Matrix GPBiCG algorithms for solving the general coupled matrix equations
Linear matrix equations have important applications in control and system theory. In the study, we apply Kronecker product and vectorisation operator to extend the generalised product bi-conjugate gradient (GPBiCG) algorithms for solving the general coupled matrix equations ∑lj=1(A)i,1,jX1Bi,1,j+Ai,...
Gespeichert in:
| Veröffentlicht in: | IET control theory & applications Jg. 9; H. 1; S. 74 - 81 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
The Institution of Engineering and Technology
02.01.2015
|
| Schlagworte: | |
| ISSN: | 1751-8644, 1751-8652 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Linear matrix equations have important applications in control and system theory. In the study, we apply Kronecker product and vectorisation operator to extend the generalised product bi-conjugate gradient (GPBiCG) algorithms for solving the general coupled matrix equations ∑lj=1(A)i,1,jX1Bi,1,j+Ai,2,jX2Bi,2,j+…+Ai,l,jXi,l,j) = Di for i = 1,2,…,l (including the (coupled) Sylvester, the second-order Sylvester and coupled Markovian jump Lyapunov matrix equations). We propose four effective matrix algorithms for finding solutions of the matrix equations. Numerical examples and comparison with other well-known algorithms demonstrate the effectiveness of the proposed matrix algorithms. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1751-8644 1751-8652 |
| DOI: | 10.1049/iet-cta.2014.0669 |