Matrix GPBiCG algorithms for solving the general coupled matrix equations

Linear matrix equations have important applications in control and system theory. In the study, we apply Kronecker product and vectorisation operator to extend the generalised product bi-conjugate gradient (GPBiCG) algorithms for solving the general coupled matrix equations ∑lj=1(A)i,1,jX1Bi,1,j+Ai,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IET control theory & applications Ročník 9; číslo 1; s. 74 - 81
Hlavný autor: Hajarian, Masoud
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: The Institution of Engineering and Technology 02.01.2015
Predmet:
ISSN:1751-8644, 1751-8652
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Linear matrix equations have important applications in control and system theory. In the study, we apply Kronecker product and vectorisation operator to extend the generalised product bi-conjugate gradient (GPBiCG) algorithms for solving the general coupled matrix equations ∑lj=1(A)i,1,jX1Bi,1,j+Ai,2,jX2Bi,2,j+…+Ai,l,jXi,l,j) = Di  for  i = 1,2,…,l (including the (coupled) Sylvester, the second-order Sylvester and coupled Markovian jump Lyapunov matrix equations). We propose four effective matrix algorithms for finding solutions of the matrix equations. Numerical examples and comparison with other well-known algorithms demonstrate the effectiveness of the proposed matrix algorithms.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2014.0669