A standard branch-and-bound approach for nonlinear semi-infinite problems

•Branch and bound algorithm for non-convex semi-infinite problems.•Extension of classical bounding technics to such semi-infinite problems.•Interval evaluations of semi-infinite constraints and their generalized gradient.•Open-source distributed implementation of the algorithm (http://www.ibex-lib.o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 282; číslo 2; s. 438 - 452
Hlavní autoři: Marendet, Antoine, Goldsztejn, Alexandre, Chabert, Gilles, Jermann, Christophe
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 16.04.2020
Elsevier
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•Branch and bound algorithm for non-convex semi-infinite problems.•Extension of classical bounding technics to such semi-infinite problems.•Interval evaluations of semi-infinite constraints and their generalized gradient.•Open-source distributed implementation of the algorithm (http://www.ibex-lib.org/). This paper considers nonlinear semi-infinite problems, which contain at least one semi-infinite constraint (SIC). The standard branch-and-bound algorithm is adapted to such problems by extending usual upper and lower bounding techniques for nonlinear inequality constraints to SICs. This is achieved by defining the interval evaluation of parametrized functions and their generalized gradients, by also adapting numerical constraint programming techniques to quantified inequalities, and by introducing linear relaxations and restrictions for SICs. The overall efficiency of our algorithm is demonstrated on a standard set of benchmarks from the literature, in comparison with the best state of the art alternative.
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2019.10.025