Non-Contact Heart Rate Variability Monitoring with FMCW Radar via a Novel Signal Processing Algorithm
Heart rate variability (HRV), which quantitatively characterizes fluctuations in beat-to-beat intervals, serves as a critical indicator of cardiovascular and autonomic nervous system health. The inherent ability of non-contact methods to eliminate the need for subject contact effectively mitigates u...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 25; číslo 17; s. 5607 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
08.09.2025
|
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Heart rate variability (HRV), which quantitatively characterizes fluctuations in beat-to-beat intervals, serves as a critical indicator of cardiovascular and autonomic nervous system health. The inherent ability of non-contact methods to eliminate the need for subject contact effectively mitigates user burden and facilitates scalable long-term monitoring, thus attracting considerable research interest in non-contact HRV sensing. In this study, we propose a novel algorithm for HRV extraction utilizing FMCW millimeter-wave radar. First, we developed a calibration-free 3D target positioning module that captures subjects’ micro-motion signals through the integration of digital beamforming, moving target indication filtering, and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering techniques. Second, we established separate phase-based mathematical models for respiratory and cardiac vibrations to enable systematic signal separation. Third, we implemented the Second Order Spectral Sparse Separation Algorithm Using Lagrangian Multipliers, thereby achieving robust heartbeat extraction in the presence of respiratory movements and noise. Heartbeat events are identified via peak detection on the recovered cardiac signal, from which inter-beat intervals and HRV metrics are subsequently derived. Compared to state-of-the-art algorithms and traditional filter bank approaches, the proposed method demonstrated an over 50% reduction in average IBI (Inter-Beat Interval) estimation error, while maintaining consistent accuracy across all test scenarios. However, it should be noted that the method is currently applicable only to scenarios with limited subject movement and has been validated in offline mode, but a discussion addressing these two issues is provided at the end. |
|---|---|
| AbstractList | Heart rate variability (HRV), which quantitatively characterizes fluctuations in beat-to-beat intervals, serves as a critical indicator of cardiovascular and autonomic nervous system health. The inherent ability of non-contact methods to eliminate the need for subject contact effectively mitigates user burden and facilitates scalable long-term monitoring, thus attracting considerable research interest in non-contact HRV sensing. In this study, we propose a novel algorithm for HRV extraction utilizing FMCW millimeter-wave radar. First, we developed a calibration-free 3D target positioning module that captures subjects’ micro-motion signals through the integration of digital beamforming, moving target indication filtering, and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering techniques. Second, we established separate phase-based mathematical models for respiratory and cardiac vibrations to enable systematic signal separation. Third, we implemented the Second Order Spectral Sparse Separation Algorithm Using Lagrangian Multipliers, thereby achieving robust heartbeat extraction in the presence of respiratory movements and noise. Heartbeat events are identified via peak detection on the recovered cardiac signal, from which inter-beat intervals and HRV metrics are subsequently derived. Compared to state-of-the-art algorithms and traditional filter bank approaches, the proposed method demonstrated an over 50% reduction in average IBI (Inter-Beat Interval) estimation error, while maintaining consistent accuracy across all test scenarios. However, it should be noted that the method is currently applicable only to scenarios with limited subject movement and has been validated in offline mode, but a discussion addressing these two issues is provided at the end. Heart rate variability (HRV), which quantitatively characterizes fluctuations in beat-to-beat intervals, serves as a critical indicator of cardiovascular and autonomic nervous system health. The inherent ability of non-contact methods to eliminate the need for subject contact effectively mitigates user burden and facilitates scalable long-term monitoring, thus attracting considerable research interest in non-contact HRV sensing. In this study, we propose a novel algorithm for HRV extraction utilizing FMCW millimeter-wave radar. First, we developed a calibration-free 3D target positioning module that captures subjects' micro-motion signals through the integration of digital beamforming, moving target indication filtering, and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering techniques. Second, we established separate phase-based mathematical models for respiratory and cardiac vibrations to enable systematic signal separation. Third, we implemented the Second Order Spectral Sparse Separation Algorithm Using Lagrangian Multipliers, thereby achieving robust heartbeat extraction in the presence of respiratory movements and noise. Heartbeat events are identified via peak detection on the recovered cardiac signal, from which inter-beat intervals and HRV metrics are subsequently derived. Compared to state-of-the-art algorithms and traditional filter bank approaches, the proposed method demonstrated an over 50% reduction in average IBI (Inter-Beat Interval) estimation error, while maintaining consistent accuracy across all test scenarios. However, it should be noted that the method is currently applicable only to scenarios with limited subject movement and has been validated in offline mode, but a discussion addressing these two issues is provided at the end.Heart rate variability (HRV), which quantitatively characterizes fluctuations in beat-to-beat intervals, serves as a critical indicator of cardiovascular and autonomic nervous system health. The inherent ability of non-contact methods to eliminate the need for subject contact effectively mitigates user burden and facilitates scalable long-term monitoring, thus attracting considerable research interest in non-contact HRV sensing. In this study, we propose a novel algorithm for HRV extraction utilizing FMCW millimeter-wave radar. First, we developed a calibration-free 3D target positioning module that captures subjects' micro-motion signals through the integration of digital beamforming, moving target indication filtering, and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering techniques. Second, we established separate phase-based mathematical models for respiratory and cardiac vibrations to enable systematic signal separation. Third, we implemented the Second Order Spectral Sparse Separation Algorithm Using Lagrangian Multipliers, thereby achieving robust heartbeat extraction in the presence of respiratory movements and noise. Heartbeat events are identified via peak detection on the recovered cardiac signal, from which inter-beat intervals and HRV metrics are subsequently derived. Compared to state-of-the-art algorithms and traditional filter bank approaches, the proposed method demonstrated an over 50% reduction in average IBI (Inter-Beat Interval) estimation error, while maintaining consistent accuracy across all test scenarios. However, it should be noted that the method is currently applicable only to scenarios with limited subject movement and has been validated in offline mode, but a discussion addressing these two issues is provided at the end. |
| Audience | Academic |
| Author | Li, Bijie Wang, Yujie Zhang, Xinyi Wang, Jiayi Li, Jiale Cui, Guangyu Liu, Xinfeng Zhang, Quan |
| Author_xml | – sequence: 1 givenname: Guangyu surname: Cui fullname: Cui, Guangyu – sequence: 2 givenname: Yujie orcidid: 0009-0009-2732-1991 surname: Wang fullname: Wang, Yujie – sequence: 3 givenname: Xinyi surname: Zhang fullname: Zhang, Xinyi – sequence: 4 givenname: Jiale surname: Li fullname: Li, Jiale – sequence: 5 givenname: Xinfeng surname: Liu fullname: Liu, Xinfeng – sequence: 6 givenname: Bijie surname: Li fullname: Li, Bijie – sequence: 7 givenname: Jiayi surname: Wang fullname: Wang, Jiayi – sequence: 8 givenname: Quan orcidid: 0000-0001-9867-2443 surname: Zhang fullname: Zhang, Quan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40943036$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1v1DAQhiNURD_gwB9AlrjAIcWfiXNcrSit1BbE5zEa25OtV9m42N6i_nsctqwAIR_GGj3zjt6ZOa4OpjBhVT1n9FSIjr5JXLFWNbR9VB0xyWWtOacHf_wPq-OU1pRyIYR-Uh1K2klBRXNU4XWY6mWYMthMzhFiJh8hI_kK0YPxo8_35CpMPofopxX54fMNObtafiuUg0juPBAg1-EOR_LJryYYyYcYLKY004txVcryzeZp9XiAMeGzh3hSfTl7-3l5Xl--f3exXFzWVkqRa2xl12owTopOamBUSRxaxrQCSo3sqNOmMeC47qSxqJnDzlmkHXLasBbFSXWx03UB1v1t9BuI930A3_9KhLjqi0NvR-xFY5llDQ4KuWwaZixXRksYODhjjCtar3ZatzF832LK_cYni-MIE4Zt6gVXlHFGdVvQl_-g67CNZRgzVSyxRpXB76kVlP5-GkKOYGfRfqGVUlxxMWud_ocqz-HG27L3wZf8XwUvHppvzQbd3vXvHRfg9Q6wMaQUcdgjjPbz_fT7-xE_AexUszI |
| Cites_doi | 10.3390/s22093106 10.1186/s13634-022-00899-8 10.3390/s24072026 10.1152/ajpheart.00230.2014 10.3390/app14020921 10.1109/COMST.2022.3177305 10.1109/TMTT.2021.3076239 10.1109/TBME.2021.3066876 10.1109/JIOT.2021.3075167 10.1109/ACCESS.2019.2921240 10.1016/j.cpr.2016.09.003 10.1016/0141-5425(84)90056-6 10.1109/JIOT.2021.3051580 10.1109/TIM.2020.2978347 10.3390/s21113588 10.3390/s17112637 10.1007/BF02441473 10.1109/TRS.2023.3333628 10.3390/biomimetics9080481 10.1109/TBME.2013.2288319 10.3390/rs12142265 10.1016/j.apcbee.2013.08.016 10.3390/s20082351 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 DOA |
| DOI | 10.3390/s25175607 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_36c1c16ef5e24661bc25b84af2adbbbd A855525237 40943036 10_3390_s25175607 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PUEGO 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 |
| ID | FETCH-LOGICAL-c443t-e74978abd43948a1054ef71185a00b490d8b6bad2894bce81de9dce09e20617e3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001570125900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:32:46 EST 2025 Thu Oct 02 21:29:24 EDT 2025 Tue Oct 07 07:29:24 EDT 2025 Tue Nov 11 10:46:08 EST 2025 Tue Nov 04 18:10:36 EST 2025 Thu Sep 18 02:03:30 EDT 2025 Sat Nov 29 07:13:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | millimeter-wave (mmWave) radio spectral sparse separation algorithm heart rate variability (HRV) non-contact monitoring |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c443t-e74978abd43948a1054ef71185a00b490d8b6bad2894bce81de9dce09e20617e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9867-2443 0009-0009-2732-1991 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3249716533?pq-origsite=%requestingapplication% |
| PMID | 40943036 |
| PQID | 3249716533 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_36c1c16ef5e24661bc25b84af2adbbbd proquest_miscellaneous_3250121087 proquest_journals_3249716533 gale_infotracmisc_A855525237 gale_infotracacademiconefile_A855525237 pubmed_primary_40943036 crossref_primary_10_3390_s25175607 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-08 |
| PublicationDateYYYYMMDD | 2025-09-08 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Mercuri (ref_10) 2021; 68 Aubert (ref_21) 1984; 6 ref_14 ref_13 Xiong (ref_6) 2020; 69 ref_23 Pan (ref_12) 2022; 2022 ChuDuc (ref_1) 2013; 7 Shastri (ref_3) 2022; 24 Mercuri (ref_9) 2021; 8 Wang (ref_11) 2021; 8 Petrovic (ref_5) 2019; 7 ref_18 ref_17 Ramachandran (ref_20) 1989; 27 ref_16 Feng (ref_8) 2021; 69 Hu (ref_19) 2013; 61 Hur (ref_15) 2023; 1 Hamilton (ref_2) 2016; 50 ref_4 ref_7 Albanese (ref_22) 2016; 310 |
| References_xml | – ident: ref_17 doi: 10.3390/s22093106 – volume: 2022 start-page: 1 year: 2022 ident: ref_12 article-title: A spectrum estimation approach for accurate heartbeat detection using Doppler radar based on combination of FTPR and TWV publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-022-00899-8 – ident: ref_18 doi: 10.3390/s24072026 – volume: 310 start-page: H899 year: 2016 ident: ref_22 article-title: An integrated mathematical model of the human cardiopulmonary system: Model development publication-title: Am. J. Physiol. Circ. Physiol. doi: 10.1152/ajpheart.00230.2014 – ident: ref_13 doi: 10.3390/app14020921 – volume: 24 start-page: 1708 year: 2022 ident: ref_3 article-title: A Review of Millimeter Wave Device-Based Localization and Device-Free Sensing Technologies and Applications publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2022.3177305 – volume: 69 start-page: 4735 year: 2021 ident: ref_8 article-title: Multitarget Vital Signs Measurement With Chest Motion Imaging Based on MIMO Radar publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2021.3076239 – volume: 68 start-page: 3228 year: 2021 ident: ref_10 article-title: Enabling Robust Radar-Based Localization and Vital Signs Monitoring in Multipath Propagation Environments publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3066876 – volume: 8 start-page: 16623 year: 2021 ident: ref_11 article-title: mmHRV: Contactless Heart Rate Variability Monitoring Using Millimeter-Wave Radio publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3075167 – volume: 7 start-page: 74721 year: 2019 ident: ref_5 article-title: High-Accuracy Real-Time Monitoring of Heart Rate Variability Using 24 GHz Continuous-Wave Doppler Radar publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921240 – volume: 50 start-page: 67 year: 2016 ident: ref_2 article-title: Atypical reactivity of heart rate variability to stress and depression across development: Systematic review of the literature and directions for future research publication-title: Clin. Psychol. Rev. doi: 10.1016/j.cpr.2016.09.003 – volume: 6 start-page: 134 year: 1984 ident: ref_21 article-title: Laser method for re-cording displacement of the heart and chest wall publication-title: J. Biomed. Eng. doi: 10.1016/0141-5425(84)90056-6 – volume: 8 start-page: 11065 year: 2021 ident: ref_9 article-title: 2-D Localization, Angular Separation and Vital Signs Monitoring Using a SISO FMCW Radar for Smart Long-Term Health Monitoring Environments publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3051580 – volume: 69 start-page: 7108 year: 2020 ident: ref_6 article-title: Differential Enhancement Method for Robust and Accurate Heart Rate Monitoring via Microwave Vital Sign Sensing publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2978347 – ident: ref_23 doi: 10.3390/s21113588 – ident: ref_4 doi: 10.3390/s17112637 – volume: 27 start-page: 525 year: 1989 ident: ref_20 article-title: Three-dimensional reconstruction of cardiac displacement patterns on the chest wall during the P, QRS and T-segments of the ECG by laser speckle inteferometry publication-title: Med Biol. Eng. Comput. doi: 10.1007/BF02441473 – volume: 1 start-page: 698 year: 2023 ident: ref_15 article-title: Multiple Human Heart Rate Variability Detection Using MIMO FMCW Radar With Differential Beam Techniques publication-title: IEEE Trans. Radar Syst. doi: 10.1109/TRS.2023.3333628 – ident: ref_14 doi: 10.3390/biomimetics9080481 – volume: 61 start-page: 725 year: 2013 ident: ref_19 article-title: Noncontact Accurate Measurement of Cardiopulmonary Activity Using a Compact Quadrature Doppler Radar Sensor publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2288319 – ident: ref_7 doi: 10.3390/rs12142265 – volume: 7 start-page: 80 year: 2013 ident: ref_1 article-title: A Review of Heart Rate Variability and its Applications publication-title: APCBEE Procedia doi: 10.1016/j.apcbee.2013.08.016 – ident: ref_16 doi: 10.3390/s20082351 |
| SSID | ssj0023338 |
| Score | 2.458449 |
| Snippet | Heart rate variability (HRV), which quantitatively characterizes fluctuations in beat-to-beat intervals, serves as a critical indicator of cardiovascular and... |
| SourceID | doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 5607 |
| SubjectTerms | Accuracy Algorithms Comparative analysis Deep learning Forecasts and trends Heart beat Heart rate Heart Rate - physiology heart rate variability (HRV) Humans Localization Machine learning Measurement Methods millimeter-wave (mmWave) radio Monitoring, Physiologic - methods Neural networks non-contact monitoring Optimization techniques Physiology Radar Radar systems Respiration Signal processing Signal Processing, Computer-Assisted spectral sparse separation algorithm Technology application |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcEOW5UCqDkDhFTW3HcY7bilUPZYV49maNnXG7Usmi3XQl_n1nkuyqWw5ceo0nD8_Yme9L7G-E-EApCGxlVQbKQEb51mbO6ZSZZF2BmKxOnbr-WTmduvPz6sutUl-8JqyXB-4dd6htPIpHFlOBylAyCVEVwRlICuoQQs1v37ys1mRqoFqamFevI6SJ1B8uWZiLcnu5lX06kf5_X8V3AGaXaCZPxOMBIcpx_2R74gE2T8WjW7qBzwRO503GulIQW3lKY7WVXwkzyp9EfHvd7b-yn6xsL_lbq5x8PvlFVjUs5GoGEuR0vsIr-W12wXcb9guw9fjqgk5rL38_Fz8mn76fnGZDvYQsGqPbDEsuFweh5t2uDgg5GUwlMYgC8jyYKq9dsAFq4lgmRCSkilUdMa9QMZBB_ULsNPMGXwmZkGBfjM5qumgCF6DSlNjrPCmKhwsj8X7tR_-nl8XwRCfY2X7j7JE4Zg9vDFjJujtA8fVDfP3_4jsSHzk-nudbu4AIw7YBek5WrvJjVxSFIjpNt9vfsqR5Ereb1xH2wzxdeoKTrKFFmHck3m2a-Uxee9bg_JptCha-yx1d4mU_MjZdYnbMIOD1fXT1jXiouLow_65y-2KnXVzjW7EbV-1suTjoBvgNDcf_qA priority: 102 providerName: Directory of Open Access Journals |
| Title | Non-Contact Heart Rate Variability Monitoring with FMCW Radar via a Novel Signal Processing Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40943036 https://www.proquest.com/docview/3249716533 https://www.proquest.com/docview/3250121087 https://doaj.org/article/36c1c16ef5e24661bc25b84af2adbbbd |
| Volume | 25 |
| WOSCitedRecordID | wos001570125900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB7RhAM98KYNLdGCkDhZcf1cn6q0SlQkYkXlFU7W7no3RGrt4riRuPDbmbE3hoDEicse7Nm1rdmZ-Wa9-w3AawxBIkoizxFeIByMt5HDuW-cwEQ81NpEvmnY9d_FacoXi2Ruj0ev7bbKrU9sHHXL9kz7ttEJj_JS0Yr5CGEAcR8hVjm9-eZQDSn612oLauxBn4i33B70529n8y9dAuZjPtayC_mY6o_WRNeFET_eiUkNdf_fDvoP2NmEn-mD__viD-G-haFs3M6bR3BHF49h_zdywieg07JwiLxKqJpdoEHU7BKBKfuE2XVL7v2dtR6B5Bkt6LLp7PwzSuWiYpuVYIKl5UZfsferJT3NHkog6fHVErvVX6-fwsfp5MP5hWOLMjgqCPza0THVpBMypyO1XCA8C7SJMU0JhevKIHFzLiMpckzkAqk0wmGd5Eq7ifYILWn_GfSKstCHwIxGbKkUj3wc1AguReIjeshd40XqhMsBvNqqJbtpuTcyzFlId1mnuwGckcI6AaLLbi6U1TKz1pf5OJ46ibQJtRcgIpHKCyUPhPFELqXMB_CG1J2RUdeVUMKeTcD3JHqsbMzDMPQwZ8fHHe9IojGq3dvbSZBZZ7DOful8AC-729STNrgVurwlmZDY9VyOQxy0E637JErBCWk8__fgR3DPo-LE9LeLH0Ovrm71C7irNvVqXQ1hL17ETcuH0D-bpPPLYbMAge3sx2RobeUn9gkezw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIly4E0JFFgQiJNVd9d21geEQiFK1MSKoJRyMrvrdYhU7OK4Qf1T_EZm_AgEJG49cLXH49fnmW_Wu98APMMUpIIw4I7innIw3waOlCJ1vDSQvrVpINJKXX_ciyJ5fBxON-BHuxaGplW2MbEK1EluaIx8FxM_qR0hO3l1-s2hrlH0d7VtoVHD4sCef8eSbfFy9Abf73POB28P94dO01XAMZ4nSsf2qKma0gmtCZUK-YVn0x7ybF-5rvZCN5E60CrBSsTTxiKfs2FirBtaTuneCvR7CTY9BLvbgc3paDL9tCrxBFZ8tX6REKG7uyBBMOQUvbWsVzUH-DsF_EFsqwQ3uP6_PZobcK2h0qxfY_8mbNjsFlz9TWDxNtgozxwS4FKmZEO8xJK9Q3LNjhR-d9W04HNWRzWyZzQozQaT_Y9olaiCLeeKKRblS3vC3s9ndLZmYQVZ909meFj55esd-HAh93kXOlme2XvAUov82BgZCHSaKqlVKJABJW7KA7MndReeti8-Pq31Q2Ksuwgd8QodXXhNkFgZkOR3tSEvZnETQWKB_sxeYFPfcg9ZlTbc19JTKVeJ1jrpwgsCVEyBqSyUUc36CrxOkviK-9L3fe5zgafbWbPEgGLWd7cwi5uAtoh_YawLT1a76UiapJfZ_IxsfFIIdCW62K6hvLolGkYgtnT_384fw5Xh4WQcj0fRwQPY4tRsmf7eyR3olMWZfQiXzbKcL4pHzZfH4PNFI_onNlFqgA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VFCF44D4CBRYE4smKu-tj_YBQekStWqyoXH0zu-vdEKnYJXGD-tf4dcz4CAQk3vrAazweH_l25pv17jcALzAFqSiJuKd4oDzMt5EnpXBe4CIZWusi4Wp1_cM4TeXxcTJegx_dXhhaVtnFxDpQ56WhOfIBJn5SO0J2MnDtsojxzujN6TePOkjRl9aunUYDkQN7_h3Lt_nr_R38r19yPtp9v73ntR0GPBMEovJsTA3WlM5pf6hUyDUC62Lk3KHyfR0kfi51pFWOVUmgjUVuZ5PcWD-xnFK_Fej3EqzHAoueHqxv7abjo2W5J7D6a7SMhEj8wZzEwZBfxCsZsG4U8Hc6-IPk1sludON_fk034XpLsdmwGRO3YM0Wt-Hab8KLd8CmZeGRMJcyFdvDW6zYEZJu9lHheKyXC5-zJtqRPaPJajZ6u_0JrXI1Y4upYoql5cKesHfTCV2t3XBB1sOTCZ5Wffl6Fz5cyHPeg15RFvYBMGeRNxsjI4FOnZJaJQKZUe47HplNqfvwvANBdtroimRYjxFSsiVS-rBF8FgakBR4_UM5m2RtZMkE-jObkXWh5QGyLW14qGWgHFe51jrvwysCV0YBq5opo9p9F3ifJP2VDWUYhjzkAi-3sWKJgcasHu4gl7WBbp79wlsfni0P05m0eK-w5RnZhKQc6Et0cb-B9fKRaHqBWNTDfzt_ClcQxtnhfnrwCK5y6sFMH_XkBvSq2Zl9DJfNoprOZ0_aQcjg80UD-ieC53Ma |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Contact+Heart+Rate+Variability+Monitoring+with+FMCW+Radar+via+a+Novel+Signal+Processing+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Guangyu+Cui&rft.au=Yujie+Wang&rft.au=Xinyi+Zhang&rft.au=Jiale+Li&rft.date=2025-09-08&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=17&rft_id=info:doi/10.3390%2Fs25175607&rft.externalDocID=A855525237 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |