Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients

Signaling pathways control cell fate decisions that ultimately determine the behavior of cancer cells. Therefore, the dynamics of pathway activity may contain prognostically relevant information different from that contained in the static nature of other types of biomarkers. To investigate this hypo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Science signaling Ročník 8; číslo 408; s. ra130
Hlavní autoři: Fey, Dirk, Halasz, Melinda, Dreidax, Daniel, Kennedy, Sean P, Hastings, Jordan F, Rauch, Nora, Munoz, Amaya Garcia, Pilkington, Ruth, Fischer, Matthias, Westermann, Frank, Kolch, Walter, Kholodenko, Boris N, Croucher, David R
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 22.12.2015
Témata:
ISSN:1937-9145, 1937-9145
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Signaling pathways control cell fate decisions that ultimately determine the behavior of cancer cells. Therefore, the dynamics of pathway activity may contain prognostically relevant information different from that contained in the static nature of other types of biomarkers. To investigate this hypothesis, we characterized the network that regulated stress signaling by the c-Jun N-terminal kinase (JNK) pathway in neuroblastoma cells. We generated an experimentally calibrated and validated computational model of this network and used the model to extract prognostic information from neuroblastoma patient-specific simulations of JNK activation. Switch-like JNK activation mediates cell death by apoptosis. An inability to initiate switch-like JNK activation in the simulations was significantly associated with poor overall survival for patients with neuroblastoma with or without MYCN amplification, indicating that patient-specific simulations of JNK activation could stratify patients. Furthermore, our analysis demonstrated that extracting information about a signaling pathway to develop a prognostically useful model requires understanding of not only components and disease-associated changes in the abundance or activity of the components but also how those changes affect pathway dynamics.
AbstractList Signaling pathways control cell fate decisions that ultimately determine the behavior of cancer cells. Therefore, the dynamics of pathway activity may contain prognostically relevant information different from that contained in the static nature of other types of biomarkers. To investigate this hypothesis, we characterized the network that regulated stress signaling by the c-Jun N-terminal kinase (JNK) pathway in neuroblastoma cells. We generated an experimentally calibrated and validated computational model of this network and used the model to extract prognostic information from neuroblastoma patient-specific simulations of JNK activation. Switch-like JNK activation mediates cell death by apoptosis. An inability to initiate switch-like JNK activation in the simulations was significantly associated with poor overall survival for patients with neuroblastoma with or without MYCN amplification, indicating that patient-specific simulations of JNK activation could stratify patients. Furthermore, our analysis demonstrated that extracting information about a signaling pathway to develop a prognostically useful model requires understanding of not only components and disease-associated changes in the abundance or activity of the components but also how those changes affect pathway dynamics.Signaling pathways control cell fate decisions that ultimately determine the behavior of cancer cells. Therefore, the dynamics of pathway activity may contain prognostically relevant information different from that contained in the static nature of other types of biomarkers. To investigate this hypothesis, we characterized the network that regulated stress signaling by the c-Jun N-terminal kinase (JNK) pathway in neuroblastoma cells. We generated an experimentally calibrated and validated computational model of this network and used the model to extract prognostic information from neuroblastoma patient-specific simulations of JNK activation. Switch-like JNK activation mediates cell death by apoptosis. An inability to initiate switch-like JNK activation in the simulations was significantly associated with poor overall survival for patients with neuroblastoma with or without MYCN amplification, indicating that patient-specific simulations of JNK activation could stratify patients. Furthermore, our analysis demonstrated that extracting information about a signaling pathway to develop a prognostically useful model requires understanding of not only components and disease-associated changes in the abundance or activity of the components but also how those changes affect pathway dynamics.
Signaling pathways control cell fate decisions that ultimately determine the behavior of cancer cells. Therefore, the dynamics of pathway activity may contain prognostically relevant information different from that contained in the static nature of other types of biomarkers. To investigate this hypothesis, we characterized the network that regulated stress signaling by the c-Jun N-terminal kinase (JNK) pathway in neuroblastoma cells. We generated an experimentally calibrated and validated computational model of this network and used the model to extract prognostic information from neuroblastoma patient-specific simulations of JNK activation. Switch-like JNK activation mediates cell death by apoptosis. An inability to initiate switch-like JNK activation in the simulations was significantly associated with poor overall survival for patients with neuroblastoma with or without MYCN amplification, indicating that patient-specific simulations of JNK activation could stratify patients. Furthermore, our analysis demonstrated that extracting information about a signaling pathway to develop a prognostically useful model requires understanding of not only components and disease-associated changes in the abundance or activity of the components but also how those changes affect pathway dynamics.
Author Munoz, Amaya Garcia
Hastings, Jordan F
Kennedy, Sean P
Kholodenko, Boris N
Westermann, Frank
Fischer, Matthias
Kolch, Walter
Halasz, Melinda
Rauch, Nora
Fey, Dirk
Dreidax, Daniel
Pilkington, Ruth
Croucher, David R
Author_xml – sequence: 1
  givenname: Dirk
  surname: Fey
  fullname: Fey, Dirk
  organization: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
– sequence: 2
  givenname: Melinda
  surname: Halasz
  fullname: Halasz, Melinda
  organization: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
– sequence: 3
  givenname: Daniel
  surname: Dreidax
  fullname: Dreidax, Daniel
  organization: Department of Neuroblastoma Genomics (B087), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
– sequence: 4
  givenname: Sean P
  surname: Kennedy
  fullname: Kennedy, Sean P
  organization: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
– sequence: 5
  givenname: Jordan F
  surname: Hastings
  fullname: Hastings, Jordan F
  organization: The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
– sequence: 6
  givenname: Nora
  surname: Rauch
  fullname: Rauch, Nora
  organization: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
– sequence: 7
  givenname: Amaya Garcia
  surname: Munoz
  fullname: Munoz, Amaya Garcia
  organization: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
– sequence: 8
  givenname: Ruth
  surname: Pilkington
  fullname: Pilkington, Ruth
  organization: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
– sequence: 9
  givenname: Matthias
  surname: Fischer
  fullname: Fischer, Matthias
  organization: Department of Pediatric Hematology and Oncology, University Hospital Cologne, 50937 Cologne, Germany. Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany. Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
– sequence: 10
  givenname: Frank
  surname: Westermann
  fullname: Westermann, Frank
  organization: Department of Neuroblastoma Genomics (B087), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
– sequence: 11
  givenname: Walter
  surname: Kolch
  fullname: Kolch, Walter
  organization: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland. Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
– sequence: 12
  givenname: Boris N
  surname: Kholodenko
  fullname: Kholodenko, Boris N
  email: d.croucher@garvan.org.au, boris.kholodenko@ucd.ie
  organization: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland. Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland. d.croucher@garvan.org.au boris.kholodenko@ucd.ie
– sequence: 13
  givenname: David R
  surname: Croucher
  fullname: Croucher, David R
  email: d.croucher@garvan.org.au, boris.kholodenko@ucd.ie
  organization: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia. d.croucher@garvan.org.au boris.kholodenko@ucd.ie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26696630$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtOwzAQRS1URGnhA9ggL9mk2EnqxOwQ4l0BErCuJs64NeRFxinqmh8nhSKxmqvR0RnNHbFBVVfI2JEUEylDdUrGkVtUUEwAMqG12GH7UkdJoGU8HfzLQzYiehNCyTDUe2wYKqWVisQ--3r-EbhqwRvwy09Y87LOsSAOxDNXl9C-Y0tn_Am8w8oH1KBx1hlOruyKfllXxGvL7x7uORjvVs6vedNi7oznfomcunblVlBsoAq7ts4KIN-LNwc3SjpguxYKwsPtHLPXq8uXi5tg9nh9e3E-C0wcRz5IhQWTTWPIrEpysFluIoEisXEE_WOo00SHOjRiajE1kYk0KrQYSaEyE6dxOGYnv96mrT86JD8vHRksCqiw7mguk6nsi0nStEePt2iXlZjPm9b1Taznf8WF37Wmd94
CitedBy_id crossref_primary_10_1186_s12885_019_6280_2
crossref_primary_10_3389_fgene_2023_1254966
crossref_primary_10_3390_jpm11050395
crossref_primary_10_1002_1878_0261_12563
crossref_primary_10_1038_s41467_019_13817_8
crossref_primary_10_1038_s41540_019_0096_1
crossref_primary_10_1093_hmg_ddac007
crossref_primary_10_1016_j_isci_2024_109708
crossref_primary_10_1016_j_cels_2021_04_002
crossref_primary_10_1016_j_coisb_2019_09_004
crossref_primary_10_1016_j_tibtech_2016_12_008
crossref_primary_10_12688_f1000research_126734_2
crossref_primary_10_12688_f1000research_126734_1
crossref_primary_10_3390_cancers13246312
crossref_primary_10_1016_j_tcb_2024_10_013
crossref_primary_10_1038_s41540_017_0023_2
crossref_primary_10_1038_s41598_018_34766_0
crossref_primary_10_3390_jpm12020166
crossref_primary_10_3389_fmolb_2021_754444
crossref_primary_10_3390_jpm7030009
crossref_primary_10_1158_0008_5472_CAN_17_2698
crossref_primary_10_3389_fonc_2018_00430
crossref_primary_10_1093_bib_bby040
crossref_primary_10_1111_febs_15831
crossref_primary_10_1186_s13062_018_0219_4
crossref_primary_10_1016_j_semcancer_2018_02_008
crossref_primary_10_1042_EBC20180002
crossref_primary_10_1038_s41598_025_99219_x
crossref_primary_10_1038_s41416_025_03139_6
crossref_primary_10_1093_bioadv_vbae145
crossref_primary_10_15252_msb_20167258
crossref_primary_10_1016_j_ifacol_2016_12_145
crossref_primary_10_1038_s41698_024_00496_y
crossref_primary_10_1038_s41598_019_38763_9
crossref_primary_10_3389_fphys_2018_01965
crossref_primary_10_1002_psp4_12225
crossref_primary_10_1038_s41598_019_55454_7
crossref_primary_10_1038_s41416_018_0363_8
crossref_primary_10_1371_journal_pcbi_1007158
crossref_primary_10_1158_1078_0432_CCR_24_0244
crossref_primary_10_3389_fphys_2017_00115
crossref_primary_10_1016_j_pharmthera_2019_107395
crossref_primary_10_1016_j_semcdb_2016_07_005
crossref_primary_10_1158_0008_5472_CAN_17_2705
crossref_primary_10_1002_cac2_12016
crossref_primary_10_1111_bph_14195
crossref_primary_10_1038_s41540_019_0087_2
crossref_primary_10_1371_journal_pcbi_1008748
crossref_primary_10_1002_psp4_13296
crossref_primary_10_3390_ijms231810895
crossref_primary_10_1158_0008_5472_CAN_21_1208
crossref_primary_10_1016_j_csbj_2021_05_022
crossref_primary_10_1093_bib_bby024
crossref_primary_10_3389_fonc_2020_01027
crossref_primary_10_1038_s41416_020_0905_8
crossref_primary_10_1186_s12859_019_2608_9
crossref_primary_10_1038_s41598_017_03129_6
crossref_primary_10_3389_fmolb_2020_502573
crossref_primary_10_1038_s42003_020_01552_6
crossref_primary_10_1016_j_semcdb_2016_06_011
crossref_primary_10_1158_0008_5472_CAN_23_3409
crossref_primary_10_1016_j_cels_2018_10_013
crossref_primary_10_3389_fgene_2019_00233
crossref_primary_10_7554_eLife_53367
crossref_primary_10_3390_ijms22189970
crossref_primary_10_3233_JAD_230938
crossref_primary_10_3390_cancers11020202
crossref_primary_10_1158_0008_5472_CAN_17_0078
crossref_primary_10_3390_cancers15071986
crossref_primary_10_1186_s13058_019_1127_y
crossref_primary_10_1093_bib_bbw065
crossref_primary_10_3389_fcell_2020_578770
crossref_primary_10_1038_s41540_017_0030_3
crossref_primary_10_1186_s13040_021_00234_1
crossref_primary_10_1038_s41467_019_10968_6
crossref_primary_10_1111_bph_70027
crossref_primary_10_1371_journal_pcbi_1007900
crossref_primary_10_1093_nar_gkw369
crossref_primary_10_1371_journal_pone_0206232
crossref_primary_10_15252_msb_20199042
crossref_primary_10_1038_s41586_022_05194_y
crossref_primary_10_1016_j_isci_2023_108083
crossref_primary_10_1186_s12859_019_2969_0
crossref_primary_10_1093_bib_bbz164
crossref_primary_10_3389_fsysb_2022_1063308
crossref_primary_10_1038_s41598_019_46438_8
crossref_primary_10_15252_msb_20188664
crossref_primary_10_3390_cells9071579
crossref_primary_10_1038_s41540_017_0045_9
crossref_primary_10_1371_journal_pone_0250830
crossref_primary_10_3390_ijms24087450
crossref_primary_10_1016_j_nls_2024_100004
crossref_primary_10_1158_0008_5472_CAN_16_0123
crossref_primary_10_1177_1535370218813974
crossref_primary_10_1016_j_pharmthera_2020_107555
crossref_primary_10_1038_s41598_025_89884_3
crossref_primary_10_3389_fcell_2021_746359
ContentType Journal Article
Copyright Copyright © 2015, American Association for the Advancement of Science.
Copyright_xml – notice: Copyright © 2015, American Association for the Advancement of Science.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1126/scisignal.aab0990
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1937-9145
ExternalDocumentID 26696630
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
123
18M
4.4
53G
7~K
ABJNI
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AFQFN
AFRAH
AJGZS
ALMA_UNASSIGNED_HOLDINGS
BKF
BYM
CGR
CS3
CUY
CVF
DU5
ECM
EIF
EJD
EMOBN
F5P
HZ~
NPM
O9-
P2P
RHF
RHI
SJN
7X8
ID FETCH-LOGICAL-c443t-80facb54abf67dafbdc30e07f43a612e9879292c05fe8c3c39e6efe3106bc4842
IEDL.DBID 7X8
ISICitedReferencesCount 123
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000367102600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1937-9145
IngestDate Sun Nov 09 09:01:51 EST 2025
Thu Jan 02 22:21:47 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 408
Language English
License Copyright © 2015, American Association for the Advancement of Science.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-80facb54abf67dafbdc30e07f43a612e9879292c05fe8c3c39e6efe3106bc4842
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10197/7556
PMID 26696630
PQID 1751669788
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1751669788
pubmed_primary_26696630
PublicationCentury 2000
PublicationDate 2015-Dec-22
20151222
PublicationDateYYYYMMDD 2015-12-22
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-Dec-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science signaling
PublicationTitleAlternate Sci Signal
PublicationYear 2015
References 26696629 - Sci Signal. 2015 Dec 22;8(408):fs21
References_xml – reference: 26696629 - Sci Signal. 2015 Dec 22;8(408):fs21
SSID ssj0061229
Score 2.5256743
Snippet Signaling pathways control cell fate decisions that ultimately determine the behavior of cancer cells. Therefore, the dynamics of pathway activity may contain...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage ra130
SubjectTerms Adolescent
Animals
Biomarkers, Tumor - metabolism
Cell Line, Tumor
Child
Child, Preschool
Disease-Free Survival
Female
Follow-Up Studies
Humans
Infant
Male
MAP Kinase Kinase 4 - metabolism
Models, Biological
N-Myc Proto-Oncogene Protein
Neoplasms, Experimental - metabolism
Neuroblastoma - metabolism
Neuroblastoma - mortality
Nuclear Proteins - metabolism
Oncogene Proteins - metabolism
Predictive Value of Tests
Signal Transduction
Survival Rate
Zebrafish - metabolism
Zebrafish Proteins - metabolism
Title Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients
URI https://www.ncbi.nlm.nih.gov/pubmed/26696630
https://www.proquest.com/docview/1751669788
Volume 8
WOSCitedRecordID wos000367102600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPXjxVR_1xQjibXFtsi8vImIRxVJQobcySRPoodvatErP_nEn2VRPguAlp10YksnMN5nHx9iZITcmUqTYJEEeiSzTkVRCR3GhuExREYSoyCaydjvvdotOeHCzoaxyYRO9oe6PlHsjvyA3d5mmFPPk1-O3yLFGuexqoNBYZjVOUMZpddb9ziKQ8_YsZYRRMrrUIglZzdA04wokCN8iytib5N8Qpvc0rY3_yrjJ1gPGhJtKKbbYki63Wf2mpPh6OIdz8FWf_jm9zj6fvXzkwMCRE3_gHDw5jgW04HrzXfnOxF5BpxrAGrnWTFdeBHYwDNRfFkYGHtqP4JokHBcFjCcu_zMFQpdgZ2SNSJ_dR356piTATpIghJmudoe9tu5ebu-jQMwQKSH4lLyaQSUTgdKkWR-N7Cse6zgzgiNtui7yjFBXU8WJ0bniihc61UYTkkxJEXLR3GUr5ajU-wxiXfCU0yJjFJgoMh90kDkiRe05N7LBThdb3SPFd9kMLPVoZns_m91ge9V59cbVhI4eoQ4K43h88Ie_D9kagaDElag0m0esZuja62O2qt6nAzs58RpFa7vz9AXQh9rv
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Signaling+pathway+models+as+biomarkers%3A+Patient-specific+simulations+of+JNK+activity+predict+the+survival+of+neuroblastoma+patients&rft.jtitle=Science+signaling&rft.au=Fey%2C+Dirk&rft.au=Halasz%2C+Melinda&rft.au=Dreidax%2C+Daniel&rft.au=Kennedy%2C+Sean+P&rft.date=2015-12-22&rft.issn=1937-9145&rft.eissn=1937-9145&rft.volume=8&rft.issue=408&rft.spage=ra130&rft_id=info:doi/10.1126%2Fscisignal.aab0990&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-9145&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-9145&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-9145&client=summon