A robust two-phase heuristic algorithm for the truck scheduling problem in a resource-constrained crossdock

This paper studies truck scheduling in a resource-constrained crossdock. The problem decides on the sequence of incoming and outgoing trucks at the dock doors of the crossdocking terminal, subject to the availability of crossdock resources including dock doors and material handling systems. The reso...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & operations research Ročník 39; číslo 11; s. 2564 - 2577
Hlavní autoři: Shakeri, Mojtaba, Low, Malcolm Yoke Hean, Turner, Stephen John, Lee, Eng Wah
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.11.2012
Elsevier
Pergamon Press Inc
Témata:
ISSN:0305-0548, 1873-765X, 0305-0548
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies truck scheduling in a resource-constrained crossdock. The problem decides on the sequence of incoming and outgoing trucks at the dock doors of the crossdocking terminal, subject to the availability of crossdock resources including dock doors and material handling systems. The resources are assumed non-preemptive making it necessary to address the feasibility of the problem before its optimality as it might be entrapped in deadlock and no feasible solution is produced. The paper thus aims at developing an algorithmic approach capable of establishing solution feasibility for truck scheduling problem instances of various types and difficulty levels which at the same time can be readily implemented in an industrial setting. The proposed approach is a two-phase heuristic algorithm where in the first phase, a heuristic search is deployed to construct a feasible sequence of trucks for the assignment to dock doors and in the second, a rule-based heuristic is used to assign each sequenced truck to a proper dock door, subject to a limited number of forklifts, such that significant savings in the truck schedule length are achieved. Extensive experiments are conducted to evaluate the efficiency of the algorithm in terms of deadlock avoidance and solution quality. The evaluation is carried out against the solutions generated by the exact mathematical model of the problem and a constructive heuristic developed for a similar truck scheduling problem. Experimental results demonstrate that the proposed algorithm is robust in avoiding deadlock and generates feasible solutions for the instances where the other two approaches cannot. Furthermore, significant improvement in the solution quality is achieved by augmenting the algorithm to a re-starting heuristic.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2012.01.002