RNA interference technology in crop protection against arthropod pests, pathogens and nematodes
Scientists have made significant progress in understanding and unraveling several aspects of double‐stranded RNA (dsRNA)‐mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge...
Uloženo v:
| Vydáno v: | Pest management science Ročník 74; číslo 6; s. 1239 - 1250 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chichester, UK
John Wiley & Sons, Ltd
01.06.2018
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1526-498X, 1526-4998, 1526-4998 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Scientists have made significant progress in understanding and unraveling several aspects of double‐stranded RNA (dsRNA)‐mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi‐based products are already available for farmers and more are expected to reach the market soon. Tailor‐made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence‐dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant‐incorporated protectants through plant transformation, but also by non‐transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest‐insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide‐resistant weeds and insects. Finally, this review reports on the advances in non‐transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry
Easy and cheap production, efficient delivery, bioinformatics for biosafety and selectivity in design of dsRNA. Control of pest insects, mites, ticks, plant pathogenic fungi, root‐knot nematodes, weeds and viruses. |
|---|---|
| AbstractList | Scientists have made significant progress in understanding and unraveling several aspects of double‐stranded RNA (dsRNA)‐mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi‐based products are already available for farmers and more are expected to reach the market soon. Tailor‐made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence‐dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant‐incorporated protectants through plant transformation, but also by non‐transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest‐insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide‐resistant weeds and insects. Finally, this review reports on the advances in non‐transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry Scientists have made significant progress in understanding and unraveling several aspects of double‐stranded RNA (dsRNA)‐mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi‐based products are already available for farmers and more are expected to reach the market soon. Tailor‐made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence‐dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant‐incorporated protectants through plant transformation, but also by non‐transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest‐insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide‐resistant weeds and insects. Finally, this review reports on the advances in non‐transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry Easy and cheap production, efficient delivery, bioinformatics for biosafety and selectivity in design of dsRNA. Control of pest insects, mites, ticks, plant pathogenic fungi, root‐knot nematodes, weeds and viruses. Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry. Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry.Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry. |
| Author | dos Santos, Ericmar Avila Smagghe, Guy Taning, Clauvis Nji Tizi Cagliari, Deise Zotti, Moises Christiaens, Olivier |
| Author_xml | – sequence: 1 givenname: Moises surname: Zotti fullname: Zotti, Moises email: moises.zotti@ufpel.edu.br organization: Federal University of Pelotas – sequence: 2 givenname: Ericmar Avila surname: dos Santos fullname: dos Santos, Ericmar Avila organization: Federal University of Pelotas – sequence: 3 givenname: Deise surname: Cagliari fullname: Cagliari, Deise organization: Federal University of Pelotas – sequence: 4 givenname: Olivier surname: Christiaens fullname: Christiaens, Olivier organization: Ghent University – sequence: 5 givenname: Clauvis Nji Tizi surname: Taning fullname: Taning, Clauvis Nji Tizi organization: Ghent University – sequence: 6 givenname: Guy orcidid: 0000-0001-8334-3313 surname: Smagghe fullname: Smagghe, Guy email: guy.smagghe@ugent.be organization: Ghent University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29194942$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0V1LHDEUBuAgSv1o8R9IwAsFHZtkspnkcpFqC9KWVsG7kMmc7I7MJmOSpey_b7ZrvRDFq4STh8PJe_bRtg8eEDqk5IISwj6P6YJLWm-hPTphouJKye3nu7zfRfspPRBClFLsA9pliiquONtD-tf3Ke59hugggreAM9i5D0OYrUod2xhGPMZQqrkPHpuZ6X3K2MQ8L0-hwyOknM7xaPI8zMAnbHyHPSxMDh2kj2jHmSHBp6fzAN1dfbm9_Frd_Lj-djm9qSznvK5g0lrJhLOmtrKhtFMdtA1xjgPjQrWcAm-JrZVgNW1aogTtXEOM6FrjXOPqA3S66VtmfVyWkfSiTxaGwXgIy6QZkZw0UqrmXUpVQ4XigqhCj1_Qh7CMvnykNKwnQtaMsKKOntSyXUCnx9gvTFzp_ykXcLIBJc2UIrhnQole70-PSa_3V2T1Qto-m3XyOZp-eMWfbfyffoDVW231z9__9F-ij6m8 |
| CitedBy_id | crossref_primary_10_1111_imb_13004 crossref_primary_10_3390_jof7020125 crossref_primary_10_3389_fpls_2023_1123523 crossref_primary_10_3390_app12062954 crossref_primary_10_1016_j_copbio_2021_06_005 crossref_primary_10_3390_cells8040371 crossref_primary_10_1016_j_vetpar_2020_109128 crossref_primary_10_1093_jxb_erad023 crossref_primary_10_1016_j_aspen_2022_101908 crossref_primary_10_1016_j_pestbp_2019_10_005 crossref_primary_10_3389_fmars_2023_1112913 crossref_primary_10_1111_1744_7917_13403 crossref_primary_10_1016_j_bbagrm_2021_194704 crossref_primary_10_1016_j_cbpc_2019_108644 crossref_primary_10_1007_s00299_023_03048_z crossref_primary_10_1016_j_jinsphys_2020_104176 crossref_primary_10_1007_s10343_025_01150_8 crossref_primary_10_1016_j_cej_2025_165790 crossref_primary_10_1111_mve_12677 crossref_primary_10_3390_ijms23169236 crossref_primary_10_3390_insects13010040 crossref_primary_10_3390_insects16070737 crossref_primary_10_1002_ps_5086 crossref_primary_10_1111_1750_3841_15816 crossref_primary_10_1007_s13562_024_00922_z crossref_primary_10_1016_j_pestbp_2020_02_016 crossref_primary_10_1111_imb_12965 crossref_primary_10_1111_lam_13337 crossref_primary_10_1111_raq_12951 crossref_primary_10_1016_j_pestbp_2024_106216 crossref_primary_10_1111_jipb_13887 crossref_primary_10_3390_agriculture9080179 crossref_primary_10_51694_AdvWeedSci_2022_40_seventy_five006 crossref_primary_10_1002_ps_8479 crossref_primary_10_1093_jee_toy238 crossref_primary_10_3389_ffunb_2022_977502 crossref_primary_10_1111_imb_12731 crossref_primary_10_1002_ps_7271 crossref_primary_10_3389_fbioe_2022_980592 crossref_primary_10_1038_s41598_020_60078_3 crossref_primary_10_3390_ijms21165701 crossref_primary_10_3390_plants8120565 crossref_primary_10_1016_j_ijbiomac_2024_137000 crossref_primary_10_18474_JES24_59 crossref_primary_10_1007_s42994_021_00036_3 crossref_primary_10_1016_j_fsi_2025_110877 crossref_primary_10_1016_j_jia_2022_07_015 crossref_primary_10_1111_pce_14652 crossref_primary_10_3390_plants8060178 crossref_primary_10_1002_ps_5415 crossref_primary_10_1007_s00253_021_11494_6 crossref_primary_10_1016_j_cois_2023_101033 crossref_primary_10_1007_s10340_021_01374_3 crossref_primary_10_12677_ojns_2025_133048 crossref_primary_10_3389_fpls_2020_00940 crossref_primary_10_3389_fpls_2020_00946 crossref_primary_10_1186_s40538_021_00281_0 crossref_primary_10_1016_j_aac_2025_08_001 crossref_primary_10_3389_fpls_2025_1527944 crossref_primary_10_1016_j_jinsphys_2021_104325 crossref_primary_10_3390_ijms26146773 crossref_primary_10_1038_s41598_020_69068_x crossref_primary_10_3390_ijms24065121 crossref_primary_10_1007_s10343_022_00672_9 crossref_primary_10_1002_ps_7849 crossref_primary_10_1002_sae2_12014 crossref_primary_10_1016_j_bbagen_2023_130544 crossref_primary_10_3389_fpls_2021_733129 crossref_primary_10_1038_s41598_021_92553_w crossref_primary_10_1002_ps_6993 crossref_primary_10_1042_BSR20230817 crossref_primary_10_1039_D2EN01076C crossref_primary_10_1007_s12038_020_00082_x crossref_primary_10_1038_s41598_023_36523_4 crossref_primary_10_3390_insects11110739 crossref_primary_10_1016_j_ibmb_2020_103408 crossref_primary_10_3390_genes15091200 crossref_primary_10_3389_fbioe_2021_798097 crossref_primary_10_3390_insects15120983 crossref_primary_10_3390_ijms24119266 crossref_primary_10_3390_insects9040185 crossref_primary_10_1016_j_pestbp_2025_106361 crossref_primary_10_3390_ijms24021041 crossref_primary_10_55446_IJE_2025_3176 crossref_primary_10_1111_ppl_70274 crossref_primary_10_1002_ps_70040 crossref_primary_10_1080_03235408_2021_1910415 crossref_primary_10_1093_jimb_kuae028 crossref_primary_10_1007_s10530_019_02146_y crossref_primary_10_1016_j_plantsci_2020_110670 crossref_primary_10_3389_fmicb_2022_1020461 crossref_primary_10_1007_s41348_024_00878_1 crossref_primary_10_1002_ps_5601 crossref_primary_10_1016_j_xplc_2025_101316 crossref_primary_10_3390_ijms22105362 crossref_primary_10_1002_ps_5048 crossref_primary_10_3390_plants10040650 crossref_primary_10_1016_j_pestbp_2022_105166 crossref_primary_10_1111_1748_5967_12621 crossref_primary_10_1007_s00122_022_04074_3 crossref_primary_10_1038_s44264_025_00057_1 crossref_primary_10_3389_fpls_2021_733608 crossref_primary_10_1038_s41598_019_49178_x crossref_primary_10_1002_ps_6708 crossref_primary_10_1016_j_pestbp_2022_105295 crossref_primary_10_1111_1744_7917_13103 crossref_primary_10_3389_fbioe_2022_1080576 crossref_primary_10_3389_finsc_2023_1198252 crossref_primary_10_3390_v17010049 crossref_primary_10_1038_s42003_023_05618_z crossref_primary_10_3390_insects13090846 crossref_primary_10_1039_D5CS00458F crossref_primary_10_1002_ps_5612 crossref_primary_10_1007_s10340_019_01140_6 crossref_primary_10_1017_S0007485321000420 crossref_primary_10_1007_s11033_020_05810_y crossref_primary_10_1002_ps_6153 crossref_primary_10_3390_cells9020363 crossref_primary_10_1093_jxb_eraa001 crossref_primary_10_3390_insects12100931 crossref_primary_10_1007_s11105_024_01513_x crossref_primary_10_1111_mpp_13329 crossref_primary_10_1016_j_cois_2018_10_009 crossref_primary_10_1016_j_pestbp_2022_105183 crossref_primary_10_1007_s10340_021_01388_x crossref_primary_10_3389_fagro_2021_701974 crossref_primary_10_3389_fpls_2020_00451 crossref_primary_10_1099_jgv_0_001770 crossref_primary_10_1038_s41467_024_53468_y crossref_primary_10_1111_jipb_13860 crossref_primary_10_1186_s13019_021_01540_9 crossref_primary_10_1186_s40643_022_00596_2 crossref_primary_10_1186_s12951_021_01216_5 crossref_primary_10_1039_D2RA06541J crossref_primary_10_1002_fee_2325 crossref_primary_10_1016_j_cropro_2019_05_025 crossref_primary_10_1016_j_ibmb_2020_103325 crossref_primary_10_3389_fphys_2022_836106 crossref_primary_10_1002_ps_70067 crossref_primary_10_1002_ps_5599 crossref_primary_10_1007_s11240_025_03021_6 crossref_primary_10_1098_rsob_220372 crossref_primary_10_1186_s40066_022_00369_2 crossref_primary_10_1016_j_ijbiomac_2022_123123 crossref_primary_10_1007_s10327_019_00865_7 crossref_primary_10_1002_ps_6692 crossref_primary_10_3390_insects11070449 crossref_primary_10_1016_j_ijbiomac_2025_147195 crossref_primary_10_3389_fphys_2020_591569 crossref_primary_10_3389_fphys_2019_00794 crossref_primary_10_1016_j_aquaculture_2024_740763 crossref_primary_10_3390_ijms222212148 crossref_primary_10_1007_s11033_023_08266_y crossref_primary_10_3389_ffgc_2023_1219685 crossref_primary_10_1002_ps_8638 crossref_primary_10_1016_j_jbiosc_2019_03_003 crossref_primary_10_1002_ps_5128 crossref_primary_10_3389_fmolb_2022_944774 crossref_primary_10_1021_acs_jafc_5c02537 crossref_primary_10_3390_genes12030407 crossref_primary_10_1146_annurev_ento_011019_025224 crossref_primary_10_7554_eLife_51029 crossref_primary_10_1016_j_aspen_2025_102440 crossref_primary_10_3389_fenvs_2024_1430170 crossref_primary_10_1002_ps_5250 crossref_primary_10_1111_mpp_13354 crossref_primary_10_3389_fgene_2022_835324 crossref_primary_10_3389_fphys_2018_01560 crossref_primary_10_3390_ijms232415836 crossref_primary_10_1016_j_pestbp_2024_105968 crossref_primary_10_1186_s40538_025_00738_6 crossref_primary_10_1002_ps_5809 crossref_primary_10_1111_pbi_13605 crossref_primary_10_1016_j_jspr_2023_102096 crossref_primary_10_1111_1744_7917_12853 crossref_primary_10_3390_ijms23020765 crossref_primary_10_3390_agronomy15040859 crossref_primary_10_1111_brv_12627 crossref_primary_10_3389_fpls_2020_00424 crossref_primary_10_1002_ps_7313 crossref_primary_10_1186_s40694_022_00143_w crossref_primary_10_1002_ps_6594 crossref_primary_10_1007_s11816_022_00750_4 crossref_primary_10_1111_mpp_13361 crossref_primary_10_1002_arch_21522 crossref_primary_10_1007_s10340_024_01779_w crossref_primary_10_1080_23311932_2024_2334096 crossref_primary_10_3390_insects16060645 crossref_primary_10_1016_j_pestbp_2021_104828 crossref_primary_10_3390_plants9060673 crossref_primary_10_1007_s13744_019_00722_4 crossref_primary_10_1016_j_ibmb_2018_09_003 crossref_primary_10_1016_j_biotechadv_2019_107463 crossref_primary_10_1016_j_aspen_2020_09_012 crossref_primary_10_1016_j_pestbp_2021_104853 crossref_primary_10_1016_j_dci_2021_104126 crossref_primary_10_1016_j_pestbp_2023_105548 crossref_primary_10_1002_adfm_202213143 crossref_primary_10_1016_j_aac_2024_06_001 crossref_primary_10_1016_S2095_3119_20_63394_9 crossref_primary_10_55446_hexa_2024_51 crossref_primary_10_1007_s11033_020_05583_4 crossref_primary_10_1007_s10658_021_02408_3 crossref_primary_10_3389_fpls_2022_885128 crossref_primary_10_36253_phyto_14576 crossref_primary_10_1016_j_pmpp_2024_102241 crossref_primary_10_1111_pbi_13116 crossref_primary_10_3390_f14020422 crossref_primary_10_3390_plants9121780 crossref_primary_10_3389_fbioe_2023_1197666 crossref_primary_10_3390_plants8120572 crossref_primary_10_3389_fpls_2019_01319 crossref_primary_10_1007_s00427_018_0614_y crossref_primary_10_1016_j_ijpara_2018_04_006 crossref_primary_10_3390_plants10050963 crossref_primary_10_3389_fphys_2018_00805 crossref_primary_10_1016_j_neubiorev_2020_03_005 crossref_primary_10_1002_ps_5686 crossref_primary_10_1002_ps_7078 crossref_primary_10_1007_s40858_022_00534_9 crossref_primary_10_1016_j_comtox_2024_100340 crossref_primary_10_1016_j_pestbp_2020_104555 crossref_primary_10_3389_fvets_2019_00079 crossref_primary_10_3390_insects11010034 crossref_primary_10_1111_mpp_12866 crossref_primary_10_3390_ijms23126639 crossref_primary_10_3389_fpls_2020_00740 crossref_primary_10_1016_j_tibtech_2025_07_027 crossref_primary_10_1016_j_gep_2022_119233 crossref_primary_10_3390_jof7110942 crossref_primary_10_1007_s10340_021_01350_x crossref_primary_10_1007_s11274_024_04079_8 crossref_primary_10_3389_fpls_2021_755203 crossref_primary_10_3390_plants13192712 crossref_primary_10_1007_s11274_024_04143_3 crossref_primary_10_1146_annurev_arplant_050718_100025 crossref_primary_10_1016_j_pestbp_2020_104569 crossref_primary_10_1016_j_scitotenv_2024_175311 crossref_primary_10_1002_arch_70080 crossref_primary_10_1016_j_pmpp_2025_102886 crossref_primary_10_1111_phen_12428 crossref_primary_10_1016_j_ijbiomac_2024_135401 crossref_primary_10_1007_s10340_020_01238_2 crossref_primary_10_1016_j_jinsphys_2025_104881 crossref_primary_10_1094_PHYTO_09_23_0334_R crossref_primary_10_1111_1744_7917_12784 crossref_primary_10_3389_fpls_2020_00051 crossref_primary_10_1016_j_pestbp_2021_104870 crossref_primary_10_3390_nano14231874 |
| Cites_doi | 10.1371/journal.pone.0080603 10.1002/ps.2291 10.1186/1472-6750-3-3 10.2307/3869076 10.1016/j.chemosphere.2011.12.061 10.1016/B978-0-12-800197-4.00005-1 10.1016/j.jinsphys.2007.04.003 10.1186/1756-3305-3-73 10.1038/nbt1107-1231 10.1016/j.jinsphys.2008.12.005 10.1525/bio.2013.63.8.8 10.1371/journal.pone.0038572 10.1016/j.ibmb.2009.09.007 10.1371/journal.pone.0006225 10.1007/s11103-013-0022-7 10.1016/j.ijpara.2006.11.005 10.1038/emboj.2011.274 10.1038/nplants.2016.151 10.1002/ps.2048 10.4161/rna.19986 10.1073/pnas.1306373110 10.1093/jxb/erv094 10.1073/pnas.1232238100 10.1128/AEM.01067-10 10.1016/j.jinsphys.2010.11.006 10.1371/journal.pone.0031347 10.1186/1758-907X-3-5 10.1007/s10142-015-0446-z 10.1002/ps.3706 10.1002/ps.4407 10.1128/EC.05109-11 10.1002/ps.4324 10.1111/j.1467-7652.2010.00555.x 10.1111/imb.12052 10.3958/059.037.0110 10.1242/dev.113.2.503 10.1016/0022-2836(81)90087-5 10.1002/ps.4056 10.1016/j.tibtech.2008.04.004 10.1098/rspb.2016.0042 10.1093/nar/gki324 10.1111/j.1467-7652.2008.00366.x 10.1016/j.cois.2014.09.011 10.1038/nrg2968 10.1093/nar/gku1054 10.1016/j.jip.2012.07.012 10.1371/journal.ppat.1003035 10.1002/ps.4337 10.1016/j.jinsphys.2013.08.014 10.1016/j.ibmb.2004.04.004 10.1038/nrm4085 10.1007/s13744-015-0291-8 10.1007/s00427-007-0132-9 10.1016/j.pestbp.2012.12.001 10.3389/fphys.2016.00553 10.1016/S1046-2023(03)00037-9 10.1073/pnas.0604698103 10.1016/j.ibmb.2008.10.011 10.1111/pbi.12352 10.1126/science.341.6147.732 10.1038/27579 10.1111/j.1365-294X.2012.05548.x 10.1016/j.jinsphys.2009.10.004 10.1002/ps.2049 10.1371/journal.pone.0093155 10.1111/eea.12544 10.1111/j.1365-313X.2005.02441.x 10.1016/j.cell.2009.01.035 10.1016/j.pt.2007.07.002 10.1016/j.exppara.2013.03.009 10.1038/nplants.2016.207 10.3390/v7062765 10.1016/j.cell.2005.11.006 10.1186/gb-2008-9-1-r10 10.1038/nbt1352 10.1073/pnas.0307669100 10.1002/ps.4554 10.1016/j.bbrc.2005.07.036 10.1128/MMBR.67.4.657-685.2003 10.1016/j.pestbp.2014.02.003 10.1038/nrg2504 10.1111/j.1365-2958.1992.tb02202.x 10.1016/j.pestbp.2015.11.005 10.1371/journal.ppat.1005901 10.1073/pnas.0308698100 10.1016/j.ibmb.2008.05.005 10.1038/35888 10.1007/s12038-011-9009-1 10.1002/ps.4492 10.1101/gr.113985.110 10.1038/nrd3010 10.1371/journal.ppat.1001160 10.1038/nbt1359 10.1186/1471-2164-14-668 10.1094/MPMI-20-6-0717 10.1111/pce.12546 10.1016/j.ibmb.2006.05.012 10.1016/j.ibmb.2012.09.004 10.1007/s11248-013-9739-y 10.1146/annurev-biophys-083012-130404 10.1007/s11240-013-0339-6 10.3389/fphys.2017.00399 10.1105/tpc.110.077040 10.5772/61612 10.1111/pbi.12307 10.1016/j.ibmb.2017.06.009 10.1371/journal.pone.0110874 |
| ContentType | Journal Article |
| Copyright | 2017 Society of Chemical Industry 2017 Society of Chemical Industry. 2018 Society of Chemical Industry |
| Copyright_xml | – notice: 2017 Society of Chemical Industry – notice: 2017 Society of Chemical Industry. – notice: 2018 Society of Chemical Industry |
| DBID | AAYXX CITATION NPM 7QR 7SS 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
| DOI | 10.1002/ps.4813 |
| DatabaseName | CrossRef PubMed Chemoreception Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Entomology Abstracts Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA PubMed Entomology Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Agriculture |
| EISSN | 1526-4998 |
| EndPage | 1250 |
| ExternalDocumentID | 29194942 10_1002_ps_4813 PS4813 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Fund for Scientific Research (FWO‐Vlaanderen) – fundername: Ghent University (BOF‐UGent) – fundername: Coordination for the Improvement of Higher Education Personnel (CAPES) – fundername: National Council for Scientific and Technological Development (CNPq) |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 29O 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DROCM DRSTM ECGQY EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 Y6R ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X NPM 1OB 7QR 7SS 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4443-e5bc826fca3c8711d9deb70ff4e2469b41e4b0c3962317b0961df70a6dbaff7f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 292 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431670200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1526-498X 1526-4998 |
| IngestDate | Thu Oct 02 23:53:17 EDT 2025 Sun Nov 09 12:39:43 EST 2025 Wed Aug 13 08:50:09 EDT 2025 Wed Feb 19 02:44:26 EST 2025 Sat Nov 29 07:06:10 EST 2025 Tue Nov 18 22:26:59 EST 2025 Wed Jan 22 16:54:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | biopesticides double-stranded RNA plant pathogens RNA interference-based resistance management pest insects |
| Language | English |
| License | 2017 Society of Chemical Industry. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4443-e5bc826fca3c8711d9deb70ff4e2469b41e4b0c3962317b0961df70a6dbaff7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-8334-3313 |
| PMID | 29194942 |
| PQID | 2035683202 |
| PQPubID | 46069 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2084078897 proquest_miscellaneous_1971694609 proquest_journals_2035683202 pubmed_primary_29194942 crossref_primary_10_1002_ps_4813 crossref_citationtrail_10_1002_ps_4813 wiley_primary_10_1002_ps_4813_PS4813 |
| PublicationCentury | 2000 |
| PublicationDate | June 2018 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: England – name: London |
| PublicationTitle | Pest management science |
| PublicationTitleAlternate | Pest Manag Sci |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
| References | 1991; 113 1981; 147 2005; 334 2017; 87 2008; 38 2006; 36 2013; 63 2011; 57 2013; 8 2014; 23 1998; 395 1992; 6 2017; 73 2010; 22 2007; 217 2013; 59 2009; 10 2013; 115 2004; 34 2013; 112 2008; 26 2017; 162 2011; 67 2013; 110 2010; 3 2012; 21 2010; 6 2010; 9 2013; 105 1928; 3 2013; 341 2012; 37 2003; 30 2016; 12 2016; 283 2014; 43 2011; 9 2016; 4 1990; 2 1998; 391 2016; 7 2016; 2 2005; 123 2015; 66 2013; 81 2003; 100 2012; 42 2006; 103 2010; 56 2017; 8 2014; 70 2015; 38 2017; 3 2013; 22 2010; 427 2008; 9 2011; 10 2016; 73 2016; 72 2011; 12 2007; 37 2009; 55 2013; 14 2015; 44 2003; 3 2011; 21 2014; 9 2007; 20 2012; 68 2007; 23 2014; 6 2005; 33 2007; 25 2004; 101 2015; 13 2010; 76 2015; 15 2015; 16 2012 2013; 42 2011; 30 2005; 43 2011; 36 2014; 110 2007; 53 2015; 7 2009; 136 2012; 3 2013; 134 2017 2016 2009; 7 2015 2014 2013 2009; 4 2012; 7 2012; 87 2016; 130 2012; 8 2003; 67 2009; 39 2012; 9 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 Gonsalves D (e_1_2_9_51_1) 2014 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_37_1 Dolgov S (e_1_2_9_52_1) 2010; 427 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_111_1 e_1_2_9_115_1 Tabassum B (e_1_2_9_23_1) 2012 e_1_2_9_26_1 e_1_2_9_49_1 Nandety RS (e_1_2_9_78_1) 2014; 6 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 EFSA ‐ European Food Safety Authority (e_1_2_9_83_1) 2014 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_118_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 Wingard SA (e_1_2_9_2_1) 1928; 3 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 Baduel P (e_1_2_9_124_1) 2015 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 Yang Y (e_1_2_9_57_1) 2013; 8 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_116_1 Zhu F (e_1_2_9_10_1) 2014 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 23 start-page: 427 year: 2007 end-page: 433 article-title: RNA interference for the study and genetic manipulation of ticks publication-title: Trends Parasitol – volume: 4 start-page: e6225 year: 2009 article-title: Developmental control of a lepidopteran pest by ingestion of bacteria expressing dsRNA of a non‐midgut gene publication-title: PLoS One – volume: 6 start-page: 8 year: 2014 end-page: 19 article-title: Emerging strategies for RNA interference (RNAi) applications in insects publication-title: Bioeng Bugs – volume: 13 start-page: 875 year: 2015 end-page: 883 article-title: Host‐induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce publication-title: Plant Biotechnol J – volume: 101 start-page: 1141 year: 2004 end-page: 1146 article-title: Disruption of anticoagulation by using RNA interference publication-title: Proc Natl Acad Sci U S A – volume: 334 start-page: 1336 year: 2005 end-page: 1342 article-title: RNAi‐mediated gene silencing to assess the role of synaptobrevin and cystatin in tick blood feeding publication-title: Biochem Biophys Res Commun – volume: 66 start-page: 2785 year: 2015 end-page: 2794 article-title: Plant‐mediated gene silencing restricts growth of the potato late blight pathogen publication-title: J Exp Bot – volume: 4 start-page: 801 year: 2016 end-page: 809 article-title: The next generation of insecticides: DsRNA is stable as a foliar‐applied insecticide publication-title: Pest Manag Sci – volume: 123 start-page: 543 year: 2005 end-page: 545 article-title: RNAi: RISC gets loaded publication-title: Cell – volume: 391 start-page: 806 year: 1998 end-page: 811 article-title: Potent and specific genetic interference by double‐stranded RNA in publication-title: Nature – start-page: 391 year: 2016 end-page: 409 – volume: 7 start-page: e38572 year: 2012 article-title: Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect‐associated gene EcR publication-title: PLoS One – volume: 10 start-page: 94 year: 2009 end-page: 108 article-title: Small silencing RNAs: an expanding universe publication-title: Nat Rev Genet – volume: 76 start-page: 5960 year: 2010 end-page: 5964 article-title: Effective gene silencing in a microsporidian parasite associated with honeybee ( ) colony declines publication-title: Appl Environ Microbiol – volume: 9 start-page: 1 year: 2014 end-page: 7 article-title: Environmental fate of double‐stranded RNA in agricultural soils publication-title: PLoS One – volume: 44 start-page: 197 year: 2015 end-page: 213 article-title: RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments publication-title: Neotrop Entomol – volume: 9 start-page: e110874 year: 2014 article-title: Clathrin heavy chain is important for viability, oviposition, embryogenesis and, possibly, systemic RNAi response in the predatory mite publication-title: PLoS One – year: 2014 – volume: 20 start-page: 717 year: 2007 end-page: 726 article-title: RNAi‐mediated resistance to Bean golden mosaic virus in genetically engineered common bean ( ) publication-title: Mol Plant Microbe Interact – volume: 3 start-page: 5 year: 2012 article-title: Application of RNA silencing to plant disease resistance publication-title: Silence – volume: 8 year: 2012 article-title: Bidirectional Transfer of RNAi between Honey Bee and Varroa destructor: Varroa Gene Silencing Reduces Varroa Population publication-title: PLoS Patho – volume: 34 start-page: 799 year: 2004 end-page: 808 article-title: Cloning and molecular characterization of a cubilin‐related serine proteinase from the hard tick publication-title: Insect Biochem Mol Biol – volume: 33 year: 2005 article-title: A computational study of off‐target effects of RNA interference publication-title: Nucleic Acids Res – start-page: 595 year: 2014 end-page: 619 – volume: 25 start-page: 1307 year: 2007 end-page: 1313 article-title: Silencing a cotton bollworm P450 monooxygenase gene by plant‐mediated RNAi impairs larval tolerance of gossypol publication-title: Nat Biotechnol – volume: 57 start-page: 231 year: 2011 end-page: 245 article-title: RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design publication-title: J Insect Physiol – volume: 8 start-page: 1 year: 2017 end-page: 24 article-title: Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges publication-title: Front Physiol – volume: 73 start-page: 44 year: 2017 end-page: 52 article-title: RNAi‐based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil (Coleoptera: Brentidae) publication-title: Pest Manag Sci – volume: 22 start-page: 3130 year: 2010 end-page: 3141 article-title: HIGS: Host‐Induced Gene Silencing in the Obligate Biotrophic Fungal Pathogen publication-title: Plant Cell – volume: 59 start-page: 1212 year: 2013 end-page: 1221 article-title: Towards the elements of successful insect RNAi publication-title: J Insect Physiol – volume: 43 start-page: D720 year: 2014 end-page: D725 article-title: iBeetle‐Base: a database for RNAi phenotypes in the red flour beetle publication-title: Nucleic Acids Res – volume: 15 start-page: 697 year: 2015 end-page: 706 article-title: Host‐mediated gene silencing of a single effector gene from the potato pathogen imparts partial resistance to late blight disease publication-title: Funct Integr Genomics – volume: 87 start-page: 136 year: 2017 end-page: 146 article-title: Characterization and expression patterns of key ecdysteroid biosynthesis and signaling genes in a spider mite ( ) publication-title: Insect Biochem Mol Biol – volume: 8 year: 2013 article-title: Molecular Characteristics and Efficacy of 16D10 siRNAs in Inhibiting Root‐Knot Nematode Infection in Transgenic Grape Hairy Roots publication-title: PLoS One – volume: 110 start-page: 19324 year: 2013 end-page: 19329 article-title: Host‐induced gene silencing of cytochrome P450 lanosterol C14‐demethylase‐encoding genes confers strong resistance to species publication-title: Proc Natl Acad Sci – volume: 7 year: 2012 article-title: Tobacco rattle virus vector: A rapid and transient means of silencing manduca sexta genes by plant mediated RNA interference publication-title: PLoS One – volume: 30 start-page: 3553 year: 2011 end-page: 3563 article-title: Intercellular and systemic movement of RNA silencing signals publication-title: EMBO J – volume: 73 start-page: 960 year: 2016 end-page: 966 article-title: Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response publication-title: Pest Manag Sci – volume: 38 start-page: 2277 year: 2015 end-page: 2285 article-title: New insights into an RNAi approach for plant defence against piercing‐sucking and stem‐borer insect pests publication-title: Plant Cell Environ – volume: 12 start-page: e1005901 year: 2016 article-title: An RNAi‐based control of infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery publication-title: PLOS Pathog – volume: 37 start-page: 653 year: 2007 end-page: 662 article-title: Gene silencing of the tick protective antigens, Bm86, Bm91 and subolesin, in the one‐host tick by RNA interference publication-title: Int J Parasitol – volume: 7 start-page: 553 year: 2016 article-title: RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: What we know so far publication-title: Front Physiol – volume: 217 start-page: 241 year: 2007 end-page: 251 article-title: Gene silencing in the spider mite : dsRNA and siRNA parental silencing of the Distal‐less gene publication-title: Dev Genes Evol – volume: 100 start-page: 6289 year: 2003 end-page: 6291 article-title: The specifics of small interfering RNA specificity publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 329 year: 2011 end-page: 340 article-title: Current prospects for RNA interference‐based therapies publication-title: Nat Rev Genet – volume: 147 start-page: 195 year: 1981 end-page: 197 article-title: Identification of common molecular subsequences publication-title: J Mol Biol – volume: 103 start-page: 14302 year: 2006 end-page: 14306 article-title: Engineering broad root‐knot resistance in transgenic plants by RNAi silencing of a conserved and essential root‐knot nematode parasitism gene publication-title: Proc Natl Acad Sci USA – volume: 36 start-page: 683 year: 2006 end-page: 693 article-title: RNA interference of the salivary gland nitrophorin 2 in the triatomine bug (Hemiptera: Reduviidae) by dsRNA ingestion or injection publication-title: Insect Biochem Mol Biol – volume: 43 start-page: 299 year: 2005 end-page: 308 article-title: Virus‐induced gene silencing in tomato fruit publication-title: Plant J – volume: 9 start-page: 394 year: 2011 end-page: 407 article-title: Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against subsp. publication-title: Plant Biotechnol J – volume: 110 start-page: 1 year: 2014 end-page: 6 article-title: Differential effects of RNAi treatments on field populations of the western corn rootworm publication-title: Pestic Biochem Physiol – year: 2016 – volume: 42 start-page: 217 year: 2013 end-page: 239 article-title: Molecular Mechanisms of RNA Interference publication-title: Annu Rev Biophys – volume: 16 start-page: 727 year: 2015 end-page: 741 article-title: The expanding world of small RNAs in plants publication-title: Nature Rev Mol Cell Biol – volume: 3 start-page: 73 year: 2010 article-title: Gene‐knockdown in the honey bee mite Varroa destructor by a non‐invasive approach: studies on a glutathione S‐transferase publication-title: Parasit Vectors – volume: 67 start-page: 183 year: 2011 end-page: 190 article-title: Genomics‐based approaches to screening carboxylesterase‐like genes potentially involved in malathion resistance in oriental migratory locust ( ) publication-title: Pest Manag Sci – volume: 38 start-page: 805 year: 2008 end-page: 15 article-title: RNA interference in the termite through ingestion of double‐stranded RNA publication-title: Insect Biochem Mol Biol – volume: 22 start-page: 648 year: 2013 end-page: 658 article-title: Silencing of P‐glycoprotein increases mortality in temephos‐treated larvae publication-title: Insect Mol Biol – start-page: 8575328 year: 2013 – volume: 8 year: 2013 article-title: Utility of host delivered RNAi of two FMRF amide like peptides, flp‐14 and flp‐18, for the management of root knot nematode, publication-title: PLoS One – volume: 112 start-page: S68 year: 2013 end-page: S74 article-title: RNAi: future in insect management publication-title: J Invertebr Pathol – volume: 7 start-page: 24 year: 2009 end-page: 32 article-title: Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus publication-title: Plant Biotechnol J – volume: 162 start-page: 389 year: 2017 end-page: 396 article-title: RNAi feeding bioassay: development of a non‐transgenic approach to control Asian citrus psyllid and other hemipterans publication-title: Entomol Exp Appl – year: 2013 – volume: 56 start-page: 227 year: 2010 end-page: 235 article-title: Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review publication-title: J Insect Physiol – volume: 7 start-page: 3172 year: 2015 end-page: 3185 article-title: The effect of oral administration of dsRNA on viral replication and mortality in publication-title: Viruses – volume: 13 start-page: 1335 year: 2015 end-page: 1345 article-title: Host‐induced gene silencing of an essential chitin synthase gene confers durable resistance to head blight and seedling blight in wheat publication-title: Plant Biotechnol J – volume: 3 start-page: 16207 year: 2017 article-title: Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses publication-title: Nat Plants – year: 2014 article-title: Transgenic Virus Resistant Papaya : From Hope to Reality for Controlling Papaya Ringspot Virus in Hawaii publication-title: APSnet – volume: 10 start-page: 1148 year: 2011 end-page: 1155 article-title: RNA interference in fungi: Pathways, functions, and applications publication-title: Eukaryot Cell – volume: 6 start-page: 1 year: 2014 end-page: 8 article-title: RNA interference in Colorado potato beetle: Steps toward development of dsRNA as a commercial insecticide publication-title: Curr Opin Insect Sci – volume: 6 start-page: 3343 year: 1992 end-page: 3353 article-title: Quelling: transient inactivation of gene expression in by transformation with homologous sequences publication-title: Mol Microbiol – volume: 113 start-page: 503 year: 1991 end-page: 514 article-title: Production of antisense RNA leads to effective and specific inhibition of gene expression in muscle publication-title: Development – volume: 341 start-page: 732 year: 2013 end-page: 733 article-title: of RNA publication-title: Science – volume: 36 start-page: 153 year: 2011 end-page: 161 article-title: RNA interference for the control of whiteflies ( ) by oral route publication-title: J Biosci – volume: 283 start-page: 20160042 year: 2016 article-title: Symbiont‐mediated RNA interference in insects publication-title: Proc R Soc B – volume: 130 start-page: 1 year: 2016 end-page: 7 article-title: Screening of target genes for RNAi in and RNAi toxicity enhancement by chimeric genes publication-title: Pestic Biochem Physiol – volume: 427 start-page: 133 year: 2010 end-page: 140 article-title: Pathogen‐derived methods for improving resistance of transgenic plums ( L.) for Plum pox virus infection publication-title: 21St Int Confererence Viruses Other Graft Transm Dis Fruit Crop. Julius‐Kühn‐Archiv – volume: 101 year: 2004 article-title: Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells publication-title: Proc Natl Acad Sci – volume: 42 start-page: 911 year: 2012 end-page: 917 article-title: Tissue‐dependence and sensitivity of the systemic RNA interference response in the desert locust, publication-title: Insect Biochem Mol Biol – volume: 21 start-page: 4371 year: 2012 end-page: 4385 article-title: Gossypol‐enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide publication-title: Mol Ecol – volume: 39 start-page: 824 year: 2009 end-page: 832 article-title: Ingested double‐stranded RNAs can act as species‐specific insecticides publication-title: Insect Biochem Mol Biol – volume: 2 start-page: 279 year: 1990 end-page: 289 article-title: Introduction of a chimeric chalcone synthase gene into results in reversible co‐suppression of homologous genes in trans publication-title: Plant cell – volume: 67 start-page: 175 year: 2011 end-page: 182 article-title: interference for managing the populations of the Colorado potato beetle, publication-title: Pest Manag Sci – volume: 3 start-page: 127 year: 1928 end-page: 153 article-title: Host and symptoms of ring spot, a virus disease of plants publication-title: J Agric Res – volume: 73 start-page: 1883 year: 2017 end-page: 1899 article-title: Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management publication-title: Pest Manag Sci – volume: 55 start-page: 273 year: 2009 end-page: 278 article-title: Silencing of acetylcholinesterase gene of by siRNA affects larval growth and its life cycle publication-title: J Insect Physiol – volume: 26 start-page: 393 year: 2008 end-page: 400 article-title: RNAi‐mediated crop protection against insects publication-title: Trends Biotechnol – volume: 25 start-page: 1231 year: 2007 end-page: 1232 article-title: RNAi for insect‐proof plants publication-title: Nat Biotechnol – volume: 25 start-page: 1322 year: 2007 end-page: 1326 article-title: Control of coleopteran insect pests through RNA interference publication-title: Nat Biotechnol – volume: 87 start-page: 709 year: 2012 end-page: 717 article-title: Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in publication-title: Chemosphere – volume: 115 start-page: 1 year: 2013 end-page: 12 article-title: Genetic engineering of Plum pox virus resistance: “HoneySweet” plum‐from concept to product publication-title: Plant Cell Tissue Organ Cult – volume: 81 start-page: 595 year: 2013 end-page: 608 article-title: Host‐induced gene silencing of wheat leaf rust fungus pathogenicity genes mediated by the Barley stripe mosaic virus publication-title: Plant Mol Biol – volume: 63 start-page: 657 year: 2013 end-page: 665 article-title: RNAi‐based insecticidal crops: Potential effects on nontarget species publication-title: Bioscience – volume: 134 start-page: 266 year: 2013 end-page: 274 article-title: Post‐transcriptional gene silencing of the gene encoding aldolase from soybean cyst nematode by transformed soybean roots publication-title: Exp Parasitol – volume: 2 start-page: 16151 year: 2016 article-title: Bidirectional cross‐kingdom RNAi and fungal uptake of external RNAs confer plant protection publication-title: Nat Plants – volume: 23 start-page: 145 year: 2014 end-page: 152 article-title: Plant‐mediated RNAi of a gap gene‐enhanced tobacco tolerance against the publication-title: Transgenic Res – volume: 6 start-page: 1 year: 2010 end-page: 10 article-title: Large‐scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees ( , Hymenoptera: Apidae) publication-title: PLoS Pathog – volume: 3 start-page: 3 year: 2003 article-title: Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections publication-title: BMC Biotechnol – year: 2015 article-title: Epigenetics in Plant Breeding: Hard Science, Soft Tool. Harvard Graduate School of Arts and publication-title: Sciences – volume: 9 start-page: 57 year: 2010 end-page: 67 article-title: Recognizing and avoiding siRNA off‐target effects for target identification and therapeutic application publication-title: Nat Rev Drug Discov – volume: 395 start-page: 854 year: 1998 article-title: Specific interference by ingested dsRNA publication-title: Nature – volume: 67 start-page: 657 year: 2003 end-page: 685 article-title: RNA interference: biology, mechanism, and applications publication-title: Microbiol Mol Biol Rev. – volume: 30 start-page: 296 year: 2003 end-page: 303 article-title: Virus‐induced gene silencing in plants publication-title: Methods – volume: 14 start-page: 668 year: 2013 article-title: Stacking resistance to crown gall and nematodes in walnut rootstocks publication-title: BMC Genomics – volume: 37 start-page: 85 year: 2012 end-page: 87 article-title: Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression publication-title: Southwest Entomol – volume: 73 start-page: 1529 year: 2017 end-page: 1537 article-title: MicroRNA and dsRNA targeting chitin synthase A reveal a great potential for pest management of the hemipteran insect publication-title: Pest Manag Sci – volume: 70 start-page: 1329 year: 2014 end-page: 1339 article-title: The future for weed control and technology publication-title: Pest Manag Sci – volume: 68 start-page: 149 year: 2012 end-page: 154 article-title: Do we have the tools to manage resistance in the future? publication-title: Pest Manag Sci – volume: 72 start-page: 1652 year: 2016 end-page: 1663 article-title: RNAi as a management tool for the western corn rootworm, publication-title: Pest Manag Sci – volume: 105 start-page: 69 year: 2013 end-page: 75 article-title: Screening of lethal genes for feeding RNAi by leaf disc‐mediated systematic delivery of dsRNA in publication-title: Pestic Biochem Physiol – start-page: 38 year: 2014 article-title: International scientific workshop ‘Risk assessment considerations for RNAi‐based GM plants publication-title: EFSA Support Publ – volume: 136 start-page: 642 year: 2009 end-page: 655 article-title: Origins and Mechanisms of miRNAs and siRNAs publication-title: Cell – volume: 39 start-page: 157 year: 2009 end-page: 160 article-title: A non‐invasive method for silencing gene transcription in honeybees maintained under natural conditions publication-title: Insect Biochem Mol Biol – start-page: 113 130 year: 2012 – year: 2017 – volume: 21 start-page: 487 year: 2011 end-page: 493 article-title: Adaptive seeds tame genomic sequence comparison publication-title: Genome Res – volume: 53 start-page: 840 year: 2007 end-page: 848 article-title: RNA interference suggests sulfakinins as satiety effectors in the cricket publication-title: J Insect Physiol – volume: 9 start-page: 663 year: 2012 end-page: 671 article-title: The SID‐1 double‐stranded RNA transporter is not required for systemic RNAi in the migratory locust publication-title: RNA Biol – volume: 9 start-page: R10 year: 2008 article-title: Exploring systemic RNA interference in insects: a genome‐wide survey for RNAi genes in publication-title: Genome Biol – ident: e_1_2_9_81_1 – ident: e_1_2_9_58_1 doi: 10.1371/journal.pone.0080603 – ident: e_1_2_9_66_1 doi: 10.1002/ps.2291 – ident: e_1_2_9_24_1 doi: 10.1186/1472-6750-3-3 – ident: e_1_2_9_107_1 – ident: e_1_2_9_3_1 doi: 10.2307/3869076 – ident: e_1_2_9_68_1 doi: 10.1016/j.chemosphere.2011.12.061 – ident: e_1_2_9_41_1 doi: 10.1016/B978-0-12-800197-4.00005-1 – ident: e_1_2_9_106_1 doi: 10.1016/j.jinsphys.2007.04.003 – ident: e_1_2_9_60_1 doi: 10.1186/1756-3305-3-73 – ident: e_1_2_9_6_1 doi: 10.1038/nbt1107-1231 – start-page: 113 volume-title: How RNA interference combat viruses in plants, in Functional Genomics year: 2012 ident: e_1_2_9_23_1 – ident: e_1_2_9_109_1 doi: 10.1016/j.jinsphys.2008.12.005 – ident: e_1_2_9_86_1 doi: 10.1525/bio.2013.63.8.8 – ident: e_1_2_9_108_1 doi: 10.1371/journal.pone.0038572 – ident: e_1_2_9_96_1 doi: 10.1016/j.ibmb.2009.09.007 – year: 2014 ident: e_1_2_9_51_1 article-title: Transgenic Virus Resistant Papaya : From Hope to Reality for Controlling Papaya Ringspot Virus in Hawaii publication-title: APSnet – ident: e_1_2_9_82_1 – year: 2015 ident: e_1_2_9_124_1 article-title: Epigenetics in Plant Breeding: Hard Science, Soft Tool. Harvard Graduate School of Arts and publication-title: Sciences – ident: e_1_2_9_110_1 doi: 10.1371/journal.pone.0006225 – ident: e_1_2_9_121_1 doi: 10.1007/s11103-013-0022-7 – ident: e_1_2_9_114_1 doi: 10.1016/j.ijpara.2006.11.005 – start-page: 595 volume-title: Short Views on Insect Biochemistry and Molecular Biology year: 2014 ident: e_1_2_9_10_1 – ident: e_1_2_9_70_1 doi: 10.1038/emboj.2011.274 – ident: e_1_2_9_19_1 doi: 10.1038/nplants.2016.151 – ident: e_1_2_9_98_1 doi: 10.1002/ps.2048 – ident: e_1_2_9_104_1 doi: 10.4161/rna.19986 – ident: e_1_2_9_17_1 doi: 10.1073/pnas.1306373110 – ident: e_1_2_9_21_1 doi: 10.1093/jxb/erv094 – ident: e_1_2_9_84_1 doi: 10.1073/pnas.1232238100 – ident: e_1_2_9_61_1 doi: 10.1128/AEM.01067-10 – ident: e_1_2_9_40_1 doi: 10.1016/j.jinsphys.2010.11.006 – volume: 8 year: 2013 ident: e_1_2_9_57_1 article-title: Molecular Characteristics and Efficacy of 16D10 siRNAs in Inhibiting Root‐Knot Nematode Infection in Transgenic Grape Hairy Roots publication-title: PLoS One – ident: e_1_2_9_79_1 doi: 10.1371/journal.pone.0031347 – ident: e_1_2_9_22_1 doi: 10.1186/1758-907X-3-5 – ident: e_1_2_9_123_1 doi: 10.1007/s10142-015-0446-z – ident: e_1_2_9_67_1 doi: 10.1002/ps.3706 – ident: e_1_2_9_112_1 doi: 10.1002/ps.4407 – volume: 3 start-page: 127 year: 1928 ident: e_1_2_9_2_1 article-title: Host and symptoms of ring spot, a virus disease of plants publication-title: J Agric Res – ident: e_1_2_9_49_1 doi: 10.1128/EC.05109-11 – ident: e_1_2_9_48_1 doi: 10.1002/ps.4324 – ident: e_1_2_9_122_1 doi: 10.1111/j.1467-7652.2010.00555.x – ident: e_1_2_9_99_1 doi: 10.1111/imb.12052 – ident: e_1_2_9_71_1 doi: 10.3958/059.037.0110 – ident: e_1_2_9_5_1 doi: 10.1242/dev.113.2.503 – ident: e_1_2_9_91_1 doi: 10.1016/0022-2836(81)90087-5 – ident: e_1_2_9_13_1 doi: 10.1002/ps.4056 – ident: e_1_2_9_7_1 doi: 10.1016/j.tibtech.2008.04.004 – ident: e_1_2_9_76_1 doi: 10.1098/rspb.2016.0042 – ident: e_1_2_9_88_1 doi: 10.1093/nar/gki324 – ident: e_1_2_9_118_1 doi: 10.1111/j.1467-7652.2008.00366.x – ident: e_1_2_9_75_1 doi: 10.1016/j.cois.2014.09.011 – ident: e_1_2_9_85_1 doi: 10.1038/nrg2968 – ident: e_1_2_9_92_1 doi: 10.1093/nar/gku1054 – ident: e_1_2_9_94_1 doi: 10.1016/j.jip.2012.07.012 – ident: e_1_2_9_63_1 doi: 10.1371/journal.ppat.1003035 – ident: e_1_2_9_95_1 doi: 10.1002/ps.4337 – ident: e_1_2_9_62_1 doi: 10.1016/j.jinsphys.2013.08.014 – ident: e_1_2_9_115_1 doi: 10.1016/j.ibmb.2004.04.004 – ident: e_1_2_9_36_1 doi: 10.1038/nrm4085 – ident: e_1_2_9_9_1 doi: 10.1007/s13744-015-0291-8 – ident: e_1_2_9_37_1 – volume: 6 start-page: 8 year: 2014 ident: e_1_2_9_78_1 article-title: Emerging strategies for RNA interference (RNAi) applications in insects publication-title: Bioeng Bugs – ident: e_1_2_9_45_1 doi: 10.1007/s00427-007-0132-9 – ident: e_1_2_9_46_1 doi: 10.1016/j.pestbp.2012.12.001 – ident: e_1_2_9_12_1 doi: 10.3389/fphys.2016.00553 – ident: e_1_2_9_77_1 doi: 10.1016/S1046-2023(03)00037-9 – ident: e_1_2_9_56_1 doi: 10.1073/pnas.0604698103 – ident: e_1_2_9_111_1 doi: 10.1016/j.ibmb.2008.10.011 – ident: e_1_2_9_117_1 doi: 10.1111/pbi.12352 – ident: e_1_2_9_44_1 doi: 10.1126/science.341.6147.732 – ident: e_1_2_9_55_1 doi: 10.1038/27579 – ident: e_1_2_9_39_1 – ident: e_1_2_9_65_1 doi: 10.1111/j.1365-294X.2012.05548.x – start-page: 38 year: 2014 ident: e_1_2_9_83_1 article-title: International scientific workshop ‘Risk assessment considerations for RNAi‐based GM plants publication-title: EFSA Support Publ – ident: e_1_2_9_11_1 doi: 10.1016/j.jinsphys.2009.10.004 – ident: e_1_2_9_69_1 doi: 10.1002/ps.2049 – ident: e_1_2_9_74_1 doi: 10.1371/journal.pone.0093155 – ident: e_1_2_9_15_1 doi: 10.1111/eea.12544 – ident: e_1_2_9_20_1 doi: 10.1111/j.1365-313X.2005.02441.x – ident: e_1_2_9_31_1 doi: 10.1016/j.cell.2009.01.035 – ident: e_1_2_9_28_1 doi: 10.1016/j.pt.2007.07.002 – ident: e_1_2_9_38_1 – ident: e_1_2_9_29_1 doi: 10.1016/j.exppara.2013.03.009 – ident: e_1_2_9_73_1 doi: 10.1038/nplants.2016.207 – ident: e_1_2_9_59_1 doi: 10.3390/v7062765 – ident: e_1_2_9_33_1 doi: 10.1016/j.cell.2005.11.006 – ident: e_1_2_9_97_1 doi: 10.1186/gb-2008-9-1-r10 – ident: e_1_2_9_64_1 doi: 10.1038/nbt1352 – ident: e_1_2_9_116_1 doi: 10.1073/pnas.0307669100 – volume: 427 start-page: 133 year: 2010 ident: e_1_2_9_52_1 article-title: Pathogen‐derived methods for improving resistance of transgenic plums (Prunus domestica L.) for Plum pox virus infection publication-title: 21St Int Confererence Viruses Other Graft Transm Dis Fruit Crop. Julius‐Kühn‐Archiv – ident: e_1_2_9_43_1 doi: 10.1002/ps.4554 – ident: e_1_2_9_113_1 doi: 10.1016/j.bbrc.2005.07.036 – ident: e_1_2_9_32_1 doi: 10.1128/MMBR.67.4.657-685.2003 – ident: e_1_2_9_47_1 doi: 10.1016/j.pestbp.2014.02.003 – ident: e_1_2_9_34_1 doi: 10.1038/nrg2504 – ident: e_1_2_9_4_1 doi: 10.1111/j.1365-2958.1992.tb02202.x – ident: e_1_2_9_26_1 doi: 10.1016/j.pestbp.2015.11.005 – ident: e_1_2_9_18_1 doi: 10.1371/journal.ppat.1005901 – ident: e_1_2_9_90_1 doi: 10.1073/pnas.0308698100 – ident: e_1_2_9_16_1 doi: 10.1016/j.ibmb.2008.05.005 – ident: e_1_2_9_54_1 doi: 10.1038/35888 – ident: e_1_2_9_100_1 doi: 10.1007/s12038-011-9009-1 – ident: e_1_2_9_102_1 doi: 10.1002/ps.4492 – ident: e_1_2_9_89_1 – ident: e_1_2_9_93_1 doi: 10.1101/gr.113985.110 – ident: e_1_2_9_87_1 doi: 10.1038/nrd3010 – ident: e_1_2_9_8_1 doi: 10.1371/journal.ppat.1001160 – ident: e_1_2_9_42_1 doi: 10.1038/nbt1359 – ident: e_1_2_9_30_1 doi: 10.1186/1471-2164-14-668 – ident: e_1_2_9_50_1 doi: 10.1094/MPMI-20-6-0717 – ident: e_1_2_9_72_1 doi: 10.1111/pce.12546 – ident: e_1_2_9_103_1 doi: 10.1016/j.ibmb.2006.05.012 – ident: e_1_2_9_105_1 doi: 10.1016/j.ibmb.2012.09.004 – ident: e_1_2_9_101_1 doi: 10.1007/s11248-013-9739-y – ident: e_1_2_9_35_1 doi: 10.1146/annurev-biophys-083012-130404 – ident: e_1_2_9_53_1 doi: 10.1007/s11240-013-0339-6 – ident: e_1_2_9_80_1 doi: 10.3389/fphys.2017.00399 – ident: e_1_2_9_120_1 doi: 10.1105/tpc.110.077040 – ident: e_1_2_9_14_1 doi: 10.5772/61612 – ident: e_1_2_9_119_1 doi: 10.1111/pbi.12307 – ident: e_1_2_9_27_1 doi: 10.1016/j.ibmb.2017.06.009 – ident: e_1_2_9_25_1 doi: 10.1371/journal.pone.0110874 |
| SSID | ssj0009992 |
| Score | 2.6345758 |
| SecondaryResourceType | review_article |
| Snippet | Scientists have made significant progress in understanding and unraveling several aspects of double‐stranded RNA (dsRNA)‐mediated gene silencing during the... Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1239 |
| SubjectTerms | active ingredients Agricultural economics Agricultural management Agrochemicals arthropod pests bees Beneficial arthropods beneficial insects Biopesticides Chemical pest control Crops Double-stranded RNA Ectoparasites farmers Formulations Gene expression Gene silencing Genetic transformation Industrial engineering Insect control Insecticide resistance Interference Knowledge acquisition Manufacturing engineering Markets mechanism of action messenger RNA mites Mode of action mRNA Nematoda Nematodes Nucleotide sequence Parasites Pathogens Pest control pest insects Pesticide resistance Pesticides Pests plant pathogens Plant protection plant-incorporated protectants Production costs raw materials Repressors Resistance factors resistance management Ribonucleic acid RNA RNA interference RNA interference‐based RNA-mediated interference viruses weeds |
| Title | RNA interference technology in crop protection against arthropod pests, pathogens and nematodes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fps.4813 https://www.ncbi.nlm.nih.gov/pubmed/29194942 https://www.proquest.com/docview/2035683202 https://www.proquest.com/docview/1971694609 https://www.proquest.com/docview/2084078897 |
| Volume | 74 |
| WOSCitedRecordID | wos000431670200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1526-4998 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009992 issn: 1526-498X databaseCode: DRFUL dateStart: 20000101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7STQ_toe_HtmlQIfRUN37IlnRcmiw5lCWkDexN6OUQKN5ltenv74ytOAkhUOjJ2B7hsTXjmdHj-wAOCk58A7XJnHd1xp0vMutosYMVXtFO0MrInmxCLBZyuVSnt6i-BnyIccCNPKP_X5ODGxsPb0BD1_Ebl8RXu1ui1fIJ7B6dzc9_3CDuqp4RGeNTk3Ell8OOWWp8mJreDUX38su76Wofb-bP_0PTF_AsJZlsNljFS9gJ3St4OrvYJKCNgGe3gAhfgz5bzBghR2zS9j-2HYfc8Tojni-WIB2wI5m5MJeYVzK0u55mwbM1vlP8yojgeIU2GZnpPOsIEHblQ3wD5_PjX99PskS9kDnOeZWF2josPFpnKoclVeGVD1bkbctDiQW15UXgNneVwuypEJZ4Y3wrctN4a9pWtNVbmHSrLrwHJp1oeVOXta2wDWYUGA9LxbGIN66QNp_Cl-te0C7hkhM9xm89ICqXeh01fb8psFFwPUBx3BfZu-5GnXwx6jKv6kYST_wUPo-30YtoasR0YXUVdUFIWoo3uXpYpswlTXpKJabwbjCRUY9SFYorjk846C3hIQX16U86fPg3sY_wBPMzOaxM24PJdnMVPsFj92d7GTf78Egs5X4y-78qXwVx |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_KKdg-tGpre63WLUifGs3HJtl9PNTD0ushVuHelv2KCJI7Lmf__s4ka6yIUOhTSDJLNtmZzMzuzu8HcJBw4hvIdWSdzSNuXRIZS5sdTOkkVYJmWrRkE-V0KmYzeR52VVItTIcP0U-4kWW0_2sycJqQPnpADV00h1wQYe0aRyXKB7B2cjG-mjxA7sqWEhkdVBFxKWZdySw1PgpNH_uiJwHm43i1dTjjN__T1U14HcJMNur0Ygte-HobXo2ulwFqw-PZX1CEb0FdTEeMsCOWoQCQrfpJd7zOiOmLBVAHHEqmr_UNRpYMNa8lWnBsgS_VfGNEcTxHrWyYrh2rCRJ27nzzDq7Gp5fHZ1EgX4gs5zyLfG4sph6V1ZnFpCpx0nlTxlXFfYopteGJ5ya2mcT4KSkNMce4qox14YyuqrLKdmBQz2v_AZiwZcWLPM1Nhm0wpkCPmEqOaby2iTDxEL7eD4OyAZmcCDJuVYepnKpFo-j7DYH1gosOjOOpyO79OKpgjY1K4ywvBDHFD-FLfxvtiBZHdO3nd41KCEtL8iKWz8uksaBlTyHLIbzvdKTvRyoTySXHJxy0qvBcB9X5Lzp8_Dexfdg4u_w5UZPv0x-f4CVGa6Lbp7YLg9Xyzu_Buv29ummWn4P2_wGe4gh5 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KUkp76PuxbdqqEHqqEz9kWzouSZaWhmVJG9ib0DMEitesN_39nbEVpyEEAjkZ2yMsWzOeGUnzfQC7GSe-gVIn1tky4dZlibG02cHUTlIlaKFFTzZRz-diuZSLuKuSamEGfIhxwo0so_9fk4H71oX9K9TQttvjgghrt3kpKzTK7cOT2enxFeSu7CmR0UFVCZdiOZTMUuP92PS6L7oRYF6PV3uHM3t2n64-h6cxzGTTQS9ewAPfvIQn07N1hNrwePYfFOErUCfzKSPsiHUsAGSbcdIdrzNi-mIR1AGHkukzfY6RJUPN64kWHGvxpbpvjCiOV6iVHdONYw1Bwq6c717D6ezo98H3JJIvJJZzXiS-NBZTj2B1YTGpypx03tRpCNznmFIbnnluUltIjJ-y2hBzjAt1qitndAh1KN7AVrNq_DtgwtaBV2VemgLbYEyBHjGXHNN4bTNh0gl8vRwGZSMyORFk_FEDpnKu2k7R95sAGwXbAYzjpsjO5TiqaI2dytOirAQxxU_gy3gb7YgWR3TjVxedyghLS_IqlbfL5KmgZU8h6wm8HXRk7EcuM8klxyfs9qpwWwfV4hcd3t9N7DM8WhzO1PGP-c8P8BiDNTFsU9uBrc36wn-Eh_bv5rxbf4rK_w8eTQf0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA+interference+technology+in+crop+protection+against+arthropod+pests%2C+pathogens+and+nematodes&rft.jtitle=Pest+management+science&rft.au=Zotti%2C+Moises&rft.au=dos+Santos%2C+Ericmar+Avila&rft.au=Cagliari%2C+Deise&rft.au=Christiaens%2C+Olivier&rft.date=2018-06-01&rft.issn=1526-498X&rft.volume=74&rft.issue=6+p.1239-1250&rft.spage=1239&rft.epage=1250&rft_id=info:doi/10.1002%2Fps.4813&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-498X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-498X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-498X&client=summon |