Matrix GPBiCG algorithms for solving the general coupled matrix equations

Linear matrix equations have important applications in control and system theory. In the study, we apply Kronecker product and vectorisation operator to extend the generalised product bi-conjugate gradient (GPBiCG) algorithms for solving the general coupled matrix equations ∑lj=1(A)i,1,jX1Bi,1,j+Ai,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET control theory & applications Ročník 9; číslo 1; s. 74 - 81
Hlavní autor: Hajarian, Masoud
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 02.01.2015
Témata:
ISSN:1751-8644, 1751-8652
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Linear matrix equations have important applications in control and system theory. In the study, we apply Kronecker product and vectorisation operator to extend the generalised product bi-conjugate gradient (GPBiCG) algorithms for solving the general coupled matrix equations ∑lj=1(A)i,1,jX1Bi,1,j+Ai,2,jX2Bi,2,j+…+Ai,l,jXi,l,j) = Di  for  i = 1,2,…,l (including the (coupled) Sylvester, the second-order Sylvester and coupled Markovian jump Lyapunov matrix equations). We propose four effective matrix algorithms for finding solutions of the matrix equations. Numerical examples and comparison with other well-known algorithms demonstrate the effectiveness of the proposed matrix algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2014.0669