi: 10.1105/tpc.110.077040
– ident: e_1_2_9_14_1
  doi: 10.5772/61612
– ident: e_1_2_9_119_1
  doi: 10.1111/pbi.12307
– ident: e_1_2_9_27_1
  doi: 10.1016/j.ibmb.2017.06.009
– ident: e_1_2_9_25_1
  doi: 10.1371/journal.pone.0110874
SSID ssj0009992
Score 2.6345758
SecondaryResourceType review_article
Snippet Scientists have made significant progress in understanding and unraveling several aspects of double‐stranded RNA (dsRNA)‐mediated gene silencing during the...
Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1239
SubjectTerms active ingredients
Agricultural economics
Agricultural management
Agrochemicals
arthropod pests
bees
Beneficial arthropods
beneficial insects
Biopesticides
Chemical pest control
Crops
Double-stranded RNA
Ectoparasites
farmers
Formulations
Gene expression
Gene silencing
Genetic transformation
Industrial engineering
Insect control
Insecticide resistance
Interference
Knowledge acquisition
Manufacturing engineering
Markets
mechanism of action
messenger RNA
mites
Mode of action
mRNA
Nematoda
Nematodes
Nucleotide sequence
Parasites
Pathogens
Pest control
pest insects
Pesticide resistance
Pesticides
Pests
plant pathogens
Plant protection
plant-incorporated protectants
Production costs
raw materials
Repressors
Resistance factors
resistance management
Ribonucleic acid
RNA
RNA interference
RNA interference‐based
RNA-mediated interference
viruses
weeds
Title RNA interference technology in crop protection against arthropod pests, pathogens and nematodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fps.4813
https://www.ncbi.nlm.nih.gov/pubmed/29194942
https://www.proquest.com/docview/2035683202
https://www.proquest.com/docview/1971694609
https://www.proquest.com/docview/2084078897
Volume 74
WOSCitedRecordID wos000431670200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1526-4998
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009992
  issn: 1526-498X
  databaseCode: DRFUL
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RpQd66IOWdluKjIR6akriOLF9XBVWHKoV4iHtzbJjGyGh7Gq99Pd3nJgAQkhIPUVJxoqTmfHM2PH3ARxw32jqKMskd3mG8bjKDG1YhgWQddZbTMp1RzbBZzMxn8vTB1RfPT7EMOEWPaMbr6ODaxMO70FDl-EXE5GvdpOi1bIRbB6dTS__3CPuyo4RGeNTnTEp5v2O2dj4MDV9HIqe5JeP09Uu3kzf_UdP38PblGSSSW8VH2DDtdvwZnK1SkAbDs8eABF-BHU2m5CIHLFK2__Iephyx-sk8nyRBOmAiiT6Sl9jXknQ7jqaBUuW-E7hJ4kExwu0yUB0a0kbAWEX1oVPcDk9vvh9kiXqhaxhjJWZq0yDhQcqsmywpCqstM7w3HuGeq2lYYVjJm9KidlTwU3kjbGe57q2RnvPfbkDo3bRui9AROXRzwUWYpVjmjMjC8dL6kzuDQ5uxRh-3GlBNQmXPNJj3KgeUZmqZVDx-42BDILLHorjqcjunRpV8sWgaF5WtYg88WPYH26jF8WlEd26xW1QRUTSkqzO5fMyNBdx0VNIPobPvYkM_aCykEwyfMJBZwnPdVCdnsfD15eJfYMtzM9E_2faLozWq1v3HV43f9fXYbUHr_hc7CWz_we0XgWE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7KptD20HfabdNWhdBTnfghW9JxSbqkdLuENIG9CcmSQiB4l_Wmv78ztuI0hEChJ2N7hGXPjGdGj-8D2BWhNrnPeaKETxOMx2Vi85onWAA574LDpNx0ZBNiPpeLhTqOqyppL0yPDzEMuJFndP9rcnAakN6_QQ1dtXtcEmHtFkcjKkewdXgyPZvdQO6qjhIZA1SVcCUX_ZZZarwfm96ORXcSzNv5ahdwps_-p6vP4WlMM9mkt4sX8MA3L-HJ5HwdoTY8nv0FRfgK9Ml8wgg7Yh03ALLNMOiO1xkxfbEI6oCqZObcXGBmydDyOqIFx1b4Uu1XRhTHS7TKlpnGsYYgYZfOt6_hbPrt9OAoieQLSc05LxJf2hpLD1RlUWNRlTnlvBVpCBw1WynLM89tWhcK86dMWGKOcUGkpnLWhCBCsQ2jZtn4t8BkGdDTJZZipedGcKsyL4rc2zRY_L1lY_hyrQZdR2RyIsi41D2mcq5XrabvNwY2CK56MI67IjvXetTRG1udp0VZSWKKH8Pn4Tb6EU2OmMYvr1qdEZaW4lWq7pfJU0nTnlKJMbzpbWToR64yxRXHJ-x2pnBfB_XxLzq8-zexT_Do6PTnTM--z3-8h8eYrcl-ndoOjDbrK_8BHta_Nxft-mO0_j8p1giM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KUkp76PuxbdqqEHqqEz9kSzouSZaWhmVJG9ibkCwpBIrXrDf9_Z2xFachBAI5GdsjLHtmPDN6fB_Argi1yX3OEyV8mmA8LhOb1zzBAsh5Fxwm5aYnmxDzuVwu1SKuqqS9MAM-xDjgRp7R_6_JwX3rwv4Vamjb7XFJhLXbvFQVOuX24cns9PgKclf1lMgYoKqEK7kctsxS4_3Y9HosupFgXs9X-4Aze3afrj6HpzHNZNPBLl7AA9-8hCfTs3WE2vB49h8U4SvQJ_MpI-yIddwAyDbjoDteZ8T0xSKoA6qSmTNzjpklQ8vriRYca_Glum-MKI5XaJUdM41jDUHCrpzvXsPp7Oj3wfckki8kNee8SHxpayw9UJVFjUVV5pTzVqQhcNRspSzPPLdpXSjMnzJhiTnGBZGaylkTggjFG9hqVo1_B0yWAT1dYilWem4Etyrzosi9TYPF31s2ga-XatB1RCYngow_esBUznXbafp-E2CjYDuAcdwU2bnUo47e2Ok8LcpKElP8BL6Mt9GPaHLENH510emMsLQUr1J1u0yeSpr2lEpM4O1gI2M_cpUprjg-Ybc3hds6qBe_6PD-bmKf4dHicKaPf8x_foDHmKzJYZnaDmxt1hf-Izys_27Ou_WnaPz_AKkfCAc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA+interference+technology+in+crop+protection+against+arthropod+pests%2C+pathogens+and+nematodes&rft.jtitle=Pest+management+science&rft.au=Zotti%2C+Moises&rft.au=dos+Santos%2C+Ericmar+Avila&rft.au=Cagliari%2C+Deise&rft.au=Christiaens%2C+Olivier&rft.date=2018-06-01&rft.issn=1526-498X&rft.eissn=1526-4998&rft.volume=74&rft.issue=6&rft.spage=1239&rft.epage=1250&rft_id=info:doi/10.1002%2Fps.4813&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ps_4813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-498X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-498X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-498X&client=summon