Simple and exact extreme eigenvalue distributions of finite Wishart matrices

The authors provide compact and exact expressions for the extreme eigenvalues of finite Wishart matrices with arbitrary dimensions. Using a combination of earlier results, which they refer to as the James–Edelman–Dighe framework, not only an original expression for the cumulative distribution functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET communications Jg. 9; H. 7; S. 990 - 998
Hauptverfasser: Zhang, Wensheng, Zheltov, Pavel, Abreu, Giuseppe
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 07.05.2015
Schlagworte:
ISSN:1751-8628, 1751-8636
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The authors provide compact and exact expressions for the extreme eigenvalues of finite Wishart matrices with arbitrary dimensions. Using a combination of earlier results, which they refer to as the James–Edelman–Dighe framework, not only an original expression for the cumulative distribution function (CDF) of the ‘smallest’ eigenvalue is obtained, but also the CDF of the ‘largest’ eigenvalue and the probability density functions of both are expressed in a similar and convenient matrix form. These compact expressions involve only inner products of exponential vectors, vectors of monomials and certain coefficient matrices which therefore assume a key role of carrying all the required information to build the expressions. The computation of these all-important coefficient matrices involves the evaluation of a determinant of a Hankel matrix of incomplete gamma functions. They offer a theorem which proves that the latter matrix has ‘catalectic’ properties, such that the degree of its determinant is surprisingly small. The theorem also implies a closed-form and numerical procedure (no symbolic calculations required) to build the coefficient matrices.
AbstractList The authors provide compact and exact expressions for the extreme eigenvalues of finite Wishart matrices with arbitrary dimensions. Using a combination of earlier results, which they refer to as the James–Edelman–Dighe framework, not only an original expression for the cumulative distribution function (CDF) of the ‘smallest’ eigenvalue is obtained, but also the CDF of the ‘largest’ eigenvalue and the probability density functions of both are expressed in a similar and convenient matrix form. These compact expressions involve only inner products of exponential vectors, vectors of monomials and certain coefficient matrices which therefore assume a key role of carrying all the required information to build the expressions. The computation of these all‐important coefficient matrices involves the evaluation of a determinant of a Hankel matrix of incomplete gamma functions. They offer a theorem which proves that the latter matrix has ‘catalectic’ properties, such that the degree of its determinant is surprisingly small. The theorem also implies a closed‐form and numerical procedure (no symbolic calculations required) to build the coefficient matrices.
Author Abreu, Giuseppe
Zhang, Wensheng
Zheltov, Pavel
Author_xml – sequence: 1
  givenname: Wensheng
  surname: Zhang
  fullname: Zhang, Wensheng
  email: zhangwsh@sdu.edu.cn
  organization: 1School of Information Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, People's Republic of China
– sequence: 2
  givenname: Pavel
  surname: Zheltov
  fullname: Zheltov, Pavel
  organization: 2School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
– sequence: 3
  givenname: Giuseppe
  surname: Abreu
  fullname: Abreu, Giuseppe
  organization: 2School of Engineering and Science, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
BookMark eNqFkMtOwzAQRS1UJNrCB7DLEhYpdmInMTuoeFQq6oJWLC3HmYCrPIrtAP17HBUhhHh4YY_ke0YzZ4QGTdsAQscETwim_EyDC1VbTyJM6ASnPN1DQ5IyEmZJnAw-6yg7QCNr1xgzllA6RPN7XW8qCGRTBPAmlfO3M1BDAPoRmhdZdRAU2jqj887ptrFBWwalbrSD4EHbJ2lcUEv_rcAeov1SVhaOPt4xWl1fLae34XxxM5tezENFKY1DhVlGGJNRnnBKFY4gZ1GiGI5TKCJWFKrMMQdMYhKXMZc5pQXjiivmDxQQj9HJru_GtM8dWCdqbRVUlWyg7awgGc4wpxGPfTTdRZVprTVQCqWd7BdxRupKECx6f8L7E96f6P2J3p8nyTdyY3QtzfZP5nzHvOoKtv8DYnq3ii6v_aa0H_V0B_exdduZxjsUs6ulmC7uvjCbovTZ8Ifs74O9A69Ipn0
CitedBy_id crossref_primary_10_1007_s11277_017_4078_6
Cites_doi 10.1109/T‐WC.2008.060213
10.1109/TCOMM.2011.112311.100721
10.1109/TCOMM.2003.810871
10.1063/1.3155785
10.1007/s11222‐009‐9154‐7
10.1109/TSP.2012.2205922
10.1063/1.1704274
10.1109/TIT.2003.817439
10.1007/s00039‐010‐0055‐x
10.1023/A:1019739414239
10.1049/iet‐spr.2012.0320
10.1214/aoms/1177703550
10.1109/LCOMM.2009.090425
10.1109/JSAC.2003.809720
10.1561/9781933019505
10.1016/j.jmva.2014.04.002
10.1109/TCOMM.2005.851564
10.1109/TCOMM.2009.06.070402
10.1080/03610918208812245
10.1214/009117905000000233
10.1214/07‐AIHP118
10.1214/aoms/1177700403
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Institution of Engineering and Technology
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1049/iet-com.2014.0797
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8636
EndPage 998
ExternalDocumentID 10_1049_iet_com_2014_0797
CMU2BF01343
Genre article
GrantInformation_xml – fundername: Independent Innovation Foundation of Shandong University
  funderid: 2012HW010
– fundername: Outstanding Young Scientist Research Award Foundation of Shandong Province
  funderid: BS2013DX004
– fundername: Doctoral Fund of Ministry of Education of China
  funderid: 20130131120024
– fundername: General and Special Program of China Postdoctoral Science Foundation
  funderid: 2012M521334; 2013T60669
– fundername: National Natural Science Foundation of China
  funderid: 61371110
GroupedDBID 0R
24P
29I
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
LOTEE
LXI
M43
MS
NADUK
NXXTH
O9-
OCL
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
ZZ
.DC
0R~
0ZK
1OC
2QL
4.4
6OB
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4443-c058155a2b6944c02eb526c5037ed25ddcfb09e01313f39ab44d59c9c5555ede3
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353547200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8628
IngestDate Thu Sep 04 17:43:44 EDT 2025
Wed Oct 29 21:33:18 EDT 2025
Tue Nov 18 22:23:36 EST 2025
Wed Jan 22 16:30:52 EST 2025
Tue Jan 05 21:53:18 EST 2021
Thu May 09 18:28:39 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords incomplete gamma function Hankel matrix
CDF
cumulative density function
coefficient matrix
Hankel matrices
monomial vector
eigenvalues and eigenfunctions
exact extreme eigenvalue distribution
simple extreme eigenvalue distribution
exponential distribution
James-Edelman-Dighe framework
finite Wishart matrix
exponential vector
catalectic properties
probability density function
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4443-c058155a2b6944c02eb526c5037ed25ddcfb09e01313f39ab44d59c9c5555ede3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-com.2014.0797
PQID 1808094293
PQPubID 23500
PageCount 9
ParticipantIDs crossref_citationtrail_10_1049_iet_com_2014_0797
iet_journals_10_1049_iet_com_2014_0797
wiley_primary_10_1049_iet_com_2014_0797_CMU2BF01343
proquest_miscellaneous_1808094293
crossref_primary_10_1049_iet_com_2014_0797
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2015-05-07
PublicationDateYYYYMMDD 2015-05-07
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-07
  day: 07
PublicationDecade 2010
PublicationTitle IET communications
PublicationYear 2015
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Zhang, W.; Abreu, G.; Inamori, M.; Sanada, Y. (C9) 2012; 60
James, A.T. (C1) 1964; 35
Park, C.S.; Lee, K.B. (C6) 2008; 7
Zeng, Y.; Liang, Y.-C. (C7) 2009; 57
Bronk, B.V. (C19) 1965; 6
Khatri, C.G. (C18) 1964; 35
Kang, M.; Alouini, M.-S. (C4) 2003; 21
Bai, Z.; Yao, J. (C13) 2008; 44
Tan, W.Y.; Gupta, R.P. (C17) 1982; 11
Kortun, A.; Sellathurai, M.; Ratnarajah, T.; Zhong, C. (C22) 2012; 60
Shin, H.; Lee, J.H. (C20) 2003; 49
Penna, F.; Garello, R.; Spirito, M. (C8) 2009; 13
Feldheim, O.N.; Sodin, S. (C15) 2010; 20
Butler, R.; Paige, R. (C21) 2011; 21
Soshnikov, A. (C11) 2002; 108
Dighe, P.; Mallik, R.; Jamuar, S. (C3) 2003; 51
Maaref, A.; Aissa, S. (C5) 2005; 53
Pillay, N.; Xu, H. (C10) 2013; 7
Féral, D.; Péché, S. (C14) 2009; 50
Chiani, M. (C23) 2014; 129
Baik, J.; Arous, G.B.; Péché, S. (C12) 2005; 33
2014; 129
2012; 60
2009; 57
2009; 13
2010; 20
2009; 50
1965; 6
1982; 11
2005; 53
2008; 7
2003; 49
2011; 21
2008; 44
2004
2002; 108
1964; 35
2013; 7
2003; 51
2005; 33
2003; 21
1989
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Press W. (e_1_2_7_26_1)
References_xml – volume: 60
  start-page: 5527
  issue: 10
  year: 2012
  end-page: 5532
  ident: C22
  article-title: Distribution of the ratio of the largest eigenvalue to the trace of complex Wishart matrices
  publication-title: IEEE Trans. Signal Process.
– volume: 53
  start-page: 1092
  issue: 7
  year: 2005
  end-page: 1095
  ident: C5
  article-title: Closed-form expressions for the outage and ergodic Shannon capacity of MIMO MRC systems
  publication-title: IEEE Trans. Commun.
– volume: 33
  start-page: 1643
  issue: 5
  year: 2005
  end-page: 1697
  ident: C12
  article-title: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
  publication-title: Ann. Probab.
– volume: 6
  start-page: 228
  year: 1965
  end-page: 237
  ident: C19
  article-title: Exponential ensembles for random matrices
  publication-title: J. Math. Phys.
– volume: 49
  start-page: 2636
  issue: 10
  year: 2003
  end-page: 2646
  ident: C20
  article-title: Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole
  publication-title: IEEE Trans. Inf. Theory
– volume: 21
  start-page: 418
  issue: 3
  year: 2003
  end-page: 426
  ident: C4
  article-title: Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 129
  start-page: 69
  issue: 10
  year: 2014
  end-page: 81
  ident: C23
  article-title: Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy-Widom distribution
  publication-title: J. Multivariate Anal.
– volume: 13
  start-page: 507
  issue: 7
  year: 2009
  end-page: 509
  ident: C8
  article-title: Cooperative spectrum sensing based on the limiting eigenvalue ratio distribution in Wishart matrices
  publication-title: IEEE Commun. Lett.
– volume: 108
  start-page: 1033
  issue: 5/6
  year: 2002
  end-page: 1056
  ident: C11
  article-title: A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices
  publication-title: J. Stat. Phys.
– volume: 50
  start-page: 1
  issue: 7
  year: 2009
  end-page: 34
  ident: C14
  article-title: The largest eigenvalues of sample covariance matrices for a spiked population: diagonal case
  publication-title: J. Math. Phys.
– volume: 7
  start-page: 4432
  issue: 11
  year: 2008
  end-page: 4438
  ident: C6
  article-title: Statistical multimode transmit antenna selection for limited feedback MIMO systems
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 21
  start-page: 147
  issue: 2
  year: 2011
  end-page: 157
  ident: C21
  article-title: Exact distributional computations for Roy's statistic and the largest eigenvalue of a Wishart distribution
  publication-title: Stat. Comput.
– volume: 44
  start-page: 447
  issue: 3
  year: 2008
  end-page: 474
  ident: C13
  article-title: Central limit theorems for eigenvalues in a spiked population model
  publication-title: Ann. Inst. H. Poincaré Probab. Stat.
– volume: 11
  start-page: 47
  issue: 1
  year: 1982
  end-page: 64
  ident: C17
  article-title: On approximating the non-central Wishart distribution by central Wishart distribution a Monte Carlo study
  publication-title: Commun. Stat., Simul. C.
– volume: 35
  start-page: 1807
  year: 1964
  end-page: 1810
  ident: C18
  article-title: Distribution of the largest or the smallest characteristic root under null hyper thesis concerning complex multivariate normal populations
  publication-title: Ann. Math. Stat.
– volume: 60
  start-page: 164
  issue: 1
  year: 2012
  end-page: 175
  ident: C9
  article-title: Spectrum sensing algorithms via finite random matrices
  publication-title: IEEE Trans. Commun.
– volume: 20
  start-page: 88
  year: 2010
  end-page: 123
  ident: C15
  article-title: A universality result for the smallest eigenvalues of certain sample covariance matrices
  publication-title: Geom. Funct. Anal.
– volume: 7
  start-page: 833
  issue: 9
  year: 2013
  end-page: 842
  ident: C10
  article-title: Eigenvalue-based spectrum sensing using the exact distribution of the maximum eigenvalue of a Wishart matrix
  publication-title: IET Signal Process.
– volume: 51
  start-page: 694
  issue: 4
  year: 2003
  end-page: 703
  ident: C3
  article-title: Analysis of transmit-receive diversity in Rayleigh fading
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 57
  start-page: 1784
  issue: 6
  year: 2009
  end-page: 1793
  ident: C7
  article-title: Eigenvalue-based spectrum sensing algorithms for cognitive radio
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 35
  start-page: 475
  issue: 2
  year: 1964
  end-page: 501
  ident: C1
  article-title: Distributions of matrix variates and latent roots derived from normal samples
  publication-title: Ann. Math. Stat.
– volume: 13
  start-page: 507
  issue: 7
  year: 2009
  end-page: 509
  article-title: Cooperative spectrum sensing based on the limiting eigenvalue ratio distribution in Wishart matrices
  publication-title: IEEE Commun. Lett.
– volume: 35
  start-page: 1807
  year: 1964
  end-page: 1810
  article-title: Distribution of the largest or the smallest characteristic root under null hyper thesis concerning complex multivariate normal populations
  publication-title: Ann. Math. Stat.
– volume: 60
  start-page: 5527
  issue: 10
  year: 2012
  end-page: 5532
  article-title: Distribution of the ratio of the largest eigenvalue to the trace of complex Wishart matrices
  publication-title: IEEE Trans. Signal Process.
– volume: 21
  start-page: 418
  issue: 3
  year: 2003
  end-page: 426
  article-title: Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 21
  start-page: 147
  issue: 2
  year: 2011
  end-page: 157
  article-title: Exact distributional computations for Roy'y statistic and the largest eigenvalue of a Wishart distribution
  publication-title: Stat. Comput.
– volume: 129
  start-page: 69
  issue: 10
  year: 2014
  end-page: 81
  article-title: Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy‐Widom distribution
  publication-title: J. Multivariate Anal.
– volume: 53
  start-page: 1092
  issue: 7
  year: 2005
  end-page: 1095
  article-title: Closed‐form expressions for the outage and ergodic Shannon capacity of MIMO MRC systems
  publication-title: IEEE Trans. Commun.
– volume: 51
  start-page: 694
  issue: 4
  year: 2003
  end-page: 703
  article-title: Analysis of transmit‐receive diversity in Rayleigh fading
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 7
  start-page: 4432
  issue: 11
  year: 2008
  end-page: 4438
  article-title: Statistical multimode transmit antenna selection for limited feedback MIMO systems
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 49
  start-page: 2636
  issue: 10
  year: 2003
  end-page: 2646
  article-title: Capacity of multiple‐antenna fading channels: spatial fading correlation, double scattering, and keyhole
  publication-title: IEEE Trans. Inf. Theory
– volume: 7
  start-page: 833
  issue: 9
  year: 2013
  end-page: 842
  article-title: Eigenvalue‐based spectrum sensing using the exact distribution of the maximum eigenvalue of a Wishart matrix
  publication-title: IET Signal Process.
– volume: 108
  start-page: 1033
  issue: 5/6
  year: 2002
  end-page: 1056
  article-title: A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices
  publication-title: J. Stat. Phys.
– volume: 60
  start-page: 164
  issue: 1
  year: 2012
  end-page: 175
  article-title: Spectrum sensing algorithms via finite random matrices
  publication-title: IEEE Trans. Commun.
– volume: 44
  start-page: 447
  issue: 3
  year: 2008
  end-page: 474
  article-title: Central limit theorems for eigenvalues in a spiked population model
  publication-title: Ann. Inst. H. Poincaré Probab. Stat.
– year: 1989
– volume: 50
  start-page: 1
  issue: 7
  year: 2009
  end-page: 34
  article-title: The largest eigenvalues of sample covariance matrices for a spiked population: diagonal case
  publication-title: J. Math. Phys.
– volume: 11
  start-page: 47
  issue: 1
  year: 1982
  end-page: 64
  article-title: On approximating the non‐central Wishart distribution by central Wishart distribution a Monte Carlo study
  publication-title: Commun. Stat., Simul. C.
– year: 2004
– volume: 6
  start-page: 228
  year: 1965
  end-page: 237
  article-title: Exponential ensembles for random matrices
  publication-title: J. Math. Phys.
– volume: 57
  start-page: 1784
  issue: 6
  year: 2009
  end-page: 1793
  article-title: Eigenvalue‐based spectrum sensing algorithms for cognitive radio
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 35
  start-page: 475
  issue: 2
  year: 1964
  end-page: 501
  article-title: Distributions of matrix variates and latent roots derived from normal samples
  publication-title: Ann. Math. Stat.
– volume: 33
  start-page: 1643
  issue: 5
  year: 2005
  end-page: 1697
  article-title: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
  publication-title: Ann. Probab.
– start-page: 536
  year: 2004
  end-page: 540
– volume: 20
  start-page: 88
  year: 2010
  end-page: 123
  article-title: A universality result for the smallest eigenvalues of certain sample covariance matrices
  publication-title: Geom. Funct. Anal.
– ident: e_1_2_7_7_1
  doi: 10.1109/T‐WC.2008.060213
– ident: e_1_2_7_10_1
  doi: 10.1109/TCOMM.2011.112311.100721
– ident: e_1_2_7_4_1
  doi: 10.1109/TCOMM.2003.810871
– ident: e_1_2_7_3_1
– ident: e_1_2_7_15_1
  doi: 10.1063/1.3155785
– ident: e_1_2_7_22_1
  doi: 10.1007/s11222‐009‐9154‐7
– ident: e_1_2_7_23_1
  doi: 10.1109/TSP.2012.2205922
– ident: e_1_2_7_20_1
  doi: 10.1063/1.1704274
– ident: e_1_2_7_21_1
  doi: 10.1109/TIT.2003.817439
– ident: e_1_2_7_16_1
  doi: 10.1007/s00039‐010‐0055‐x
– ident: e_1_2_7_17_1
– ident: e_1_2_7_12_1
  doi: 10.1023/A:1019739414239
– ident: e_1_2_7_11_1
  doi: 10.1049/iet‐spr.2012.0320
– ident: e_1_2_7_2_1
  doi: 10.1214/aoms/1177703550
– ident: e_1_2_7_9_1
  doi: 10.1109/LCOMM.2009.090425
– ident: e_1_2_7_5_1
  doi: 10.1109/JSAC.2003.809720
– ident: e_1_2_7_25_1
  doi: 10.1561/9781933019505
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jmva.2014.04.002
– volume-title: Numerical recipes in c + + : the art of scientific computing
  ident: e_1_2_7_26_1
– ident: e_1_2_7_6_1
  doi: 10.1109/TCOMM.2005.851564
– ident: e_1_2_7_8_1
  doi: 10.1109/TCOMM.2009.06.070402
– ident: e_1_2_7_18_1
  doi: 10.1080/03610918208812245
– ident: e_1_2_7_13_1
  doi: 10.1214/009117905000000233
– ident: e_1_2_7_14_1
  doi: 10.1214/07‐AIHP118
– ident: e_1_2_7_19_1
  doi: 10.1214/aoms/1177700403
SSID ssj0055644
Score 2.0406907
Snippet The authors provide compact and exact expressions for the extreme eigenvalues of finite Wishart matrices with arbitrary dimensions. Using a combination of...
SourceID proquest
crossref
wiley
iet
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 990
SubjectTerms catalectic properties
CDF
coefficient matrix
Coefficients
Construction
cumulative density function
Determinants
Eigenvalues
eigenvalues and eigenfunctions
exact extreme eigenvalue distribution
Exact solutions
exponential distribution
exponential vector
finite Wishart matrix
Hankel matrices
incomplete gamma function Hankel matrix
James‐Edelman‐Dighe framework
Mathematical analysis
monomial vector
probability density function
simple extreme eigenvalue distribution
Theorems
Vectors (mathematics)
Title Simple and exact extreme eigenvalue distributions of finite Wishart matrices
URI http://digital-library.theiet.org/content/journals/10.1049/iet-com.2014.0797
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-com.2014.0797
https://www.proquest.com/docview/1808094293
Volume 9
WOSCitedRecordID wos000353547200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6StIf2kL7ppg_UUnoouLH1WFvHZsnSQLMNNCG5CUsaw0LrDbtO6c_vjNa7zRJIodQHHWxJiJFG8-nh7wN4J2tTBpoFs7z2MtMEejPriyKzWEarqyibqJPYRDmZVBcX9mQLRqt_YZb8EOsNN_aMNF-zg9d-qUJCoJY6cYpdxhc-KILpj3lpy224UxSqYv0GqU9W07Exw6ToSmGyyAi-V-ujTbt_o4qN4LRNnzdw53X0msLP-MF_afhD2O3Rp_i0HC6PYAvbx3D_GifhE_jybcqEwaJuo8Bfdego7XgTUSATdzI5OIrIdLu9UtZCzBrRTBm7inPWcp534kci_sfFUzgbH56OPme95EIWtNYqC7mpCGHU0g-t1iGX6I0cBpOrEqM0MYbG5xaZpEc1ytZe62hssMHQgxHVM9hpZy0-B-EJiEpD0U5VSItU7RU2wdPqTKL2RRUHkK9s7ULPR86yGN9dOhfX1pGhHBnKsaEcG2oAH9ZFLpdkHLdlfs_vepdc3Jbx7UbGo8NTN_p6_CeDu4zNAN6sBoIjB-RTlbrF2RXVy8yclsK6GoBK_f73trnR8Zk8GJMZtdr7p1Iv4B69N-nqZfkSdrr5Fb6Cu-FnN13MXycPoPT8aPIbjq0IHw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxNBFD60VdA-1DvG6yjigzC6mUt257HGhgaTKJjSvg07l4WAbkqyLf58z5lsYoNQQdyHfdg9Mwxn58z55rLfB_BGlDr3OAryrHSCKwS93Lhul5uYB6OKIKqgkthEPpkUZ2fm6w58Wv8Ls-KH2Cy4UWSk8ZoCnBakVxNORSSZs9hwOvGBKUy9z3KT78INhYCDBBxOh5P1eKx1L0m6Yp7scsTvxWZv03z4o4qt7LSLr7eA51X4mvLP4M7_afldOGjxJztcdZh7sBPr-7B_hZXwAYy-zYgymJV1YPFn6Ru8N7SMyCJRdxI9eGSBCHdbrawlm1esmhF6Zaek5rxo2I9E_R-XD-FkcDTtH_NWdIF7pZTkPtMFYoxSuJ5RymciOi16Xmcyj0HoEHzlMhOJpkdW0pROqaCNN17jFUOUj2CvntfxMTCHUFRozHeyiDhNVU7Gyjucn4moXLcIHcjWzra-ZSQnYYzvNu2MK2PRURYdZclRlhzVgXebIucrOo7rjN_SszYol9cZvt4yHB5Nbf_L-LeBPQ9VB16te4LFEKR9lbKO8wusl7g5DSZ22QGZPvzf22b74xPxcYBuVPLJP5V6CbeOp-ORHQ0nn5_CbbTR6SBm_gz2msVFfA43_WUzWy5epHD4BbuYC2g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED_aboz2Yd9l2ac2xh4GXm19xNbjljasrM0Ca1nfhCWdIdA5JXHL_vzdOU7WMOhgzA9-sE5CnHS630ny7wDeytLkgVbBJC29TDSB3sT6LEss5tHqIsoq6jbZRD4aFWdndrwB-8t_YRb8EKsNN7aMdr1mA8eLWC0CTs0kmRNsEr7xQS5Mf0hzm2_CLW3yjOe21OPlemxMv03pSn4ySwi_F6uzTbv3RxNr3mmTiteA53X42vqf4b3_0_P7cLfDn-LjYsI8gA2sH8LONVbCR3D0bcKUwaKso8CfZWjo3fA2okCm7mR6cBSRCXe7XFlzMa1ENWH0Kr5zNudZI3601P84fwynw4OTweekS7qQBK21SkJqCsIYpfR9q3VIJXoj-8GkKscoTYyh8qlFpulRlbKl1zoaG2ww9GBEtQtb9bTGJyA8QVFpyN-pAilM1V5hFTzFZxK1z4rYg3SpbBc6RnJOjHHu2pNxbR0pypGiHCvKsaJ68H5V5WJBx3GT8Dv-1hnl_CbBN2uChwcnbvD1-LeAo_HrwevlTHBkgnyuUtY4vaR2mZvTkmNXPVDtwP-9b25wfCo_DUmNWj39p1qv4M54f-iODkdfnsE2iZj2Hmb-HLaa2SW-gNvhqpnMZy9ba_gFrhwKfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple+and+exact+extreme+eigenvalue+distributions+of+finite+Wishart+matrices&rft.jtitle=IET+communications&rft.au=Zhang%2C+Wensheng&rft.au=Zheltov%2C+Pavel&rft.au=Abreu%2C+Giuseppe&rft.date=2015-05-07&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8628&rft.eissn=1751-8636&rft.volume=9&rft.issue=7&rft.spage=990&rft.epage=998&rft_id=info:doi/10.1049%2Fiet-com.2014.0797&rft.externalDBID=10.1049%252Fiet-com.2014.0797&rft.externalDocID=CMU2BF01343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon