Matrix GPBiCG algorithms for solving the general coupled matrix equations
Linear matrix equations have important applications in control and system theory. In the study, we apply Kronecker product and vectorisation operator to extend the generalised product bi-conjugate gradient (GPBiCG) algorithms for solving the general coupled matrix equations ∑lj=1(A)i,1,jX1Bi,1,j+Ai,...
Uloženo v:
| Vydáno v: | IET control theory & applications Ročník 9; číslo 1; s. 74 - 81 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Institution of Engineering and Technology
02.01.2015
|
| Témata: | |
| ISSN: | 1751-8644, 1751-8652 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Linear matrix equations have important applications in control and system theory. In the study, we apply Kronecker product and vectorisation operator to extend the generalised product bi-conjugate gradient (GPBiCG) algorithms for solving the general coupled matrix equations ∑lj=1(A)i,1,jX1Bi,1,j+Ai,2,jX2Bi,2,j+…+Ai,l,jXi,l,j) = Di for i = 1,2,…,l (including the (coupled) Sylvester, the second-order Sylvester and coupled Markovian jump Lyapunov matrix equations). We propose four effective matrix algorithms for finding solutions of the matrix equations. Numerical examples and comparison with other well-known algorithms demonstrate the effectiveness of the proposed matrix algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1751-8644 1751-8652 |
| DOI: | 10.1049/iet-cta.2014.0669 |