Online SSVEP-based BCI using Riemannian geometry
Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological) and to develop online and adaptive systems following the evolution of the subject׳s brain waves. Studying electroencephalographic (EEG) signals...
Gespeichert in:
| Veröffentlicht in: | Neurocomputing (Amsterdam) Jg. 191; S. 55 - 68 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
26.05.2016
Elsevier |
| Schlagworte: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological) and to develop online and adaptive systems following the evolution of the subject׳s brain waves. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows the construction of a representation which is invariant to extrinsic perturbations. As covariance matrices should be estimated, this paper first presents a thorough study of all estimators conducted on real EEG recording. Working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in Riemannian geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. Nonetheless, existing classification algorithms in Riemannian spaces are designed for offline analysis. We propose a novel algorithm for online and asynchronous processing of brain signals, borrowing principles from semi-unsupervised approaches and following a dynamic stopping scheme to provide a prediction as soon as possible. The assessment is conducted on real EEG recording: this is the first study on Steady-State Visually Evoked Potential (SSVEP) experimentations to exploit online classification based on Riemannian geometry. The proposed online algorithm is evaluated and compared with state-of-the-art SSVEP methods, which are based on Canonical Correlation Analysis (CCA). It is shown to improve both the classification accuracy and the information transfer rate in the online and asynchronous setup. |
|---|---|
| AbstractList | Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological) and to develop online and adaptive systems following the evolution of the subject's brain waves. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows the construction of a representation which is invariant to extrinsic perturbations. As covariance matrices should be estimated, this paper first presents a thorough study of all estimators conducted on real EEG recording. Working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in Riemannian geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. Nonetheless, existing classification algorithms in Riemannian spaces are designed for offline analysis. We propose a novel algorithm for online and asynchronous processing of brain signals, borrowing principles from semi-unsupervised approaches and following a dynamic stopping scheme to provide a prediction as soon as possible. The assessment is conducted on real EEG recording: this is the first study on Steady-State Visually Evoked Potential (SSVEP) experimentations to exploit online classification based on Rie-mannian geometry. The proposed online algorithm is evaluated and compared with state-of-the-art SSVEP methods, which are based on Canonical Correlation Analysis (CCA). It is shown to improve both the classification accuracy and the information transfer rate in the online and asynchronous setup. Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological) and to develop online and adaptive systems following the evolution of the subject's brain waves. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows the construction of a representation which is invariant to extrinsic perturbations. As covariance matrices should be estimated, this paper first presents a thorough study of all estimators conducted on real EEG recording. Working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in Riemannian geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. Nonetheless, existing classification algorithms in Riemannian spaces are designed for offline analysis. We propose a novel algorithm for online and asynchronous processing of brain signals, borrowing principles from semi-unsupervised approaches and following a dynamic stopping scheme to provide a prediction as soon as possible. The assessment is conducted on real EEG recording: this is the first study on Steady-State Visually Evoked Potential (SSVEP) experimentations to exploit online classification based on Riemannian geometry. The proposed online algorithm is evaluated and compared with state-of-the-art SSVEP methods, which are based on Canonical Correlation Analysis (CCA). It is shown to improve both the classification accuracy and the information transfer rate in the online and asynchronous setup. Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological) and to develop online and adaptive systems following the evolution of the subject׳s brain waves. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows the construction of a representation which is invariant to extrinsic perturbations. As covariance matrices should be estimated, this paper first presents a thorough study of all estimators conducted on real EEG recording. Working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in Riemannian geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. Nonetheless, existing classification algorithms in Riemannian spaces are designed for offline analysis. We propose a novel algorithm for online and asynchronous processing of brain signals, borrowing principles from semi-unsupervised approaches and following a dynamic stopping scheme to provide a prediction as soon as possible. The assessment is conducted on real EEG recording: this is the first study on Steady-State Visually Evoked Potential (SSVEP) experimentations to exploit online classification based on Riemannian geometry. The proposed online algorithm is evaluated and compared with state-of-the-art SSVEP methods, which are based on Canonical Correlation Analysis (CCA). It is shown to improve both the classification accuracy and the information transfer rate in the online and asynchronous setup. |
| Author | Monacelli, Eric Chevallier, Sylvain Djouani, Karim Kalunga, Emmanuel K. Barthélemy, Quentin Hamam, Yskandar |
| Author_xml | – sequence: 1 givenname: Emmanuel K. surname: Kalunga fullname: Kalunga, Emmanuel K. organization: Department of Electrical Engineering and the French South African Institute of Technology, Tshwane University of Technology, Pretoria 0001, South Africa – sequence: 2 givenname: Sylvain orcidid: 0000-0003-3027-8241 surname: Chevallier fullname: Chevallier, Sylvain organization: Laboratoire d׳Ingénierie des Systèmes de Versailles, Université de Versailles Saint-Quentin, 78140 Velizy, France – sequence: 3 givenname: Quentin surname: Barthélemy fullname: Barthélemy, Quentin organization: Mensia Technologies, S.A. ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France – sequence: 4 givenname: Karim surname: Djouani fullname: Djouani, Karim organization: Department of Electrical Engineering and the French South African Institute of Technology, Tshwane University of Technology, Pretoria 0001, South Africa – sequence: 5 givenname: Eric surname: Monacelli fullname: Monacelli, Eric organization: Laboratoire d׳Ingénierie des Systèmes de Versailles, Université de Versailles Saint-Quentin, 78140 Velizy, France – sequence: 6 givenname: Yskandar surname: Hamam fullname: Hamam, Yskandar organization: Department of Electrical Engineering and the French South African Institute of Technology, Tshwane University of Technology, Pretoria 0001, South Africa |
| BackLink | https://hal.science/hal-01351623$$DView record in HAL |
| BookMark | eNqFkE1LxDAQhoMouH78Aw896qE1H22aehB08QsWVlz1GmbTqWZpE026gv_eLhUPHvQ0zPC878CzR7add0jIEaMZo0yerjKHa-O7jA9bRllGablFJkyVPFVcyW0yoRUvUi4Y3yV7Ma4oZSXj1YTQuWutw2SxeL66T5cQsU4up3fJOlr3kjxY7MA5Cy55Qd9hHz4PyE4DbcTD77lPnq6vHqe36Wx-cze9mKUmz0WfNmUlBG-WMheGiaosixK55EZSVBwlFAAKGqhlpXIpl0oNcA0KsaqgqgWKfXIy9r5Cq9-C7SB8ag9W317M9OZGmSiY5OKDDezxyL4F_77G2OvORoNtCw79OmqmikIUnEs5oPmImuBjDNj8dDOqNzL1So8y9Ubm8EUPMofY2a-YsT301rs-gG3_C5-PYRx8fVgMOhqLzmBtA5pe197-XfAFxvuSBA |
| CitedBy_id | crossref_primary_10_1038_s41598_022_14026_y crossref_primary_10_1109_TNSRE_2021_3106876 crossref_primary_10_1109_TSP_2017_2649483 crossref_primary_10_1109_ACCESS_2019_2910191 crossref_primary_10_1007_s10044_018_0758_4 crossref_primary_10_1088_1361_6579_aba07b crossref_primary_10_1016_j_cnsns_2022_106985 crossref_primary_10_1088_1741_2552_ad6793 crossref_primary_10_1016_j_neucom_2019_10_049 crossref_primary_10_1109_TNSRE_2019_2893113 crossref_primary_10_1016_j_neucom_2017_03_082 crossref_primary_10_3390_math12142164 crossref_primary_10_1051_matecconf_201816007007 crossref_primary_10_1016_j_jneumeth_2022_109642 crossref_primary_10_3389_fnins_2020_00593 crossref_primary_10_3390_brainsci12050659 crossref_primary_10_1177_15500594221078166 crossref_primary_10_1007_s12021_020_09473_9 crossref_primary_10_1016_j_knosys_2018_04_013 crossref_primary_10_1016_j_neucom_2016_11_008 crossref_primary_10_1088_1741_2552_aab2f2 crossref_primary_10_1088_1741_2552_ad171a crossref_primary_10_1088_2057_1976_ad865d crossref_primary_10_1016_j_bspc_2025_108505 crossref_primary_10_1038_s41597_022_01372_9 crossref_primary_10_1088_1741_2552_abf291 crossref_primary_10_1109_TNSRE_2020_3043418 crossref_primary_10_3389_fncom_2018_00021 crossref_primary_10_1109_TNSRE_2017_2699784 crossref_primary_10_1109_JIOT_2024_3406837 crossref_primary_10_1109_TNSRE_2024_3380635 crossref_primary_10_1080_2326263X_2019_1671040 crossref_primary_10_1088_1741_2552_aa8065 crossref_primary_10_1109_ACCESS_2023_3313260 crossref_primary_10_1109_TCE_2025_3557912 crossref_primary_10_3389_fnins_2023_1161511 crossref_primary_10_1016_j_ijhcs_2023_103009 crossref_primary_10_1109_TBME_2022_3154885 crossref_primary_10_1520_JTE20210752 crossref_primary_10_1016_j_jneumeth_2019_108434 crossref_primary_10_1016_j_neucom_2016_08_121 crossref_primary_10_1088_1742_6596_1631_1_012172 crossref_primary_10_3389_fnins_2023_1270785 crossref_primary_10_1016_j_eswa_2023_119613 crossref_primary_10_1109_TNSRE_2023_3266488 crossref_primary_10_1088_1741_2552_abc902 crossref_primary_10_1109_TNSRE_2022_3167262 crossref_primary_10_1109_TSMC_2020_2964684 crossref_primary_10_1162_imag_a_00223 crossref_primary_10_1080_2326263X_2021_2009654 crossref_primary_10_1177_0734242X241248730 crossref_primary_10_1109_TCSII_2021_3091803 crossref_primary_10_3389_fnins_2020_00627 crossref_primary_10_1007_s11571_021_09676_z crossref_primary_10_1088_2057_1976_acaca2 crossref_primary_10_1109_TBME_2018_2889705 crossref_primary_10_1080_2326263X_2022_2140467 crossref_primary_10_3390_s21041256 crossref_primary_10_1109_TNSRE_2021_3073918 crossref_primary_10_1016_j_pnpbp_2020_109960 crossref_primary_10_1088_1741_2552_aba7cd |
| Cites_doi | 10.1186/1471-2202-10-S1-P84 10.1109/TNSRE.2007.912816 10.1109/TBME.2013.2265260 10.1049/iet-spr.2011.0234 10.1109/MMSP.2010.5662067 10.1523/JNEUROSCI.23-37-11621.2003 10.1371/journal.pone.0051077 10.1109/CVPR.2008.4587422 10.1137/S0895479803436937 10.1109/AFRCON.2013.6757776 10.1109/TNSRE.2006.875642 10.1109/TBME.2004.826692 10.1155/2010/702357 10.1111/j.1528-1167.2005.31405.x 10.1016/j.neucom.2012.12.039 10.1109/TBME.2006.886577 10.1016/S0167-8655(01)00075-7 10.2202/1544-6115.1175 10.1109/CVPR.2013.17 10.1109/iww-BCI.2014.6782545 10.1155/2009/864564 10.1109/MSP.2008.4408441 10.1016/j.pneurobio.2009.11.005 10.1109/TNSRE.2003.814449 10.1109/TIC-STH.2009.5444491 10.1146/annurev.bb.02.060173.001105 10.1007/s10548-009-0121-6 10.1016/S1388-2457(02)00057-3 10.1109/NER.2011.5910558 10.1109/AIM.2014.6878132 10.1109/MLSP.2013.6661972 10.1007/978-1-84996-272-8_3 10.1088/1741-2560/8/2/025015 10.1007/978-3-642-33269-2_83 10.1016/S0047-259X(03)00096-4 10.1109/TBME.2010.2082539 10.1109/TBME.2010.2082540 10.1142/S0129065714500191 10.1109/TIT.2009.2030485 10.3389/fnins.2012.00055 10.1109/TNSRE.2009.2039594 10.1109/TNSRE.2009.2039495 10.1109/TBME.2010.2058804 10.1111/j.1749-6632.1982.tb50784.x 10.1016/j.neuroimage.2010.06.048 10.1007/978-3-642-15995-4_78 10.1073/pnas.93.10.4770 10.1016/j.neucom.2015.02.005 10.1073/pnas.0606668103 10.1088/1741-2560/11/3/035004 10.1088/1741-2560/8/3/036027 10.1109/TMI.2004.831793 10.1016/j.neulet.2009.11.039 10.1007/s002210100682 10.1016/S0925-2312(00)00226-5 10.1007/978-3-540-87479-9_43 10.1007/s11263-005-3222-z 10.1109/TBME.2011.2172210 10.1007/978-3-642-21605-3_46 10.1016/j.neucom.2011.10.024 10.1002/sim.2929 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1016/j.neucom.2016.01.007 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 68 |
| ExternalDocumentID | oai:HAL:hal-01351623v1 10_1016_j_neucom_2016_01_007 S0925231216000540 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c443t-f79332fb643c1397757e262c60e82e6a5aa8afad698466b8832fda8ee99a9d3e3 |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375165900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Oct 14 20:16:58 EDT 2025 Sat Sep 27 22:35:43 EDT 2025 Sat Nov 29 07:52:21 EST 2025 Tue Nov 18 20:36:48 EST 2025 Fri Feb 23 02:28:29 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Riemannian geometry Asynchronous Online Steady State Visually Evoked Potentials Brain–Computer Interfaces Brain-Computer Interfaces Steady State Visually-Evoked Potential Riemannian Geometry |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c443t-f79332fb643c1397757e262c60e82e6a5aa8afad698466b8832fda8ee99a9d3e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3027-8241 0000-0001-6060-8200 0000-0002-7010-6818 0000-0002-0637-341X |
| OpenAccessLink | https://hal.science/hal-01351623 |
| PQID | 1855352266 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01351623v1 proquest_miscellaneous_1855352266 crossref_primary_10_1016_j_neucom_2016_01_007 crossref_citationtrail_10_1016_j_neucom_2016_01_007 elsevier_sciencedirect_doi_10_1016_j_neucom_2016_01_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-26 |
| PublicationDateYYYYMMDD | 2016-05-26 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-26 day: 26 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Lu, Eng, Guan, Plataniotis, Venetsanopoulos (bib16) 2010; 57 Ledoit, Wolf (bib68) 2004; 88 Zhu, Bieger, Molina, Aarts (bib39) 2010 Vidaurre, Blankertz (bib11) 2010; 23 T. Takahashi, K.H. Chiappa, Activation methods, Electroencephalography. in: Basic Principles, Clinical Applications, and Related Fields, 5th ed., Lippincott Williams & Wilkins, 2004, pp. 241–262. Bayliss, Ballard (bib3) 2000; 32–33 S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on the Riemannian manifold of symmetric positive definite matrices, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 73–80. A. Barachant, S. Bonnet, M. Congedo, C. Jutten, Riemannian geometry applied to BCI classification, in: Latent Variable Analysis and Signal Separation, Springer, 2010, pp. 629–636. M. Tangermann, K.-R. Müller, A. Aertsen, N. Birbaumer, C. Braun, C. Brunner, R. Leeb, C. Mehring, K.J. Miller, G. Mueller-Putz, G. Nolte, G. Pfurtscheller, H. Preissl, G. Schalk, A. Schlögl, C. Vidaurre, S. Waldert, B. Blankertz, Review of the BCI Competition IV, Front. Neurosci. 6 (55). E.K. Kalunga, S. Chevallier, O. Rabreau, E. Monacelli, Hybrid interface: integrating BCI in multimodal human–machine interfaces, in: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2014, pp. 530–535. Regan (bib32) 1982; 388 Panicker, Puthusserypady, Sun (bib29) 2010; 57 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib1) 2002; 113 Lotte, Guan (bib18) 2011; 58 Jost (bib64) 2011 Blankertz, Lemm, Treder, Haufe, Müller (bib69) 2011; 56 Müller, Andersen, Trujillo, Valdés-Sosa, Malinowski, Hillyard (bib37) 2006; 103 Li, Wong, De Bruin (bib63) 2012; 6 Lin, Zhang, Wu, Gao (bib20) 2006; 53 Vialatte, Maurice, Dauwels, Cichocki (bib75) 2010; 90 Fukunaga (bib67) 1990 Blankertz, Muller, Krusienski, Schalk, Wolpaw, Schlogl, Pfurtscheller, Millan, Schroder, Birbaumer (bib7) 2006; 14 B.Z. Allison, C. Neuper, Could anyone use a BCI? in: D.S. Nijholt (Eds.), Brain–Computer Interfaces, Human–Computer Interaction Series, Springer, London, 2010, pp. 35–54 (Chapter 3). . A. Barachant, S. Bonnet, Channel selection procedure using Riemannian distance for BCI applications, in: International IEEE/EMBS Conference on Neural Engineering (NER), 2011, pp. 348–351. Y. Li, K.M. Wong, H. De Bruin, EEG signal classification based on a Riemannian distance measure, in: Science and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International Conference, IEEE, 2009, Toronto, Canada pp. 268–273. Blankertz, Müller, Curio, Vaughan, Schalk, Wolpaw, Schlögl, Neuper, Pfurtscheller, Hinterberger, Schröder, Birbaumer (bib6) 2004; 51 W. Samek, D. Blythe, K.-R. Müller, M. Kawanabe, Robust spatial filtering with beta divergence, in: Advances in NeuralInformation Processing Systems (NIPS), 2013, pp. 1007–1015. Bhatia (bib22) 2009 H. Verschore, P.-J. Kindermans, D. Verstraeten, B. Schrauwen, Dynamic stopping improves the speed and accuracy of a P300 speller, in: Artificial Neural Networks and Machine Learning–ICANN 2012, Toronto, Canada, Springer, 2012, pp. 661–668. Barachant, Bonnet, Congedo, Jutten (bib23) 2012; 59 Nakanishi, Wang, Wang, Mitsukura, Jung (bib44) 2014; 24 E. Niedermeyer, F.L. da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th ed., 2004. Morgan, Hansen, Hillyard (bib36) 1996; 93 Gao, Xu, Cheng, Gao (bib27) 2003; 11 Obermaier, Guger, Neuper, Pfurtscheller (bib12) 2001; 22 Lenhardt, Kaper, Ritter (bib13) 2008; 16 Amari (bib57) 2009; 55 Vidal (bib2) 1973; 2 A. Barachant, A. Andreev, M. Congedo, et al., The Riemannian potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry, in: Proceedings of TOBI Workshop IV, 2013, pp. 19–20. Blankertz, Tomioka, Lemm, Kawanabe, Muller (bib17) 2008; 25 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bib35) 2002; 113 Bakardjian, Tanaka, Cichocki (bib76) 2010; 469 L.F. Nicolas-Alonso, R. Corralejo, J. Gomez-Pilar, D. Álvarez, R. Hornero, Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain–computer interfaces, Neurocomputing 2016. Pan, Gao, Duan, Yan, Gao (bib43) 2011; 8 Moakher (bib65) 2005; 26 F. Yger, A review of kernels on covariance matrices for BCI applications, in: IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2013, pp. 1–6. G. Edlinger, C. Holzner, C. Guger, A hybrid Brain–Computer interface for smart home control, in: J.A. Jacko (Ed.), Human–Computer Interaction. Interaction Techniques and Environments, Lecture Notes in Computer Science, vol. 6762, Springer, Berlin, Heidelberg, 2011, pp. 417–426. Y. Xie, J. Ho, B. Vemuri, On a nonlinear generalization of sparse coding and dictionary learning, in: International Conference on Machine Learning (ICML), 2013, p. 1480. A. Goh, R. Vidal, Unsupervised Riemannian clustering of probability density functions, in: Machine Learning and Knowledge Discovery in Databases, Springer, 2008, pp. 377–392. Pennec, Fillard, Ayache (bib54) 2006; 66 J. Schäfer, K. Strimmer, A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics, Stat. Appl. Genet. Mol. Biol. 4 (1). Parini, Maggi, Turconi, Andreoni (bib48) 2009 W. Samek, K.-R. Muller, Information geometry meets BCI spatial filtering using divergences, in: International Winter Workshop on Brain–Computer Interface, Seoul, Korea, IEEE, 2014, pp. 1–4. Kimura, Tanaka, Higashi, Morikawa (bib74) 2013; 60 Fisher, Harding, Erba, Barkley, Wilkins (bib42) 2005; 46 M. Congedo, EEG source analysis, Habilitation á diriger des recherches, Université de Grenoble, October 2013. Pencina, D׳Agostino, Vasan (bib73) 2008; 27 Absil, Mahony, Sepulchre (bib21) 2009 Niedermeyer, Lopes da Silva (bib5) 2004 Allison, Lüth, Valbuena, Teymourian, Volosyak, Gräser (bib38) 2010; 18 Fletcher, Lu, Pizer, Joshi (bib66) 2004; 23 A. Barachant, S. Bonnet, M. Congedo, C. Jutten, Common spatial pattern revisited by Riemannian geometry, in: IEEE International Workshop on Multimedia Signal Processing (MMSP), 2010, Saint Malo, France, pp. 472–476. Cecotti (bib47) 2010; 18 Schettini, Aloise, Aricò, Salinari, Mattia, Cincotti (bib30) 2014; 11 Bin, Gao, Wang, Li, Hong, Gao (bib46) 2011; 8 Tu, Sun (bib4) 2012; 82 E. Kalunga, K. Djouani, Y. Hamam, S. Chevallier, E. Monacelli, SSVEP enhancement based on Canonical Correlation Analysis to improve bci performances, in: IEEE, Africon 2013, pp. 1–5. F. Pascal, P. Forster, J.P. Ovarlez, P. Arzabal, Theoretical analysis of an improved covariance matrix estimator in non-gaussian noise, in: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, 2005. Dickhaus, Sannelli, Müller, Curio, Blankertz (bib9) 2009; 10 Spüler, Rosenstiel, Bogdan (bib45) 2012; 7 Barachant, Bonnet, Congedo, Jutten (bib24) 2013; 112 Pastor, Artieda, Arbizu, Valencia, Masdeu (bib41) 2003; 23 M. Congedo, A. Barachant, A. Andreev, A new generation of brain–computer interface based on Riemannian geometry, arXiv preprint A. Goh, R. Vidal, Clustering and dimensionality reduction on Riemannian manifolds, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008, pp. 1–7. Herrmann (bib40) 2001; 137 Y. Yang, S. Chevallier, J. Wiart, I. Bloch, Automatic selection of the number of spatial filters for motor-imagery BCI, in: European Symposium on Artificial Neural Networks (ESANN), 2012, pp. 109–114. Barachant (10.1016/j.neucom.2016.01.007_bib23) 2012; 59 Barachant (10.1016/j.neucom.2016.01.007_bib24) 2013; 112 Amari (10.1016/j.neucom.2016.01.007_bib57) 2009; 55 Blankertz (10.1016/j.neucom.2016.01.007_bib6) 2004; 51 Li (10.1016/j.neucom.2016.01.007_bib63) 2012; 6 Lenhardt (10.1016/j.neucom.2016.01.007_bib13) 2008; 16 Müller (10.1016/j.neucom.2016.01.007_bib37) 2006; 103 Bin (10.1016/j.neucom.2016.01.007_bib46) 2011; 8 Nakanishi (10.1016/j.neucom.2016.01.007_bib44) 2014; 24 10.1016/j.neucom.2016.01.007_bib49 Vidal (10.1016/j.neucom.2016.01.007_bib2) 1973; 2 Panicker (10.1016/j.neucom.2016.01.007_bib29) 2010; 57 Kimura (10.1016/j.neucom.2016.01.007_bib74) 2013; 60 Obermaier (10.1016/j.neucom.2016.01.007_bib12) 2001; 22 10.1016/j.neucom.2016.01.007_bib8 Blankertz (10.1016/j.neucom.2016.01.007_bib17) 2008; 25 Vialatte (10.1016/j.neucom.2016.01.007_bib75) 2010; 90 Vidaurre (10.1016/j.neucom.2016.01.007_bib11) 2010; 23 Gao (10.1016/j.neucom.2016.01.007_bib27) 2003; 11 10.1016/j.neucom.2016.01.007_bib14 10.1016/j.neucom.2016.01.007_bib58 10.1016/j.neucom.2016.01.007_bib15 Regan (10.1016/j.neucom.2016.01.007_bib32) 1982; 388 10.1016/j.neucom.2016.01.007_bib59 Herrmann (10.1016/j.neucom.2016.01.007_bib40) 2001; 137 10.1016/j.neucom.2016.01.007_bib19 Wolpaw (10.1016/j.neucom.2016.01.007_bib1) 2002; 113 10.1016/j.neucom.2016.01.007_bib50 10.1016/j.neucom.2016.01.007_bib51 Pastor (10.1016/j.neucom.2016.01.007_bib41) 2003; 23 10.1016/j.neucom.2016.01.007_bib52 10.1016/j.neucom.2016.01.007_bib53 10.1016/j.neucom.2016.01.007_bib10 10.1016/j.neucom.2016.01.007_bib55 Lotte (10.1016/j.neucom.2016.01.007_bib18) 2011; 58 10.1016/j.neucom.2016.01.007_bib56 Lu (10.1016/j.neucom.2016.01.007_bib16) 2010; 57 Allison (10.1016/j.neucom.2016.01.007_bib38) 2010; 18 Fletcher (10.1016/j.neucom.2016.01.007_bib66) 2004; 23 Absil (10.1016/j.neucom.2016.01.007_bib21) 2009 10.1016/j.neucom.2016.01.007_bib70 Bayliss (10.1016/j.neucom.2016.01.007_bib3) 2000; 32–33 Cecotti (10.1016/j.neucom.2016.01.007_bib47) 2010; 18 Pencina (10.1016/j.neucom.2016.01.007_bib73) 2008; 27 Zhu (10.1016/j.neucom.2016.01.007_bib39) 2010 10.1016/j.neucom.2016.01.007_bib25 10.1016/j.neucom.2016.01.007_bib26 10.1016/j.neucom.2016.01.007_bib28 Moakher (10.1016/j.neucom.2016.01.007_bib65) 2005; 26 Lin (10.1016/j.neucom.2016.01.007_bib20) 2006; 53 10.1016/j.neucom.2016.01.007_bib60 Schettini (10.1016/j.neucom.2016.01.007_bib30) 2014; 11 10.1016/j.neucom.2016.01.007_bib61 10.1016/j.neucom.2016.01.007_bib62 Bhatia (10.1016/j.neucom.2016.01.007_bib22) 2009 Fisher (10.1016/j.neucom.2016.01.007_bib42) 2005; 46 Pennec (10.1016/j.neucom.2016.01.007_bib54) 2006; 66 Parini (10.1016/j.neucom.2016.01.007_bib48) 2009 Dickhaus (10.1016/j.neucom.2016.01.007_bib9) 2009; 10 Niedermeyer (10.1016/j.neucom.2016.01.007_bib5) 2004 Morgan (10.1016/j.neucom.2016.01.007_bib36) 1996; 93 Wolpaw (10.1016/j.neucom.2016.01.007_bib35) 2002; 113 Ledoit (10.1016/j.neucom.2016.01.007_bib68) 2004; 88 Pan (10.1016/j.neucom.2016.01.007_bib43) 2011; 8 Blankertz (10.1016/j.neucom.2016.01.007_bib69) 2011; 56 Jost (10.1016/j.neucom.2016.01.007_bib64) 2011 Blankertz (10.1016/j.neucom.2016.01.007_bib7) 2006; 14 Fukunaga (10.1016/j.neucom.2016.01.007_bib67) 1990 10.1016/j.neucom.2016.01.007_bib71 10.1016/j.neucom.2016.01.007_bib72 Spüler (10.1016/j.neucom.2016.01.007_bib45) 2012; 7 Tu (10.1016/j.neucom.2016.01.007_bib4) 2012; 82 10.1016/j.neucom.2016.01.007_bib31 10.1016/j.neucom.2016.01.007_bib33 Bakardjian (10.1016/j.neucom.2016.01.007_bib76) 2010; 469 10.1016/j.neucom.2016.01.007_bib34 |
| References_xml | – volume: 10 start-page: 1 year: 2009 end-page: 2 ident: bib9 article-title: Predicting BCI performance to study BCI illiteracy publication-title: BMC Neurosci. – reference: Y. Yang, S. Chevallier, J. Wiart, I. Bloch, Automatic selection of the number of spatial filters for motor-imagery BCI, in: European Symposium on Artificial Neural Networks (ESANN), 2012, pp. 109–114. – reference: A. Goh, R. Vidal, Clustering and dimensionality reduction on Riemannian manifolds, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008, pp. 1–7. – volume: 25 start-page: 41 year: 2008 end-page: 56 ident: bib17 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. – volume: 66 start-page: 41 year: 2006 end-page: 66 ident: bib54 article-title: A Riemannian framework for tensor computing publication-title: Int. J. Comput. Vis. – volume: 88 start-page: 365 year: 2004 end-page: 411 ident: bib68 article-title: A well-conditioned estimator for large-dimensional covariance matrices publication-title: J. Multivar. Anal. – volume: 11 start-page: 137 year: 2003 end-page: 140 ident: bib27 article-title: A BCI-based environmental controller for the motion-disabled publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 388 start-page: 45 year: 1982 end-page: 71 ident: bib32 article-title: Comparison of transient and steady-state methods publication-title: Ann. N.Y. Acad. Sci. – volume: 90 start-page: 418 year: 2010 end-page: 438 ident: bib75 article-title: Steady-state visually evoked potentials publication-title: Prog. Neurobiol. – volume: 32–33 start-page: 637 year: 2000 end-page: 642 ident: bib3 article-title: Single trial P3 epoch recognition in a virtual environment publication-title: Neurocomputing – reference: W. Samek, D. Blythe, K.-R. Müller, M. Kawanabe, Robust spatial filtering with beta divergence, in: Advances in NeuralInformation Processing Systems (NIPS), 2013, pp. 1007–1015. – year: 2009 ident: bib48 article-title: A robust and self-paced BCI system based on a four class SSVEP paradigm publication-title: Intell. Neurosci. – reference: M. Congedo, EEG source analysis, Habilitation á diriger des recherches, Université de Grenoble, October 2013. – year: 2011 ident: bib64 article-title: Riemannian Geometry and Geometric Analysis, vol. 62011 – year: 2009 ident: bib21 article-title: Optimization Algorithms on Matrix Manifolds – reference: J. Schäfer, K. Strimmer, A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics, Stat. Appl. Genet. Mol. Biol. 4 (1). – reference: B.Z. Allison, C. Neuper, Could anyone use a BCI? in: D.S. Nijholt (Eds.), Brain–Computer Interfaces, Human–Computer Interaction Series, Springer, London, 2010, pp. 35–54 (Chapter 3). – volume: 26 start-page: 735 year: 2005 end-page: 747 ident: bib65 article-title: A differential geometric approach to the geometric mean of symmetric positive-definite matrices publication-title: SIAM J. Matrix Anal. Appl. – volume: 82 start-page: 109 year: 2012 end-page: 116 ident: bib4 article-title: A subject transfer framework for EEG classification publication-title: Neurocomputing – volume: 93 start-page: 4770 year: 1996 end-page: 4774 ident: bib36 article-title: Selective attention to stimulus location modulates the steady-state visual evoked potential publication-title: Proc. Natl. Acad. Sci. USA – reference: A. Barachant, A. Andreev, M. Congedo, et al., The Riemannian potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry, in: Proceedings of TOBI Workshop IV, 2013, pp. 19–20. – reference: F. Pascal, P. Forster, J.P. Ovarlez, P. Arzabal, Theoretical analysis of an improved covariance matrix estimator in non-gaussian noise, in: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, 2005. – volume: 55 start-page: 4925 year: 2009 end-page: 4931 ident: bib57 article-title: -divergence is unique, belonging to both publication-title: IEEE Trans. Inf. Theory – reference: F. Yger, A review of kernels on covariance matrices for BCI applications, in: IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2013, pp. 1–6. – volume: 57 start-page: 2936 year: 2010 end-page: 2946 ident: bib16 article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting publication-title: IEEE Trans. Biomed. Eng. – reference: H. Verschore, P.-J. Kindermans, D. Verstraeten, B. Schrauwen, Dynamic stopping improves the speed and accuracy of a P300 speller, in: Artificial Neural Networks and Machine Learning–ICANN 2012, Toronto, Canada, Springer, 2012, pp. 661–668. – volume: 16 start-page: 121 year: 2008 end-page: 130 ident: bib13 article-title: An adaptive P300-based online brain computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – reference: G. Edlinger, C. Holzner, C. Guger, A hybrid Brain–Computer interface for smart home control, in: J.A. Jacko (Ed.), Human–Computer Interaction. Interaction Techniques and Environments, Lecture Notes in Computer Science, vol. 6762, Springer, Berlin, Heidelberg, 2011, pp. 417–426. – volume: 18 start-page: 127 year: 2010 end-page: 133 ident: bib47 article-title: A self-paced and calibration-less SSVEP-based brain–computer interface speller publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 18 start-page: 107 year: 2010 end-page: 116 ident: bib38 article-title: BCI demographics publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 137 start-page: 346 year: 2001 end-page: 353 ident: bib40 article-title: Human EEG responses to 1100 publication-title: Exp. Brain Res. – volume: 23 start-page: 995 year: 2004 end-page: 1005 ident: bib66 article-title: Principal geodesic analysis for the study of nonlinear statistics of shape publication-title: IEEE Trans. Med. Imag. – reference: W. Samek, K.-R. Muller, Information geometry meets BCI spatial filtering using divergences, in: International Winter Workshop on Brain–Computer Interface, Seoul, Korea, IEEE, 2014, pp. 1–4. – reference: A. Barachant, S. Bonnet, M. Congedo, C. Jutten, Common spatial pattern revisited by Riemannian geometry, in: IEEE International Workshop on Multimedia Signal Processing (MMSP), 2010, Saint Malo, France, pp. 472–476. – volume: 2 start-page: 157 year: 1973 end-page: 180 ident: bib2 article-title: Toward direct brain–computer communication publication-title: Annu. Rev. Biophys. Bioeng. – volume: 11 start-page: 035004 year: 2014 ident: bib30 article-title: Self-calibration algorithm in an asynchronous P300-based brain–computer interface publication-title: J. Neural Eng. – volume: 7 start-page: e51077 year: 2012 ident: bib45 article-title: Online adaptation of a c-VEP brain–computer interface (BCI) based on error-related potentials and unsupervised learning publication-title: PLoS ONE – volume: 59 start-page: 920 year: 2012 end-page: 928 ident: bib23 article-title: Multiclass brain–computer interface classification by Riemannian geometry publication-title: IEEE Trans. Biomed. Eng. – volume: 60 start-page: 2831 year: 2013 end-page: 2838 ident: bib74 article-title: SSVEP-based brain–computer interfaces using FSK-modulated visual stimuli publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 025015 year: 2011 ident: bib46 article-title: A high-speed BCI based on code modulation VEP publication-title: J. Neural Eng. – reference: E.K. Kalunga, S. Chevallier, O. Rabreau, E. Monacelli, Hybrid interface: integrating BCI in multimodal human–machine interfaces, in: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2014, pp. 530–535. – volume: 14 start-page: 153 year: 2006 end-page: 159 ident: bib7 article-title: The BCI competition III publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2010 ident: bib39 article-title: A survey of stimulation methods used in SSVEP-based BCIs publication-title: Intell. Neurosci. – volume: 57 start-page: 2927 year: 2010 end-page: 2935 ident: bib29 article-title: Adaptation in P300 brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 58 start-page: 355 year: 2011 end-page: 362 ident: bib18 article-title: Regularizing common spatial patterns to improve BCI designs publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 036027 year: 2011 ident: bib43 article-title: Enhancing the classification accuracy of steady-state visual evoked potential-based brain–computer interfaces using phase constrained canonical correlation analysis publication-title: J. Neural Eng. – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: bib35 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. – year: 2004 ident: bib5 article-title: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields – volume: 112 start-page: 172 year: 2013 end-page: 178 ident: bib24 article-title: Classification of covariance matrices using a Riemannian-based kernel for BCI applications publication-title: Neurocomputing – reference: Y. Xie, J. Ho, B. Vemuri, On a nonlinear generalization of sparse coding and dictionary learning, in: International Conference on Machine Learning (ICML), 2013, p. 1480. – volume: 22 start-page: 1299 year: 2001 end-page: 1309 ident: bib12 article-title: Hidden Markov models for online classification of single trial EEG data publication-title: Pattern Recognit. Lett. – reference: E. Kalunga, K. Djouani, Y. Hamam, S. Chevallier, E. Monacelli, SSVEP enhancement based on Canonical Correlation Analysis to improve bci performances, in: IEEE, Africon 2013, pp. 1–5. – volume: 51 start-page: 1044 year: 2004 end-page: 1051 ident: bib6 article-title: The BCI competition 2003 publication-title: IEEE Trans. Biomed. Eng. – year: 1990 ident: bib67 article-title: Introduction to Statistical Pattern Recognition – reference: M. Tangermann, K.-R. Müller, A. Aertsen, N. Birbaumer, C. Braun, C. Brunner, R. Leeb, C. Mehring, K.J. Miller, G. Mueller-Putz, G. Nolte, G. Pfurtscheller, H. Preissl, G. Schalk, A. Schlögl, C. Vidaurre, S. Waldert, B. Blankertz, Review of the BCI Competition IV, Front. Neurosci. 6 (55). – year: 2009 ident: bib22 article-title: Positive Definite Matrices – reference: L.F. Nicolas-Alonso, R. Corralejo, J. Gomez-Pilar, D. Álvarez, R. Hornero, Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain–computer interfaces, Neurocomputing 2016. – volume: 53 start-page: 2610 year: 2006 end-page: 2614 ident: bib20 article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs publication-title: IEEE Trans. Biomed. Eng. – volume: 103 start-page: 14250 year: 2006 end-page: 14254 ident: bib37 article-title: Feature-selective attention enhances color signals in early visual areas of the human brain publication-title: Proc. Natl. Acad. Sci. USA – reference: A. Barachant, S. Bonnet, Channel selection procedure using Riemannian distance for BCI applications, in: International IEEE/EMBS Conference on Neural Engineering (NER), 2011, pp. 348–351. – volume: 24 start-page: 1450019 year: 2014 ident: bib44 article-title: A high-speed brain speller using steady-state visual evoked potentials publication-title: Int. J. Neural Syst. – volume: 27 start-page: 157 year: 2008 end-page: 172 ident: bib73 article-title: Evaluating the added predictive ability of a new marker publication-title: Stat. Med. – reference: A. Barachant, S. Bonnet, M. Congedo, C. Jutten, Riemannian geometry applied to BCI classification, in: Latent Variable Analysis and Signal Separation, Springer, 2010, pp. 629–636. – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: bib1 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. – volume: 56 start-page: 814 year: 2011 end-page: 825 ident: bib69 article-title: Single-trial analysis and classification of ERP components publication-title: NeuroImage – reference: . – volume: 6 start-page: 288 year: 2012 end-page: 299 ident: bib63 article-title: Electroencephalogram signals classification for sleepstate decision publication-title: IET Signal Process. – reference: Y. Li, K.M. Wong, H. De Bruin, EEG signal classification based on a Riemannian distance measure, in: Science and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International Conference, IEEE, 2009, Toronto, Canada pp. 268–273. – volume: 469 start-page: 34 year: 2010 end-page: 38 ident: bib76 article-title: Optimization of SSVEP brain responses with application to eight-command brain–computer interface publication-title: Neurosci. Lett. – reference: T. Takahashi, K.H. Chiappa, Activation methods, Electroencephalography. in: Basic Principles, Clinical Applications, and Related Fields, 5th ed., Lippincott Williams & Wilkins, 2004, pp. 241–262. – reference: E. Niedermeyer, F.L. da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 5th ed., 2004. – reference: M. Congedo, A. Barachant, A. Andreev, A new generation of brain–computer interface based on Riemannian geometry, arXiv preprint – volume: 46 start-page: 1426 year: 2005 end-page: 1441 ident: bib42 article-title: Photic- and pattern-induced seizures publication-title: Epilepsia – reference: A. Goh, R. Vidal, Unsupervised Riemannian clustering of probability density functions, in: Machine Learning and Knowledge Discovery in Databases, Springer, 2008, pp. 377–392. – volume: 23 start-page: 11621 year: 2003 end-page: 11627 ident: bib41 article-title: Human cerebral activation during steady-state visual-evoked responses publication-title: J. Neurosci. – volume: 23 start-page: 194 year: 2010 end-page: 198 ident: bib11 article-title: Towards a cure for BCI illiteracy publication-title: Brain Topogr. – reference: S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on the Riemannian manifold of symmetric positive definite matrices, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 73–80. – volume: 10 start-page: 1 issue: Suppl 1 year: 2009 ident: 10.1016/j.neucom.2016.01.007_bib9 article-title: Predicting BCI performance to study BCI illiteracy publication-title: BMC Neurosci. doi: 10.1186/1471-2202-10-S1-P84 – volume: 16 start-page: 121 issue: 2 year: 2008 ident: 10.1016/j.neucom.2016.01.007_bib13 article-title: An adaptive P300-based online brain computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.912816 – ident: 10.1016/j.neucom.2016.01.007_bib51 – volume: 60 start-page: 2831 issue: 10 year: 2013 ident: 10.1016/j.neucom.2016.01.007_bib74 article-title: SSVEP-based brain–computer interfaces using FSK-modulated visual stimuli publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2265260 – volume: 6 start-page: 288 issue: 4 year: 2012 ident: 10.1016/j.neucom.2016.01.007_bib63 article-title: Electroencephalogram signals classification for sleepstate decision publication-title: IET Signal Process. doi: 10.1049/iet-spr.2011.0234 – ident: 10.1016/j.neucom.2016.01.007_bib61 doi: 10.1109/MMSP.2010.5662067 – volume: 23 start-page: 11621 issue: 37 year: 2003 ident: 10.1016/j.neucom.2016.01.007_bib41 article-title: Human cerebral activation during steady-state visual-evoked responses publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-37-11621.2003 – volume: 7 start-page: e51077 issue: 12 year: 2012 ident: 10.1016/j.neucom.2016.01.007_bib45 article-title: Online adaptation of a c-VEP brain–computer interface (BCI) based on error-related potentials and unsupervised learning publication-title: PLoS ONE doi: 10.1371/journal.pone.0051077 – ident: 10.1016/j.neucom.2016.01.007_bib71 – ident: 10.1016/j.neucom.2016.01.007_bib53 doi: 10.1109/CVPR.2008.4587422 – volume: 26 start-page: 735 issue: 3 year: 2005 ident: 10.1016/j.neucom.2016.01.007_bib65 article-title: A differential geometric approach to the geometric mean of symmetric positive-definite matrices publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479803436937 – ident: 10.1016/j.neucom.2016.01.007_bib15 doi: 10.1109/AFRCON.2013.6757776 – volume: 14 start-page: 153 issue: 2 year: 2006 ident: 10.1016/j.neucom.2016.01.007_bib7 article-title: The BCI competition III publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875642 – volume: 51 start-page: 1044 issue: 6 year: 2004 ident: 10.1016/j.neucom.2016.01.007_bib6 article-title: The BCI competition 2003 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826692 – year: 2010 ident: 10.1016/j.neucom.2016.01.007_bib39 article-title: A survey of stimulation methods used in SSVEP-based BCIs publication-title: Intell. Neurosci. doi: 10.1155/2010/702357 – volume: 46 start-page: 1426 issue: 9 year: 2005 ident: 10.1016/j.neucom.2016.01.007_bib42 article-title: Photic- and pattern-induced seizures publication-title: Epilepsia doi: 10.1111/j.1528-1167.2005.31405.x – year: 2011 ident: 10.1016/j.neucom.2016.01.007_bib64 – volume: 112 start-page: 172 year: 2013 ident: 10.1016/j.neucom.2016.01.007_bib24 article-title: Classification of covariance matrices using a Riemannian-based kernel for BCI applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.039 – volume: 53 start-page: 2610 issue: 12 year: 2006 ident: 10.1016/j.neucom.2016.01.007_bib20 article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.886577 – volume: 22 start-page: 1299 issue: 12 year: 2001 ident: 10.1016/j.neucom.2016.01.007_bib12 article-title: Hidden Markov models for online classification of single trial EEG data publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(01)00075-7 – ident: 10.1016/j.neucom.2016.01.007_bib70 doi: 10.2202/1544-6115.1175 – ident: 10.1016/j.neucom.2016.01.007_bib50 doi: 10.1109/CVPR.2013.17 – ident: 10.1016/j.neucom.2016.01.007_bib58 – ident: 10.1016/j.neucom.2016.01.007_bib33 – ident: 10.1016/j.neucom.2016.01.007_bib59 doi: 10.1109/iww-BCI.2014.6782545 – year: 2009 ident: 10.1016/j.neucom.2016.01.007_bib48 article-title: A robust and self-paced BCI system based on a four class SSVEP paradigm publication-title: Intell. Neurosci. doi: 10.1155/2009/864564 – volume: 25 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.neucom.2016.01.007_bib17 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.4408441 – volume: 90 start-page: 418 issue: 4 year: 2010 ident: 10.1016/j.neucom.2016.01.007_bib75 article-title: Steady-state visually evoked potentials publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2009.11.005 – volume: 11 start-page: 137 issue: 2 year: 2003 ident: 10.1016/j.neucom.2016.01.007_bib27 article-title: A BCI-based environmental controller for the motion-disabled publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2003.814449 – ident: 10.1016/j.neucom.2016.01.007_bib62 doi: 10.1109/TIC-STH.2009.5444491 – volume: 2 start-page: 157 issue: 1 year: 1973 ident: 10.1016/j.neucom.2016.01.007_bib2 article-title: Toward direct brain–computer communication publication-title: Annu. Rev. Biophys. Bioeng. doi: 10.1146/annurev.bb.02.060173.001105 – ident: 10.1016/j.neucom.2016.01.007_bib19 – volume: 23 start-page: 194 issue: 2 year: 2010 ident: 10.1016/j.neucom.2016.01.007_bib11 article-title: Towards a cure for BCI illiteracy publication-title: Brain Topogr. doi: 10.1007/s10548-009-0121-6 – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 10.1016/j.neucom.2016.01.007_bib35 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – ident: 10.1016/j.neucom.2016.01.007_bib60 doi: 10.1109/NER.2011.5910558 – ident: 10.1016/j.neucom.2016.01.007_bib26 doi: 10.1109/AIM.2014.6878132 – ident: 10.1016/j.neucom.2016.01.007_bib49 doi: 10.1109/MLSP.2013.6661972 – ident: 10.1016/j.neucom.2016.01.007_bib10 doi: 10.1007/978-1-84996-272-8_3 – volume: 8 start-page: 025015 issue: 2 year: 2011 ident: 10.1016/j.neucom.2016.01.007_bib46 article-title: A high-speed BCI based on code modulation VEP publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/2/025015 – ident: 10.1016/j.neucom.2016.01.007_bib31 doi: 10.1007/978-3-642-33269-2_83 – year: 1990 ident: 10.1016/j.neucom.2016.01.007_bib67 – volume: 88 start-page: 365 issue: 2 year: 2004 ident: 10.1016/j.neucom.2016.01.007_bib68 article-title: A well-conditioned estimator for large-dimensional covariance matrices publication-title: J. Multivar. Anal. doi: 10.1016/S0047-259X(03)00096-4 – volume: 58 start-page: 355 issue: 2 year: 2011 ident: 10.1016/j.neucom.2016.01.007_bib18 article-title: Regularizing common spatial patterns to improve BCI designs publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082539 – ident: 10.1016/j.neucom.2016.01.007_bib34 – volume: 57 start-page: 2936 issue: 12 year: 2010 ident: 10.1016/j.neucom.2016.01.007_bib16 article-title: Regularized common spatial pattern with aggregation for EEG classification in small-sample setting publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082540 – volume: 24 start-page: 1450019 issue: 06 year: 2014 ident: 10.1016/j.neucom.2016.01.007_bib44 article-title: A high-speed brain speller using steady-state visual evoked potentials publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065714500191 – volume: 55 start-page: 4925 issue: 11 year: 2009 ident: 10.1016/j.neucom.2016.01.007_bib57 article-title: α-divergence is unique, belonging to both f-divergence and Bregman divergence classes publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2009.2030485 – ident: 10.1016/j.neucom.2016.01.007_bib8 doi: 10.3389/fnins.2012.00055 – volume: 18 start-page: 127 issue: 2 year: 2010 ident: 10.1016/j.neucom.2016.01.007_bib47 article-title: A self-paced and calibration-less SSVEP-based brain–computer interface speller publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2009.2039594 – volume: 18 start-page: 107 issue: 2 year: 2010 ident: 10.1016/j.neucom.2016.01.007_bib38 article-title: BCI demographics publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2009.2039495 – volume: 57 start-page: 2927 issue: 12 year: 2010 ident: 10.1016/j.neucom.2016.01.007_bib29 article-title: Adaptation in P300 brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2058804 – volume: 388 start-page: 45 issue: 1 year: 1982 ident: 10.1016/j.neucom.2016.01.007_bib32 article-title: Comparison of transient and steady-state methods publication-title: Ann. N.Y. Acad. Sci. doi: 10.1111/j.1749-6632.1982.tb50784.x – volume: 56 start-page: 814 issue: 2 year: 2011 ident: 10.1016/j.neucom.2016.01.007_bib69 article-title: Single-trial analysis and classification of ERP components publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.048 – year: 2004 ident: 10.1016/j.neucom.2016.01.007_bib5 – ident: 10.1016/j.neucom.2016.01.007_bib55 doi: 10.1007/978-3-642-15995-4_78 – volume: 93 start-page: 4770 issue: 10 year: 1996 ident: 10.1016/j.neucom.2016.01.007_bib36 article-title: Selective attention to stimulus location modulates the steady-state visual evoked potential publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.10.4770 – ident: 10.1016/j.neucom.2016.01.007_bib25 – ident: 10.1016/j.neucom.2016.01.007_bib14 doi: 10.1016/j.neucom.2015.02.005 – volume: 103 start-page: 14250 issue: 38 year: 2006 ident: 10.1016/j.neucom.2016.01.007_bib37 article-title: Feature-selective attention enhances color signals in early visual areas of the human brain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0606668103 – volume: 11 start-page: 035004 issue: 3 year: 2014 ident: 10.1016/j.neucom.2016.01.007_bib30 article-title: Self-calibration algorithm in an asynchronous P300-based brain–computer interface publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/035004 – ident: 10.1016/j.neucom.2016.01.007_bib56 – year: 2009 ident: 10.1016/j.neucom.2016.01.007_bib22 – volume: 8 start-page: 036027 issue: 3 year: 2011 ident: 10.1016/j.neucom.2016.01.007_bib43 article-title: Enhancing the classification accuracy of steady-state visual evoked potential-based brain–computer interfaces using phase constrained canonical correlation analysis publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036027 – volume: 23 start-page: 995 issue: 8 year: 2004 ident: 10.1016/j.neucom.2016.01.007_bib66 article-title: Principal geodesic analysis for the study of nonlinear statistics of shape publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2004.831793 – year: 2009 ident: 10.1016/j.neucom.2016.01.007_bib21 – volume: 469 start-page: 34 issue: 1 year: 2010 ident: 10.1016/j.neucom.2016.01.007_bib76 article-title: Optimization of SSVEP brain responses with application to eight-command brain–computer interface publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.11.039 – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 10.1016/j.neucom.2016.01.007_bib1 article-title: Brain–computer interfaces for communication and control publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 137 start-page: 346 year: 2001 ident: 10.1016/j.neucom.2016.01.007_bib40 article-title: Human EEG responses to 1100hz flicker publication-title: Exp. Brain Res. doi: 10.1007/s002210100682 – ident: 10.1016/j.neucom.2016.01.007_bib72 – volume: 32–33 start-page: 637 year: 2000 ident: 10.1016/j.neucom.2016.01.007_bib3 article-title: Single trial P3 epoch recognition in a virtual environment publication-title: Neurocomputing doi: 10.1016/S0925-2312(00)00226-5 – ident: 10.1016/j.neucom.2016.01.007_bib52 doi: 10.1007/978-3-540-87479-9_43 – volume: 66 start-page: 41 issue: 1 year: 2006 ident: 10.1016/j.neucom.2016.01.007_bib54 article-title: A Riemannian framework for tensor computing publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-005-3222-z – volume: 59 start-page: 920 issue: 4 year: 2012 ident: 10.1016/j.neucom.2016.01.007_bib23 article-title: Multiclass brain–computer interface classification by Riemannian geometry publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2172210 – ident: 10.1016/j.neucom.2016.01.007_bib28 doi: 10.1007/978-3-642-21605-3_46 – volume: 82 start-page: 109 year: 2012 ident: 10.1016/j.neucom.2016.01.007_bib4 article-title: A subject transfer framework for EEG classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.10.024 – volume: 27 start-page: 157 issue: 2 year: 2008 ident: 10.1016/j.neucom.2016.01.007_bib73 article-title: Evaluating the added predictive ability of a new marker publication-title: Stat. Med. doi: 10.1002/sim.2929 |
| SSID | ssj0017129 |
| Score | 2.4779642 |
| Snippet | Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common sources of variability (electronic, electrical, biological)... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 55 |
| SubjectTerms | Algorithms Asynchronous Brain Brain–Computer Interfaces Classification Cognitive science Computer Science Covariance Electroencephalography Electronics Human-computer interface Machine Learning Neural and Evolutionary Computing Neuroscience Online Recording Riemannian geometry Signal and Image Processing Steady State Visually Evoked Potentials |
| Title | Online SSVEP-based BCI using Riemannian geometry |
| URI | https://dx.doi.org/10.1016/j.neucom.2016.01.007 https://www.proquest.com/docview/1855352266 https://hal.science/hal-01351623 |
| Volume | 191 |
| WOSCitedRecordID | wos000375165900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfYxoEL34jxpYAQl8qoiRMnPnYl04aqMliHerMcx6GdmrSsTTX-e54_kq5MaOPAJarc2E78fn5-eX5-P4TeZwwsNspiHBKR4TCTEYZVLsJECCojSXIaFIZsIh4Ok_GYnbhQ3qWhE4irKrm8ZIv_KmooA2Hro7P_IO62USiA3yB0uILY4XorwdvkoZ3T0-_pCdaLVN456B93auMU-DZVpWYpgln9Q81Ltdo-EW1SdUhD9OBcCL1SZ1LINWw2YdliBirCWJ1pCc3VarbxlvYnOoE4WLaW0OvXbC2mLQAP4HknsNCVRrRfax2q1P75CV7PMkzpI2rT8qpDwqd6L92eem88iwEUEH9byVpOLqcmbWZet-BaWp1rqtx6Fc4_VqrWcT26J5Ng1ZLkbmfOHn7hh2eDAR-l49GHxU-sScX05rtjWNlBe0EcMVB6e73jdPy53WaK_cAmY3RP3JytNAGA1zv-m-2yM9FBtH-s5cZAGT1E992XhdeziHiE7qjqMXrQsHZ4Tok_QV0LEO8KQDwAiGcA4m0A4jUAeYrODtNR_wg73gwsw5CscAE6lwRFBsamNAZ-FKuABpJ2VRIoKiIhElGInDKYljRLQKkXuUiUYkywnCjyDO1W80o9R55PYhZlIvNpFoeSFgKaiBTULySLWOHvI9KMCJcuqbzmNpnxJnrwnNtx5HocedfnMI77CLe1Fjapyg33x81gc2cYWoOPA1huqPkOZNN2onOpH_UGXJd1NTclGP9reIm3jeg4KFe9YyYqNa-XHIzZyHyh0Be3uOclureZD6_Q7uqiVq_RXbleTZcXbxz2fgPRu5ou |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+SSVEP-based+BCI+using+Riemannian+geometry&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Kalunga%2C+Emmanuel+K&rft.au=Chevallier%2C+Sylvain&rft.au=Barthelemy%2C+Quentin&rft.au=Djouani%2C+Karim&rft.date=2016-05-26&rft.issn=0925-2312&rft.volume=191&rft.spage=55&rft.epage=68&rft_id=info:doi/10.1016%2Fj.neucom.2016.01.007&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |