Online SSVEP-based BCI using Riemannian geometry

Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological) and to develop online and adaptive systems following the evolution of the subject׳s brain waves. Studying electroencephalographic (EEG) signals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 191; S. 55 - 68
Hauptverfasser: Kalunga, Emmanuel K., Chevallier, Sylvain, Barthélemy, Quentin, Djouani, Karim, Monacelli, Eric, Hamam, Yskandar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 26.05.2016
Elsevier
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological) and to develop online and adaptive systems following the evolution of the subject׳s brain waves. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows the construction of a representation which is invariant to extrinsic perturbations. As covariance matrices should be estimated, this paper first presents a thorough study of all estimators conducted on real EEG recording. Working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in Riemannian geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. Nonetheless, existing classification algorithms in Riemannian spaces are designed for offline analysis. We propose a novel algorithm for online and asynchronous processing of brain signals, borrowing principles from semi-unsupervised approaches and following a dynamic stopping scheme to provide a prediction as soon as possible. The assessment is conducted on real EEG recording: this is the first study on Steady-State Visually Evoked Potential (SSVEP) experimentations to exploit online classification based on Riemannian geometry. The proposed online algorithm is evaluated and compared with state-of-the-art SSVEP methods, which are based on Canonical Correlation Analysis (CCA). It is shown to improve both the classification accuracy and the information transfer rate in the online and asynchronous setup.
AbstractList Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological) and to develop online and adaptive systems following the evolution of the subject's brain waves. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows the construction of a representation which is invariant to extrinsic perturbations. As covariance matrices should be estimated, this paper first presents a thorough study of all estimators conducted on real EEG recording. Working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in Riemannian geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. Nonetheless, existing classification algorithms in Riemannian spaces are designed for offline analysis. We propose a novel algorithm for online and asynchronous processing of brain signals, borrowing principles from semi-unsupervised approaches and following a dynamic stopping scheme to provide a prediction as soon as possible. The assessment is conducted on real EEG recording: this is the first study on Steady-State Visually Evoked Potential (SSVEP) experimentations to exploit online classification based on Rie-mannian geometry. The proposed online algorithm is evaluated and compared with state-of-the-art SSVEP methods, which are based on Canonical Correlation Analysis (CCA). It is shown to improve both the classification accuracy and the information transfer rate in the online and asynchronous setup.
Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological) and to develop online and adaptive systems following the evolution of the subject's brain waves. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows the construction of a representation which is invariant to extrinsic perturbations. As covariance matrices should be estimated, this paper first presents a thorough study of all estimators conducted on real EEG recording. Working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in Riemannian geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. Nonetheless, existing classification algorithms in Riemannian spaces are designed for offline analysis. We propose a novel algorithm for online and asynchronous processing of brain signals, borrowing principles from semi-unsupervised approaches and following a dynamic stopping scheme to provide a prediction as soon as possible. The assessment is conducted on real EEG recording: this is the first study on Steady-State Visually Evoked Potential (SSVEP) experimentations to exploit online classification based on Riemannian geometry. The proposed online algorithm is evaluated and compared with state-of-the-art SSVEP methods, which are based on Canonical Correlation Analysis (CCA). It is shown to improve both the classification accuracy and the information transfer rate in the online and asynchronous setup.
Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological) and to develop online and adaptive systems following the evolution of the subject׳s brain waves. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows the construction of a representation which is invariant to extrinsic perturbations. As covariance matrices should be estimated, this paper first presents a thorough study of all estimators conducted on real EEG recording. Working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in Riemannian geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. Nonetheless, existing classification algorithms in Riemannian spaces are designed for offline analysis. We propose a novel algorithm for online and asynchronous processing of brain signals, borrowing principles from semi-unsupervised approaches and following a dynamic stopping scheme to provide a prediction as soon as possible. The assessment is conducted on real EEG recording: this is the first study on Steady-State Visually Evoked Potential (SSVEP) experimentations to exploit online classification based on Riemannian geometry. The proposed online algorithm is evaluated and compared with state-of-the-art SSVEP methods, which are based on Canonical Correlation Analysis (CCA). It is shown to improve both the classification accuracy and the information transfer rate in the online and asynchronous setup.
Author Monacelli, Eric
Chevallier, Sylvain
Djouani, Karim
Kalunga, Emmanuel K.
Barthélemy, Quentin
Hamam, Yskandar
Author_xml – sequence: 1
  givenname: Emmanuel K.
  surname: Kalunga
  fullname: Kalunga, Emmanuel K.
  organization: Department of Electrical Engineering and the French South African Institute of Technology, Tshwane University of Technology, Pretoria 0001, South Africa
– sequence: 2
  givenname: Sylvain
  orcidid: 0000-0003-3027-8241
  surname: Chevallier
  fullname: Chevallier, Sylvain
  organization: Laboratoire d׳Ingénierie des Systèmes de Versailles, Université de Versailles Saint-Quentin, 78140 Velizy, France
– sequence: 3
  givenname: Quentin
  surname: Barthélemy
  fullname: Barthélemy, Quentin
  organization: Mensia Technologies, S.A. ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
– sequence: 4
  givenname: Karim
  surname: Djouani
  fullname: Djouani, Karim
  organization: Department of Electrical Engineering and the French South African Institute of Technology, Tshwane University of Technology, Pretoria 0001, South Africa
– sequence: 5
  givenname: Eric
  surname: Monacelli
  fullname: Monacelli, Eric
  organization: Laboratoire d׳Ingénierie des Systèmes de Versailles, Université de Versailles Saint-Quentin, 78140 Velizy, France
– sequence: 6
  givenname: Yskandar
  surname: Hamam
  fullname: Hamam, Yskandar
  organization: Department of Electrical Engineering and the French South African Institute of Technology, Tshwane University of Technology, Pretoria 0001, South Africa
BackLink https://hal.science/hal-01351623$$DView record in HAL
BookMark eNqFkE1LxDAQhoMouH78Aw896qE1H22aehB08QsWVlz1GmbTqWZpE026gv_eLhUPHvQ0zPC878CzR7add0jIEaMZo0yerjKHa-O7jA9bRllGablFJkyVPFVcyW0yoRUvUi4Y3yV7Ma4oZSXj1YTQuWutw2SxeL66T5cQsU4up3fJOlr3kjxY7MA5Cy55Qd9hHz4PyE4DbcTD77lPnq6vHqe36Wx-cze9mKUmz0WfNmUlBG-WMheGiaosixK55EZSVBwlFAAKGqhlpXIpl0oNcA0KsaqgqgWKfXIy9r5Cq9-C7SB8ag9W317M9OZGmSiY5OKDDezxyL4F_77G2OvORoNtCw79OmqmikIUnEs5oPmImuBjDNj8dDOqNzL1So8y9Ubm8EUPMofY2a-YsT301rs-gG3_C5-PYRx8fVgMOhqLzmBtA5pe197-XfAFxvuSBA
CitedBy_id crossref_primary_10_1038_s41598_022_14026_y
crossref_primary_10_1109_TNSRE_2021_3106876
crossref_primary_10_1109_TSP_2017_2649483
crossref_primary_10_1109_ACCESS_2019_2910191
crossref_primary_10_1007_s10044_018_0758_4
crossref_primary_10_1088_1361_6579_aba07b
crossref_primary_10_1016_j_cnsns_2022_106985
crossref_primary_10_1088_1741_2552_ad6793
crossref_primary_10_1016_j_neucom_2019_10_049
crossref_primary_10_1109_TNSRE_2019_2893113
crossref_primary_10_1016_j_neucom_2017_03_082
crossref_primary_10_3390_math12142164
crossref_primary_10_1051_matecconf_201816007007
crossref_primary_10_1016_j_jneumeth_2022_109642
crossref_primary_10_3389_fnins_2020_00593
crossref_primary_10_3390_brainsci12050659
crossref_primary_10_1177_15500594221078166
crossref_primary_10_1007_s12021_020_09473_9
crossref_primary_10_1016_j_knosys_2018_04_013
crossref_primary_10_1016_j_neucom_2016_11_008
crossref_primary_10_1088_1741_2552_aab2f2
crossref_primary_10_1088_1741_2552_ad171a
crossref_primary_10_1088_2057_1976_ad865d
crossref_primary_10_1016_j_bspc_2025_108505
crossref_primary_10_1038_s41597_022_01372_9
crossref_primary_10_1088_1741_2552_abf291
crossref_primary_10_1109_TNSRE_2020_3043418
crossref_primary_10_3389_fncom_2018_00021
crossref_primary_10_1109_TNSRE_2017_2699784
crossref_primary_10_1109_JIOT_2024_3406837
crossref_primary_10_1109_TNSRE_2024_3380635
crossref_primary_10_1080_2326263X_2019_1671040
crossref_primary_10_1088_1741_2552_aa8065
crossref_primary_10_1109_ACCESS_2023_3313260
crossref_primary_10_1109_TCE_2025_3557912
crossref_primary_10_3389_fnins_2023_1161511
crossref_primary_10_1016_j_ijhcs_2023_103009
crossref_primary_10_1109_TBME_2022_3154885
crossref_primary_10_1520_JTE20210752
crossref_primary_10_1016_j_jneumeth_2019_108434
crossref_primary_10_1016_j_neucom_2016_08_121
crossref_primary_10_1088_1742_6596_1631_1_012172
crossref_primary_10_3389_fnins_2023_1270785
crossref_primary_10_1016_j_eswa_2023_119613
crossref_primary_10_1109_TNSRE_2023_3266488
crossref_primary_10_1088_1741_2552_abc902
crossref_primary_10_1109_TNSRE_2022_3167262
crossref_primary_10_1109_TSMC_2020_2964684
crossref_primary_10_1162_imag_a_00223
crossref_primary_10_1080_2326263X_2021_2009654
crossref_primary_10_1177_0734242X241248730
crossref_primary_10_1109_TCSII_2021_3091803
crossref_primary_10_3389_fnins_2020_00627
crossref_primary_10_1007_s11571_021_09676_z
crossref_primary_10_1088_2057_1976_acaca2
crossref_primary_10_1109_TBME_2018_2889705
crossref_primary_10_1080_2326263X_2022_2140467
crossref_primary_10_3390_s21041256
crossref_primary_10_1109_TNSRE_2021_3073918
crossref_primary_10_1016_j_pnpbp_2020_109960
crossref_primary_10_1088_1741_2552_aba7cd
Cites_doi 10.1186/1471-2202-10-S1-P84
10.1109/TNSRE.2007.912816
10.1109/TBME.2013.2265260
10.1049/iet-spr.2011.0234
10.1109/MMSP.2010.5662067
10.1523/JNEUROSCI.23-37-11621.2003
10.1371/journal.pone.0051077
10.1109/CVPR.2008.4587422
10.1137/S0895479803436937
10.1109/AFRCON.2013.6757776
10.1109/TNSRE.2006.875642
10.1109/TBME.2004.826692
10.1155/2010/702357
10.1111/j.1528-1167.2005.31405.x
10.1016/j.neucom.2012.12.039
10.1109/TBME.2006.886577
10.1016/S0167-8655(01)00075-7
10.2202/1544-6115.1175
10.1109/CVPR.2013.17
10.1109/iww-BCI.2014.6782545
10.1155/2009/864564
10.1109/MSP.2008.4408441
10.1016/j.pneurobio.2009.11.005
10.1109/TNSRE.2003.814449
10.1109/TIC-STH.2009.5444491
10.1146/annurev.bb.02.060173.001105
10.1007/s10548-009-0121-6
10.1016/S1388-2457(02)00057-3
10.1109/NER.2011.5910558
10.1109/AIM.2014.6878132
10.1109/MLSP.2013.6661972
10.1007/978-1-84996-272-8_3
10.1088/1741-2560/8/2/025015
10.1007/978-3-642-33269-2_83
10.1016/S0047-259X(03)00096-4
10.1109/TBME.2010.2082539
10.1109/TBME.2010.2082540
10.1142/S0129065714500191
10.1109/TIT.2009.2030485
10.3389/fnins.2012.00055
10.1109/TNSRE.2009.2039594
10.1109/TNSRE.2009.2039495
10.1109/TBME.2010.2058804
10.1111/j.1749-6632.1982.tb50784.x
10.1016/j.neuroimage.2010.06.048
10.1007/978-3-642-15995-4_78
10.1073/pnas.93.10.4770
10.1016/j.neucom.2015.02.005
10.1073/pnas.0606668103
10.1088/1741-2560/11/3/035004
10.1088/1741-2560/8/3/036027
10.1109/TMI.2004.831793
10.1016/j.neulet.2009.11.039
10.1007/s002210100682
10.1016/S0925-2312(00)00226-5
10.1007/978-3-540-87479-9_43
10.1007/s11263-005-3222-z
10.1109/TBME.2011.2172210
10.1007/978-3-642-21605-3_46
10.1016/j.neucom.2011.10.024
10.1002/sim.2929
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.neucom.2016.01.007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 68
ExternalDocumentID oai:HAL:hal-01351623v1
10_1016_j_neucom_2016_01_007
S0925231216000540
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c443t-f79332fb643c1397757e262c60e82e6a5aa8afad698466b8832fda8ee99a9d3e3
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375165900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Oct 14 20:16:58 EDT 2025
Sat Sep 27 22:35:43 EDT 2025
Sat Nov 29 07:52:21 EST 2025
Tue Nov 18 20:36:48 EST 2025
Fri Feb 23 02:28:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Riemannian geometry
Asynchronous
Online
Steady State Visually Evoked Potentials
Brain–Computer Interfaces
Brain-Computer Interfaces
Steady State Visually-Evoked Potential
Riemannian Geometry
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-f79332fb643c1397757e262c60e82e6a5aa8afad698466b8832fda8ee99a9d3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3027-8241
0000-0001-6060-8200
0000-0002-7010-6818
0000-0002-0637-341X
OpenAccessLink https://hal.science/hal-01351623
PQID 1855352266
PQPubID 23500
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_01351623v1
proquest_miscellaneous_1855352266
crossref_primary_10_1016_j_neucom_2016_01_007
crossref_citationtrail_10_1016_j_neucom_2016_01_007
elsevier_sciencedirect_doi_10_1016_j_neucom_2016_01_007
PublicationCentury 2000
PublicationDate 2016-05-26
PublicationDateYYYYMMDD 2016-05-26
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-26
  day: 26
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lu, Eng, Guan, Plataniotis, Venetsanopoulos (bib16) 2010; 57
Ledoit, Wolf (bib68) 2004; 88
Zhu, Bieger, Molina, Aarts (bib39) 2010
Vidaurre, Blankertz (bib11) 2010; 23
T. Takahashi, K.H. Chiappa, Activation methods, Electroencephalography. in: Basic Principles, Clinical Applications, and Related Fields, 5th ed., Lippincott Williams & Wilkins, 2004, pp. 241–262.
Bayliss, Ballard (bib3) 2000; 32–33
S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on the Riemannian manifold of symmetric positive definite matrices, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 73–80.
A. Barachant, S. Bonnet, M. Congedo, C. Jutten, Riemannian geometry applied to BCI classification, in: Latent Variable Analysis and Signal Separation, Springer, 2010, pp. 629–636.
M. Tangermann, K.-R. Müller, A. Aertsen, N. Birbaumer, C. Braun, C. Brunner, R. Leeb, C. Mehring, K.J. Miller, G. Mueller-Putz, G. Nolte, G. Pfurtscheller, H. Preissl, G. Schalk, A. Schlögl, C. Vidaurre, S. Waldert, B. Blankertz, Review of the BCI Competition IV, Front. Neurosci. 6 (55).
E.K. Kalunga, S. Chevallier, O. Rabreau, E. Monacelli, Hybrid interface: integrating BCI in multimodal human–machine interfaces, in: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2014, pp. 530–535.
Regan (bib32) 1982; 388
Panicker, Puthusserypady, Sun (bib29) 2010; 57
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib1) 2002; 113
Lotte, Guan (bib18) 2011; 58
Jost (bib64) 2011
Blankertz, Lemm, Treder, Haufe, Müller (bib69) 2011; 56
Müller, Andersen, Trujillo, Valdés-Sosa, Malinowski, Hillyard (bib37) 2006; 103
Li, Wong, De Bruin (bib63) 2012; 6
Lin, Zhang, Wu, Gao (bib20) 2006; 53
Vialatte, Maurice, Dauwels, Cichocki (bib75) 2010; 90
Fukunaga (bib67) 1990
Blankertz, Muller, Krusienski, Schalk, Wolpaw, Schlogl, Pfurtscheller, Millan, Schroder, Birbaumer (bib7) 2006; 14
B.Z. Allison, C. Neuper, Could anyone use a BCI? in: D.S. Nijholt (Eds.), Brain–Computer Interfaces, Human–Computer Interaction Series, Springer, London, 2010, pp. 35–54 (Chapter 3).
.
A. Barachant, S. Bonnet, Channel selection procedure using Riemannian distance for BCI applications, in: International IEEE/EMBS Conference on Neural Engineering (NER), 2011, pp. 348–351.
Y. Li, K.M. Wong, H. De Bruin, EEG signal classification based on a Riemannian distance measure, in: Science and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International Conference, IEEE, 2009, Toronto, Canada pp. 268–273.
Blankertz, Müller, Curio, Vaughan, Schalk, Wolpaw, Schlögl, Neuper, Pfurtscheller, Hinterberger, Schröder, Birbaumer (bib6) 2004; 51
W. Samek, D. Blythe, K.-R. Müller, M. Kawanabe, Robust spatial filtering with beta divergence, in: Advances in NeuralInformation Processing Systems (NIPS), 2013, pp. 1007–1015.
Bhatia (bib22) 2009
H. Verschore, P.-J. Kindermans, D. Verstraeten, B. Schrauwen, Dynamic stopping improves the speed and accuracy of a P300 speller, in: Artificial Neural Networks and Machine Learning–ICANN 2012, Toronto, Canada, Springer, 2012, pp. 661–668.
Barachant, Bonnet, Congedo, Jutten (bib23) 2012; 59
Nakanishi, Wang, Wang, Mitsukura, Jung (bib44) 2014; 24
E. Niedermeyer, F.L. da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th ed., 2004.
Morgan, Hansen, Hillyard (bib36) 1996; 93
Gao, Xu, Cheng, Gao (bib27) 2003; 11
Obermaier, Guger, Neuper, Pfurtscheller (bib12) 2001; 22
Lenhardt, Kaper, Ritter (bib13) 2008; 16
Amari (bib57) 2009; 55
Vidal (bib2) 1973; 2
A. Barachant, A. Andreev, M. Congedo, et al., The Riemannian potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry, in: Proceedings of TOBI Workshop IV, 2013, pp. 19–20.
Blankertz, Tomioka, Lemm, Kawanabe, Muller (bib17) 2008; 25
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib35) 2002; 113
Bakardjian, Tanaka, Cichocki (bib76) 2010; 469
L.F. Nicolas-Alonso, R. Corralejo, J. Gomez-Pilar, D. Álvarez, R. Hornero, Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain–computer interfaces, Neurocomputing 2016.
Pan, Gao, Duan, Yan, Gao (bib43) 2011; 8
Moakher (bib65) 2005; 26
F. Yger, A review of kernels on covariance matrices for BCI applications, in: IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2013, pp. 1–6.
G. Edlinger, C. Holzner, C. Guger, A hybrid Brain–Computer interface for smart home control, in: J.A. Jacko (Ed.), Human–Computer Interaction. Interaction Techniques and Environments, Lecture Notes in Computer Science, vol. 6762, Springer, Berlin, Heidelberg, 2011, pp. 417–426.
Y. Xie, J. Ho, B. Vemuri, On a nonlinear generalization of sparse coding and dictionary learning, in: International Conference on Machine Learning (ICML), 2013, p. 1480.
A. Goh, R. Vidal, Unsupervised Riemannian clustering of probability density functions, in: Machine Learning and Knowledge Discovery in Databases, Springer, 2008, pp. 377–392.
Pennec, Fillard, Ayache (bib54) 2006; 66
J. Schäfer, K. Strimmer, A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics, Stat. Appl. Genet. Mol. Biol. 4 (1).
Parini, Maggi, Turconi, Andreoni (bib48) 2009
W. Samek, K.-R. Muller, Information geometry meets BCI spatial filtering using divergences, in: International Winter Workshop on Brain–Computer Interface, Seoul, Korea, IEEE, 2014, pp. 1–4.
Kimura, Tanaka, Higashi, Morikawa (bib74) 2013; 60
Fisher, Harding, Erba, Barkley, Wilkins (bib42) 2005; 46
M. Congedo, EEG source analysis, Habilitation á diriger des recherches, Université de Grenoble, October 2013.
Pencina, D׳Agostino, Vasan (bib73) 2008; 27
Absil, Mahony, Sepulchre (bib21) 2009
Niedermeyer, Lopes da Silva (bib5) 2004
Allison, Lüth, Valbuena, Teymourian, Volosyak, Gräser (bib38) 2010; 18
Fletcher, Lu, Pizer, Joshi (bib66) 2004; 23
A. Barachant, S. Bonnet, M. Congedo, C. Jutten, Common spatial pattern revisited by Riemannian geometry, in: IEEE International Workshop on Multimedia Signal Processing (MMSP), 2010, Saint Malo, France, pp. 472–476.
Cecotti (bib47) 2010; 18
Schettini, Aloise, Aricò, Salinari, Mattia, Cincotti (bib30) 2014; 11
Bin, Gao, Wang, Li, Hong, Gao (bib46) 2011; 8
Tu, Sun (bib4) 2012; 82
E. Kalunga, K. Djouani, Y. Hamam, S. Chevallier, E. Monacelli, SSVEP enhancement based on Canonical Correlation Analysis to improve bci performances, in: IEEE, Africon 2013, pp. 1–5.
F. Pascal, P. Forster, J.P. Ovarlez, P. Arzabal, Theoretical analysis of an improved covariance matrix estimator in non-gaussian noise, in: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, 2005.
Dickhaus, Sannelli, Müller, Curio, Blankertz (bib9) 2009; 10
Spüler, Rosenstiel, Bogdan (bib45) 2012; 7
Barachant, Bonnet, Congedo, Jutten (bib24) 2013; 112
Pastor, Artieda, Arbizu, Valencia, Masdeu (bib41) 2003; 23
M. Congedo, A. Barachant, A. Andreev, A new generation of brain–computer interface based on Riemannian geometry, arXiv preprint
A. Goh, R. Vidal, Clustering and dimensionality reduction on Riemannian manifolds, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008, pp. 1–7.
Herrmann (bib40) 2001; 137
Y. Yang, S. Chevallier, J. Wiart, I. Bloch, Automatic selection of the number of spatial filters for motor-imagery BCI, in: European Symposium on Artificial Neural Networks (ESANN), 2012, pp. 109–114.
Barachant (10.1016/j.neucom.2016.01.007_bib23) 2012; 59
Barachant (10.1016/j.neucom.2016.01.007_bib24) 2013; 112
Amari (10.1016/j.neucom.2016.01.007_bib57) 2009; 55
Blankertz (10.1016/j.neucom.2016.01.007_bib6) 2004; 51
Li (10.1016/j.neucom.2016.01.007_bib63) 2012; 6
Lenhardt (10.1016/j.neucom.2016.01.007_bib13) 2008; 16
Müller (10.1016/j.neucom.2016.01.007_bib37) 2006; 103
Bin (10.1016/j.neucom.2016.01.007_bib46) 2011; 8
Nakanishi (10.1016/j.neucom.2016.01.007_bib44) 2014; 24
10.1016/j.neucom.2016.01.007_bib49
Vidal (10.1016/j.neucom.2016.01.007_bib2) 1973; 2
Panicker (10.1016/j.neucom.2016.01.007_bib29) 2010; 57
Kimura (10.1016/j.neucom.2016.01.007_bib74) 2013; 60
Obermaier (10.1016/j.neucom.2016.01.007_bib12) 2001; 22
10.1016/j.neucom.2016.01.007_bib8
Blankertz (10.1016/j.neucom.2016.01.007_bib17) 2008; 25
Vialatte (10.1016/j.neucom.2016.01.007_bib75) 2010; 90
Vidaurre (10.1016/j.neucom.2016.01.007_bib11) 2010; 23
Gao (10.1016/j.neucom.2016.01.007_bib27) 2003; 11
10.1016/j.neucom.2016.01.007_bib14
10.1016/j.neucom.2016.01.007_bib58
10.1016/j.neucom.2016.01.007_bib15
Regan (10.1016/j.neucom.2016.01.007_bib32) 1982; 388
10.1016/j.neucom.2016.01.007_bib59
Herrmann (10.1016/j.neucom.2016.01.007_bib40) 2001; 137
10.1016/j.neucom.2016.01.007_bib19
Wolpaw (10.1016/j.neucom.2016.01.007_bib1) 2002; 113
10.1016/j.neucom.2016.01.007_bib50
10.1016/j.neucom.2016.01.007_bib51
Pastor (10.1016/j.neucom.2016.01.007_bib41) 2003; 23
10.1016/j.neucom.2016.01.007_bib52
10.1016/j.neucom.2016.01.007_bib53
10.1016/j.neucom.2016.01.007_bib10
10.1016/j.neucom.2016.01.007_bib55
Lotte (10.1016/j.neucom.2016.01.007_bib18) 2011; 58
10.1016/j.neucom.2016.01.007_bib56
Lu (10.1016/j.neucom.2016.01.007_bib16) 2010; 57
Allison (10.1016/j.neucom.2016.01.007_bib38) 2010; 18
Fletcher (10.1016/j.neucom.2016.01.007_bib66) 2004; 23
Absil (10.1016/j.neucom.2016.01.007_bib21) 2009
10.1016/j.neucom.2016.01.007_bib70
Bayliss (10.1016/j.neucom.2016.01.007_bib3) 2000; 32–33
Cecotti (10.1016/j.neucom.2016.01.007_bib47) 2010; 18
Pencina (10.1016/j.neucom.2016.01.007_bib73) 2008; 27
Zhu (10.1016/j.neucom.2016.01.007_bib39) 2010
10.1016/j.neucom.2016.01.007_bib25
10.1016/j.neucom.2016.01.007_bib26
10.1016/j.neucom.2016.01.007_bib28
Moakher (10.1016/j.neucom.2016.01.007_bib65) 2005; 26
Lin (10.1016/j.neucom.2016.01.007_bib20) 2006; 53
10.1016/j.neucom.2016.01.007_bib60
Schettini (10.1016/j.neucom.2016.01.007_bib30) 2014; 11
10.1016/j.neucom.2016.01.007_bib61
10.1016/j.neucom.2016.01.007_bib62
Bhatia (10.1016/j.neucom.2016.01.007_bib22) 2009
Fisher (10.1016/j.neucom.2016.01.007_bib42) 2005; 46
Pennec (10.1016/j.neucom.2016.01.007_bib54) 2006; 66
Parini (10.1016/j.neucom.2016.01.007_bib48) 2009
Dickhaus (10.1016/j.neucom.2016.01.007_bib9) 2009; 10
Niedermeyer (10.1016/j.neucom.2016.01.007_bib5) 2004
Morgan (10.1016/j.neucom.2016.01.007_bib36) 1996; 93
Wolpaw (10.1016/j.neucom.2016.01.007_bib35) 2002; 113
Ledoit (10.1016/j.neucom.2016.01.007_bib68) 2004; 88
Pan (10.1016/j.neucom.2016.01.007_bib43) 2011; 8
Blankertz (10.1016/j.neucom.2016.01.007_bib69) 2011; 56
Jost (10.1016/j.neucom.2016.01.007_bib64) 2011
Blankertz (10.1016/j.neucom.2016.01.007_bib7) 2006; 14
Fukunaga (10.1016/j.neucom.2016.01.007_bib67) 1990
10.1016/j.neucom.2016.01.007_bib71
10.1016/j.neucom.2016.01.007_bib72
Spüler (10.1016/j.neucom.2016.01.007_bib45) 2012; 7
Tu (10.1016/j.neucom.2016.01.007_bib4) 2012; 82
10.1016/j.neucom.2016.01.007_bib31
10.1016/j.neucom.2016.01.007_bib33
Bakardjian (10.1016/j.neucom.2016.01.007_bib76) 2010; 469
10.1016/j.neucom.2016.01.007_bib34
References_xml – volume: 10
  start-page: 1
  year: 2009
  end-page: 2
  ident: bib9
  article-title: Predicting BCI performance to study BCI illiteracy
  publication-title: BMC Neurosci.
– reference: Y. Yang, S. Chevallier, J. Wiart, I. Bloch, Automatic selection of the number of spatial filters for motor-imagery BCI, in: European Symposium on Artificial Neural Networks (ESANN), 2012, pp. 109–114.
– reference: A. Goh, R. Vidal, Clustering and dimensionality reduction on Riemannian manifolds, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008, pp. 1–7.
– volume: 25
  start-page: 41
  year: 2008
  end-page: 56
  ident: bib17
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
– volume: 66
  start-page: 41
  year: 2006
  end-page: 66
  ident: bib54
  article-title: A Riemannian framework for tensor computing
  publication-title: Int. J. Comput. Vis.
– volume: 88
  start-page: 365
  year: 2004
  end-page: 411
  ident: bib68
  article-title: A well-conditioned estimator for large-dimensional covariance matrices
  publication-title: J. Multivar. Anal.
– volume: 11
  start-page: 137
  year: 2003
  end-page: 140
  ident: bib27
  article-title: A BCI-based environmental controller for the motion-disabled
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 388
  start-page: 45
  year: 1982
  end-page: 71
  ident: bib32
  article-title: Comparison of transient and steady-state methods
  publication-title: Ann. N.Y. Acad. Sci.
– volume: 90
  start-page: 418
  year: 2010
  end-page: 438
  ident: bib75
  article-title: Steady-state visually evoked potentials
  publication-title: Prog. Neurobiol.
– volume: 32–33
  start-page: 637
  year: 2000
  end-page: 642
  ident: bib3
  article-title: Single trial P3 epoch recognition in a virtual environment
  publication-title: Neurocomputing
– reference: W. Samek, D. Blythe, K.-R. Müller, M. Kawanabe, Robust spatial filtering with beta divergence, in: Advances in NeuralInformation Processing Systems (NIPS), 2013, pp. 1007–1015.
– year: 2009
  ident: bib48
  article-title: A robust and self-paced BCI system based on a four class SSVEP paradigm
  publication-title: Intell. Neurosci.
– reference: M. Congedo, EEG source analysis, Habilitation á diriger des recherches, Université de Grenoble, October 2013.
– year: 2011
  ident: bib64
  article-title: Riemannian Geometry and Geometric Analysis, vol. 62011
– year: 2009
  ident: bib21
  article-title: Optimization Algorithms on Matrix Manifolds
– reference: J. Schäfer, K. Strimmer, A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics, Stat. Appl. Genet. Mol. Biol. 4 (1).
– reference: B.Z. Allison, C. Neuper, Could anyone use a BCI? in: D.S. Nijholt (Eds.), Brain–Computer Interfaces, Human–Computer Interaction Series, Springer, London, 2010, pp. 35–54 (Chapter 3).
– volume: 26
  start-page: 735
  year: 2005
  end-page: 747
  ident: bib65
  article-title: A differential geometric approach to the geometric mean of symmetric positive-definite matrices
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 82
  start-page: 109
  year: 2012
  end-page: 116
  ident: bib4
  article-title: A subject transfer framework for EEG classification
  publication-title: Neurocomputing
– volume: 93
  start-page: 4770
  year: 1996
  end-page: 4774
  ident: bib36
  article-title: Selective attention to stimulus location modulates the steady-state visual evoked potential
  publication-title: Proc. Natl. Acad. Sci. USA
– reference: A. Barachant, A. Andreev, M. Congedo, et al., The Riemannian potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry, in: Proceedings of TOBI Workshop IV, 2013, pp. 19–20.
– reference: F. Pascal, P. Forster, J.P. Ovarlez, P. Arzabal, Theoretical analysis of an improved covariance matrix estimator in non-gaussian noise, in: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, 2005.
– volume: 55
  start-page: 4925
  year: 2009
  end-page: 4931
  ident: bib57
  article-title: -divergence is unique, belonging to both
  publication-title: IEEE Trans. Inf. Theory
– reference: F. Yger, A review of kernels on covariance matrices for BCI applications, in: IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2013, pp. 1–6.
– volume: 57
  start-page: 2936
  year: 2010
  end-page: 2946
  ident: bib16
  article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting
  publication-title: IEEE Trans. Biomed. Eng.
– reference: H. Verschore, P.-J. Kindermans, D. Verstraeten, B. Schrauwen, Dynamic stopping improves the speed and accuracy of a P300 speller, in: Artificial Neural Networks and Machine Learning–ICANN 2012, Toronto, Canada, Springer, 2012, pp. 661–668.
– volume: 16
  start-page: 121
  year: 2008
  end-page: 130
  ident: bib13
  article-title: An adaptive P300-based online brain computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: G. Edlinger, C. Holzner, C. Guger, A hybrid Brain–Computer interface for smart home control, in: J.A. Jacko (Ed.), Human–Computer Interaction. Interaction Techniques and Environments, Lecture Notes in Computer Science, vol. 6762, Springer, Berlin, Heidelberg, 2011, pp. 417–426.
– volume: 18
  start-page: 127
  year: 2010
  end-page: 133
  ident: bib47
  article-title: A self-paced and calibration-less SSVEP-based brain–computer interface speller
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 18
  start-page: 107
  year: 2010
  end-page: 116
  ident: bib38
  article-title: BCI demographics
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 137
  start-page: 346
  year: 2001
  end-page: 353
  ident: bib40
  article-title: Human EEG responses to 1100
  publication-title: Exp. Brain Res.
– volume: 23
  start-page: 995
  year: 2004
  end-page: 1005
  ident: bib66
  article-title: Principal geodesic analysis for the study of nonlinear statistics of shape
  publication-title: IEEE Trans. Med. Imag.
– reference: W. Samek, K.-R. Muller, Information geometry meets BCI spatial filtering using divergences, in: International Winter Workshop on Brain–Computer Interface, Seoul, Korea, IEEE, 2014, pp. 1–4.
– reference: A. Barachant, S. Bonnet, M. Congedo, C. Jutten, Common spatial pattern revisited by Riemannian geometry, in: IEEE International Workshop on Multimedia Signal Processing (MMSP), 2010, Saint Malo, France, pp. 472–476.
– volume: 2
  start-page: 157
  year: 1973
  end-page: 180
  ident: bib2
  article-title: Toward direct brain–computer communication
  publication-title: Annu. Rev. Biophys. Bioeng.
– volume: 11
  start-page: 035004
  year: 2014
  ident: bib30
  article-title: Self-calibration algorithm in an asynchronous P300-based brain–computer interface
  publication-title: J. Neural Eng.
– volume: 7
  start-page: e51077
  year: 2012
  ident: bib45
  article-title: Online adaptation of a c-VEP brain–computer interface (BCI) based on error-related potentials and unsupervised learning
  publication-title: PLoS ONE
– volume: 59
  start-page: 920
  year: 2012
  end-page: 928
  ident: bib23
  article-title: Multiclass brain–computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 60
  start-page: 2831
  year: 2013
  end-page: 2838
  ident: bib74
  article-title: SSVEP-based brain–computer interfaces using FSK-modulated visual stimuli
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 025015
  year: 2011
  ident: bib46
  article-title: A high-speed BCI based on code modulation VEP
  publication-title: J. Neural Eng.
– reference: E.K. Kalunga, S. Chevallier, O. Rabreau, E. Monacelli, Hybrid interface: integrating BCI in multimodal human–machine interfaces, in: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2014, pp. 530–535.
– volume: 14
  start-page: 153
  year: 2006
  end-page: 159
  ident: bib7
  article-title: The BCI competition III
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2010
  ident: bib39
  article-title: A survey of stimulation methods used in SSVEP-based BCIs
  publication-title: Intell. Neurosci.
– volume: 57
  start-page: 2927
  year: 2010
  end-page: 2935
  ident: bib29
  article-title: Adaptation in P300 brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 58
  start-page: 355
  year: 2011
  end-page: 362
  ident: bib18
  article-title: Regularizing common spatial patterns to improve BCI designs
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 036027
  year: 2011
  ident: bib43
  article-title: Enhancing the classification accuracy of steady-state visual evoked potential-based brain–computer interfaces using phase constrained canonical correlation analysis
  publication-title: J. Neural Eng.
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: bib35
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
– year: 2004
  ident: bib5
  article-title: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields
– volume: 112
  start-page: 172
  year: 2013
  end-page: 178
  ident: bib24
  article-title: Classification of covariance matrices using a Riemannian-based kernel for BCI applications
  publication-title: Neurocomputing
– reference: Y. Xie, J. Ho, B. Vemuri, On a nonlinear generalization of sparse coding and dictionary learning, in: International Conference on Machine Learning (ICML), 2013, p. 1480.
– volume: 22
  start-page: 1299
  year: 2001
  end-page: 1309
  ident: bib12
  article-title: Hidden Markov models for online classification of single trial EEG data
  publication-title: Pattern Recognit. Lett.
– reference: E. Kalunga, K. Djouani, Y. Hamam, S. Chevallier, E. Monacelli, SSVEP enhancement based on Canonical Correlation Analysis to improve bci performances, in: IEEE, Africon 2013, pp. 1–5.
– volume: 51
  start-page: 1044
  year: 2004
  end-page: 1051
  ident: bib6
  article-title: The BCI competition 2003
  publication-title: IEEE Trans. Biomed. Eng.
– year: 1990
  ident: bib67
  article-title: Introduction to Statistical Pattern Recognition
– reference: M. Tangermann, K.-R. Müller, A. Aertsen, N. Birbaumer, C. Braun, C. Brunner, R. Leeb, C. Mehring, K.J. Miller, G. Mueller-Putz, G. Nolte, G. Pfurtscheller, H. Preissl, G. Schalk, A. Schlögl, C. Vidaurre, S. Waldert, B. Blankertz, Review of the BCI Competition IV, Front. Neurosci. 6 (55).
– year: 2009
  ident: bib22
  article-title: Positive Definite Matrices
– reference: L.F. Nicolas-Alonso, R. Corralejo, J. Gomez-Pilar, D. Álvarez, R. Hornero, Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain–computer interfaces, Neurocomputing 2016.
– volume: 53
  start-page: 2610
  year: 2006
  end-page: 2614
  ident: bib20
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 103
  start-page: 14250
  year: 2006
  end-page: 14254
  ident: bib37
  article-title: Feature-selective attention enhances color signals in early visual areas of the human brain
  publication-title: Proc. Natl. Acad. Sci. USA
– reference: A. Barachant, S. Bonnet, Channel selection procedure using Riemannian distance for BCI applications, in: International IEEE/EMBS Conference on Neural Engineering (NER), 2011, pp. 348–351.
– volume: 24
  start-page: 1450019
  year: 2014
  ident: bib44
  article-title: A high-speed brain speller using steady-state visual evoked potentials
  publication-title: Int. J. Neural Syst.
– volume: 27
  start-page: 157
  year: 2008
  end-page: 172
  ident: bib73
  article-title: Evaluating the added predictive ability of a new marker
  publication-title: Stat. Med.
– reference: A. Barachant, S. Bonnet, M. Congedo, C. Jutten, Riemannian geometry applied to BCI classification, in: Latent Variable Analysis and Signal Separation, Springer, 2010, pp. 629–636.
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: bib1
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
– volume: 56
  start-page: 814
  year: 2011
  end-page: 825
  ident: bib69
  article-title: Single-trial analysis and classification of ERP components
  publication-title: NeuroImage
– reference: .
– volume: 6
  start-page: 288
  year: 2012
  end-page: 299
  ident: bib63
  article-title: Electroencephalogram signals classification for sleepstate decision
  publication-title: IET Signal Process.
– reference: Y. Li, K.M. Wong, H. De Bruin, EEG signal classification based on a Riemannian distance measure, in: Science and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International Conference, IEEE, 2009, Toronto, Canada pp. 268–273.
– volume: 469
  start-page: 34
  year: 2010
  end-page: 38
  ident: bib76
  article-title: Optimization of SSVEP brain responses with application to eight-command brain–computer interface
  publication-title: Neurosci. Lett.
– reference: T. Takahashi, K.H. Chiappa, Activation methods, Electroencephalography. in: Basic Principles, Clinical Applications, and Related Fields, 5th ed., Lippincott Williams & Wilkins, 2004, pp. 241–262.
– reference: E. Niedermeyer, F.L. da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th ed., 2004.
– reference: M. Congedo, A. Barachant, A. Andreev, A new generation of brain–computer interface based on Riemannian geometry, arXiv preprint
– volume: 46
  start-page: 1426
  year: 2005
  end-page: 1441
  ident: bib42
  article-title: Photic- and pattern-induced seizures
  publication-title: Epilepsia
– reference: A. Goh, R. Vidal, Unsupervised Riemannian clustering of probability density functions, in: Machine Learning and Knowledge Discovery in Databases, Springer, 2008, pp. 377–392.
– volume: 23
  start-page: 11621
  year: 2003
  end-page: 11627
  ident: bib41
  article-title: Human cerebral activation during steady-state visual-evoked responses
  publication-title: J. Neurosci.
– volume: 23
  start-page: 194
  year: 2010
  end-page: 198
  ident: bib11
  article-title: Towards a cure for BCI illiteracy
  publication-title: Brain Topogr.
– reference: S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on the Riemannian manifold of symmetric positive definite matrices, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 73–80.
– volume: 10
  start-page: 1
  issue: Suppl 1
  year: 2009
  ident: 10.1016/j.neucom.2016.01.007_bib9
  article-title: Predicting BCI performance to study BCI illiteracy
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-10-S1-P84
– volume: 16
  start-page: 121
  issue: 2
  year: 2008
  ident: 10.1016/j.neucom.2016.01.007_bib13
  article-title: An adaptive P300-based online brain computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2007.912816
– ident: 10.1016/j.neucom.2016.01.007_bib51
– volume: 60
  start-page: 2831
  issue: 10
  year: 2013
  ident: 10.1016/j.neucom.2016.01.007_bib74
  article-title: SSVEP-based brain–computer interfaces using FSK-modulated visual stimuli
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2265260
– volume: 6
  start-page: 288
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2016.01.007_bib63
  article-title: Electroencephalogram signals classification for sleepstate decision
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2011.0234
– ident: 10.1016/j.neucom.2016.01.007_bib61
  doi: 10.1109/MMSP.2010.5662067
– volume: 23
  start-page: 11621
  issue: 37
  year: 2003
  ident: 10.1016/j.neucom.2016.01.007_bib41
  article-title: Human cerebral activation during steady-state visual-evoked responses
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-37-11621.2003
– volume: 7
  start-page: e51077
  issue: 12
  year: 2012
  ident: 10.1016/j.neucom.2016.01.007_bib45
  article-title: Online adaptation of a c-VEP brain–computer interface (BCI) based on error-related potentials and unsupervised learning
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0051077
– ident: 10.1016/j.neucom.2016.01.007_bib71
– ident: 10.1016/j.neucom.2016.01.007_bib53
  doi: 10.1109/CVPR.2008.4587422
– volume: 26
  start-page: 735
  issue: 3
  year: 2005
  ident: 10.1016/j.neucom.2016.01.007_bib65
  article-title: A differential geometric approach to the geometric mean of symmetric positive-definite matrices
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479803436937
– ident: 10.1016/j.neucom.2016.01.007_bib15
  doi: 10.1109/AFRCON.2013.6757776
– volume: 14
  start-page: 153
  issue: 2
  year: 2006
  ident: 10.1016/j.neucom.2016.01.007_bib7
  article-title: The BCI competition III
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875642
– volume: 51
  start-page: 1044
  issue: 6
  year: 2004
  ident: 10.1016/j.neucom.2016.01.007_bib6
  article-title: The BCI competition 2003
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826692
– year: 2010
  ident: 10.1016/j.neucom.2016.01.007_bib39
  article-title: A survey of stimulation methods used in SSVEP-based BCIs
  publication-title: Intell. Neurosci.
  doi: 10.1155/2010/702357
– volume: 46
  start-page: 1426
  issue: 9
  year: 2005
  ident: 10.1016/j.neucom.2016.01.007_bib42
  article-title: Photic- and pattern-induced seizures
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2005.31405.x
– year: 2011
  ident: 10.1016/j.neucom.2016.01.007_bib64
– volume: 112
  start-page: 172
  year: 2013
  ident: 10.1016/j.neucom.2016.01.007_bib24
  article-title: Classification of covariance matrices using a Riemannian-based kernel for BCI applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.039
– volume: 53
  start-page: 2610
  issue: 12
  year: 2006
  ident: 10.1016/j.neucom.2016.01.007_bib20
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.886577
– volume: 22
  start-page: 1299
  issue: 12
  year: 2001
  ident: 10.1016/j.neucom.2016.01.007_bib12
  article-title: Hidden Markov models for online classification of single trial EEG data
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(01)00075-7
– ident: 10.1016/j.neucom.2016.01.007_bib70
  doi: 10.2202/1544-6115.1175
– ident: 10.1016/j.neucom.2016.01.007_bib50
  doi: 10.1109/CVPR.2013.17
– ident: 10.1016/j.neucom.2016.01.007_bib58
– ident: 10.1016/j.neucom.2016.01.007_bib33
– ident: 10.1016/j.neucom.2016.01.007_bib59
  doi: 10.1109/iww-BCI.2014.6782545
– year: 2009
  ident: 10.1016/j.neucom.2016.01.007_bib48
  article-title: A robust and self-paced BCI system based on a four class SSVEP paradigm
  publication-title: Intell. Neurosci.
  doi: 10.1155/2009/864564
– volume: 25
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2016.01.007_bib17
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.4408441
– volume: 90
  start-page: 418
  issue: 4
  year: 2010
  ident: 10.1016/j.neucom.2016.01.007_bib75
  article-title: Steady-state visually evoked potentials
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2009.11.005
– volume: 11
  start-page: 137
  issue: 2
  year: 2003
  ident: 10.1016/j.neucom.2016.01.007_bib27
  article-title: A BCI-based environmental controller for the motion-disabled
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814449
– ident: 10.1016/j.neucom.2016.01.007_bib62
  doi: 10.1109/TIC-STH.2009.5444491
– volume: 2
  start-page: 157
  issue: 1
  year: 1973
  ident: 10.1016/j.neucom.2016.01.007_bib2
  article-title: Toward direct brain–computer communication
  publication-title: Annu. Rev. Biophys. Bioeng.
  doi: 10.1146/annurev.bb.02.060173.001105
– ident: 10.1016/j.neucom.2016.01.007_bib19
– volume: 23
  start-page: 194
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2016.01.007_bib11
  article-title: Towards a cure for BCI illiteracy
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-009-0121-6
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 10.1016/j.neucom.2016.01.007_bib35
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– ident: 10.1016/j.neucom.2016.01.007_bib60
  doi: 10.1109/NER.2011.5910558
– ident: 10.1016/j.neucom.2016.01.007_bib26
  doi: 10.1109/AIM.2014.6878132
– ident: 10.1016/j.neucom.2016.01.007_bib49
  doi: 10.1109/MLSP.2013.6661972
– ident: 10.1016/j.neucom.2016.01.007_bib10
  doi: 10.1007/978-1-84996-272-8_3
– volume: 8
  start-page: 025015
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2016.01.007_bib46
  article-title: A high-speed BCI based on code modulation VEP
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/2/025015
– ident: 10.1016/j.neucom.2016.01.007_bib31
  doi: 10.1007/978-3-642-33269-2_83
– year: 1990
  ident: 10.1016/j.neucom.2016.01.007_bib67
– volume: 88
  start-page: 365
  issue: 2
  year: 2004
  ident: 10.1016/j.neucom.2016.01.007_bib68
  article-title: A well-conditioned estimator for large-dimensional covariance matrices
  publication-title: J. Multivar. Anal.
  doi: 10.1016/S0047-259X(03)00096-4
– volume: 58
  start-page: 355
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2016.01.007_bib18
  article-title: Regularizing common spatial patterns to improve BCI designs
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082539
– ident: 10.1016/j.neucom.2016.01.007_bib34
– volume: 57
  start-page: 2936
  issue: 12
  year: 2010
  ident: 10.1016/j.neucom.2016.01.007_bib16
  article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082540
– volume: 24
  start-page: 1450019
  issue: 06
  year: 2014
  ident: 10.1016/j.neucom.2016.01.007_bib44
  article-title: A high-speed brain speller using steady-state visual evoked potentials
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065714500191
– volume: 55
  start-page: 4925
  issue: 11
  year: 2009
  ident: 10.1016/j.neucom.2016.01.007_bib57
  article-title: α-divergence is unique, belonging to both f-divergence and Bregman divergence classes
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2030485
– ident: 10.1016/j.neucom.2016.01.007_bib8
  doi: 10.3389/fnins.2012.00055
– volume: 18
  start-page: 127
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2016.01.007_bib47
  article-title: A self-paced and calibration-less SSVEP-based brain–computer interface speller
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2009.2039594
– volume: 18
  start-page: 107
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2016.01.007_bib38
  article-title: BCI demographics
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2009.2039495
– volume: 57
  start-page: 2927
  issue: 12
  year: 2010
  ident: 10.1016/j.neucom.2016.01.007_bib29
  article-title: Adaptation in P300 brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2058804
– volume: 388
  start-page: 45
  issue: 1
  year: 1982
  ident: 10.1016/j.neucom.2016.01.007_bib32
  article-title: Comparison of transient and steady-state methods
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1982.tb50784.x
– volume: 56
  start-page: 814
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2016.01.007_bib69
  article-title: Single-trial analysis and classification of ERP components
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.048
– year: 2004
  ident: 10.1016/j.neucom.2016.01.007_bib5
– ident: 10.1016/j.neucom.2016.01.007_bib55
  doi: 10.1007/978-3-642-15995-4_78
– volume: 93
  start-page: 4770
  issue: 10
  year: 1996
  ident: 10.1016/j.neucom.2016.01.007_bib36
  article-title: Selective attention to stimulus location modulates the steady-state visual evoked potential
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.10.4770
– ident: 10.1016/j.neucom.2016.01.007_bib25
– ident: 10.1016/j.neucom.2016.01.007_bib14
  doi: 10.1016/j.neucom.2015.02.005
– volume: 103
  start-page: 14250
  issue: 38
  year: 2006
  ident: 10.1016/j.neucom.2016.01.007_bib37
  article-title: Feature-selective attention enhances color signals in early visual areas of the human brain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0606668103
– volume: 11
  start-page: 035004
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2016.01.007_bib30
  article-title: Self-calibration algorithm in an asynchronous P300-based brain–computer interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/3/035004
– ident: 10.1016/j.neucom.2016.01.007_bib56
– year: 2009
  ident: 10.1016/j.neucom.2016.01.007_bib22
– volume: 8
  start-page: 036027
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2016.01.007_bib43
  article-title: Enhancing the classification accuracy of steady-state visual evoked potential-based brain–computer interfaces using phase constrained canonical correlation analysis
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036027
– volume: 23
  start-page: 995
  issue: 8
  year: 2004
  ident: 10.1016/j.neucom.2016.01.007_bib66
  article-title: Principal geodesic analysis for the study of nonlinear statistics of shape
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2004.831793
– year: 2009
  ident: 10.1016/j.neucom.2016.01.007_bib21
– volume: 469
  start-page: 34
  issue: 1
  year: 2010
  ident: 10.1016/j.neucom.2016.01.007_bib76
  article-title: Optimization of SSVEP brain responses with application to eight-command brain–computer interface
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.11.039
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 10.1016/j.neucom.2016.01.007_bib1
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 137
  start-page: 346
  year: 2001
  ident: 10.1016/j.neucom.2016.01.007_bib40
  article-title: Human EEG responses to 1100hz flicker
  publication-title: Exp. Brain Res.
  doi: 10.1007/s002210100682
– ident: 10.1016/j.neucom.2016.01.007_bib72
– volume: 32–33
  start-page: 637
  year: 2000
  ident: 10.1016/j.neucom.2016.01.007_bib3
  article-title: Single trial P3 epoch recognition in a virtual environment
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(00)00226-5
– ident: 10.1016/j.neucom.2016.01.007_bib52
  doi: 10.1007/978-3-540-87479-9_43
– volume: 66
  start-page: 41
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2016.01.007_bib54
  article-title: A Riemannian framework for tensor computing
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-005-3222-z
– volume: 59
  start-page: 920
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2016.01.007_bib23
  article-title: Multiclass brain–computer interface classification by Riemannian geometry
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2172210
– ident: 10.1016/j.neucom.2016.01.007_bib28
  doi: 10.1007/978-3-642-21605-3_46
– volume: 82
  start-page: 109
  year: 2012
  ident: 10.1016/j.neucom.2016.01.007_bib4
  article-title: A subject transfer framework for EEG classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.10.024
– volume: 27
  start-page: 157
  issue: 2
  year: 2008
  ident: 10.1016/j.neucom.2016.01.007_bib73
  article-title: Evaluating the added predictive ability of a new marker
  publication-title: Stat. Med.
  doi: 10.1002/sim.2929
SSID ssj0017129
Score 2.4779642
Snippet Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological)...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 55
SubjectTerms Algorithms
Asynchronous
Brain
Brain–Computer Interfaces
Classification
Cognitive science
Computer Science
Covariance
Electroencephalography
Electronics
Human-computer interface
Machine Learning
Neural and Evolutionary Computing
Neuroscience
Online
Recording
Riemannian geometry
Signal and Image Processing
Steady State Visually Evoked Potentials
Title Online SSVEP-based BCI using Riemannian geometry
URI https://dx.doi.org/10.1016/j.neucom.2016.01.007
https://www.proquest.com/docview/1855352266
https://hal.science/hal-01351623
Volume 191
WOSCitedRecordID wos000375165900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfYxoEL34jxpYAQl8qoiRMnPnYl04aqMliHerMcx6GdmrSsTTX-e54_kq5MaOPAJarc2E78fn5-eX5-P4TeZwwsNspiHBKR4TCTEYZVLsJECCojSXIaFIZsIh4Ok_GYnbhQ3qWhE4irKrm8ZIv_KmooA2Hro7P_IO62USiA3yB0uILY4XorwdvkoZ3T0-_pCdaLVN456B93auMU-DZVpWYpgln9Q81Ltdo-EW1SdUhD9OBcCL1SZ1LINWw2YdliBirCWJ1pCc3VarbxlvYnOoE4WLaW0OvXbC2mLQAP4HknsNCVRrRfax2q1P75CV7PMkzpI2rT8qpDwqd6L92eem88iwEUEH9byVpOLqcmbWZet-BaWp1rqtx6Fc4_VqrWcT26J5Ng1ZLkbmfOHn7hh2eDAR-l49GHxU-sScX05rtjWNlBe0EcMVB6e73jdPy53WaK_cAmY3RP3JytNAGA1zv-m-2yM9FBtH-s5cZAGT1E992XhdeziHiE7qjqMXrQsHZ4Tok_QV0LEO8KQDwAiGcA4m0A4jUAeYrODtNR_wg73gwsw5CscAE6lwRFBsamNAZ-FKuABpJ2VRIoKiIhElGInDKYljRLQKkXuUiUYkywnCjyDO1W80o9R55PYhZlIvNpFoeSFgKaiBTULySLWOHvI9KMCJcuqbzmNpnxJnrwnNtx5HocedfnMI77CLe1Fjapyg33x81gc2cYWoOPA1huqPkOZNN2onOpH_UGXJd1NTclGP9reIm3jeg4KFe9YyYqNa-XHIzZyHyh0Be3uOclureZD6_Q7uqiVq_RXbleTZcXbxz2fgPRu5ou
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+SSVEP-based+BCI+using+Riemannian+geometry&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Kalunga%2C+Emmanuel+K&rft.au=Chevallier%2C+Sylvain&rft.au=Barthelemy%2C+Quentin&rft.au=Djouani%2C+Karim&rft.date=2016-05-26&rft.issn=0925-2312&rft.volume=191&rft.spage=55&rft.epage=68&rft_id=info:doi/10.1016%2Fj.neucom.2016.01.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon