Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges

Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developmen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cancer letters Ročník 471; s. 61 - 71
Hlavní autoři: Huang, Shigao, Yang, Jie, Fong, Simon, Zhao, Qi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Ireland Elsevier B.V 28.02.2020
Elsevier Limited
Témata:
ISSN:0304-3835, 1872-7980, 1872-7980
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developments in statistics and computer engineering over the years have encouraged many scientists to apply computational methods such as multivariate statistical analysis to analyze the prognosis of the disease, and the accuracy of such analyses is significantly higher than that of empirical predictions. Furthermore, as artificial intelligence (AI), especially machine learning and deep learning, has found popular applications in clinical cancer research in recent years, cancer prediction performance has reached new heights. This article reviews the literature on the application of AI to cancer diagnosis and prognosis, and summarizes its advantages. We explore how AI assists cancer diagnosis and prognosis, specifically with regard to its unprecedented accuracy, which is even higher than that of general statistical applications in oncology. We also demonstrate ways in which these methods are advancing the field. Finally, opportunities and challenges in the clinical implementation of AI are discussed. Hence, this article provides a new perspective on how AI technology can help improve cancer diagnosis and prognosis, and continue improving human health in the future. •Artificial intelligence (AI) has reached new heights in clinical cancer research in recent years.•AI is applied to assist cancer diagnosis and prognosis, given its unprecedented accuracy level, which is even higher than that of general statistical expert.•An overview of how AI applied in clinical cancer could be leveraged in this area and thereby contribute to improved human health.
AbstractList Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developments in statistics and computer engineering over the years have encouraged many scientists to apply computational methods such as multivariate statistical analysis to analyze the prognosis of the disease, and the accuracy of such analyses is significantly higher than that of empirical predictions. Furthermore, as artificial intelligence (AI), especially machine learning and deep learning, has found popular applications in clinical cancer research in recent years, cancer prediction performance has reached new heights. This article reviews the literature on the application of AI to cancer diagnosis and prognosis, and summarizes its advantages. We explore how AI assists cancer diagnosis and prognosis, specifically with regard to its unprecedented accuracy, which is even higher than that of general statistical applications in oncology. We also demonstrate ways in which these methods are advancing the field. Finally, opportunities and challenges in the clinical implementation of AI are discussed. Hence, this article provides a new perspective on how AI technology can help improve cancer diagnosis and prognosis, and continue improving human health in the future. •Artificial intelligence (AI) has reached new heights in clinical cancer research in recent years.•AI is applied to assist cancer diagnosis and prognosis, given its unprecedented accuracy level, which is even higher than that of general statistical expert.•An overview of how AI applied in clinical cancer could be leveraged in this area and thereby contribute to improved human health.
Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developments in statistics and computer engineering over the years have encouraged many scientists to apply computational methods such as multivariate statistical analysis to analyze the prognosis of the disease, and the accuracy of such analyses is significantly higher than that of empirical predictions. Furthermore, as artificial intelligence (AI), especially machine learning and deep learning, has found popular applications in clinical cancer research in recent years, cancer prediction performance has reached new heights. This article reviews the literature on the application of AI to cancer diagnosis and prognosis, and summarizes its advantages. We explore how AI assists cancer diagnosis and prognosis, specifically with regard to its unprecedented accuracy, which is even higher than that of general statistical applications in oncology. We also demonstrate ways in which these methods are advancing the field. Finally, opportunities and challenges in the clinical implementation of AI are discussed. Hence, this article provides a new perspective on how AI technology can help improve cancer diagnosis and prognosis, and continue improving human health in the future.Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developments in statistics and computer engineering over the years have encouraged many scientists to apply computational methods such as multivariate statistical analysis to analyze the prognosis of the disease, and the accuracy of such analyses is significantly higher than that of empirical predictions. Furthermore, as artificial intelligence (AI), especially machine learning and deep learning, has found popular applications in clinical cancer research in recent years, cancer prediction performance has reached new heights. This article reviews the literature on the application of AI to cancer diagnosis and prognosis, and summarizes its advantages. We explore how AI assists cancer diagnosis and prognosis, specifically with regard to its unprecedented accuracy, which is even higher than that of general statistical applications in oncology. We also demonstrate ways in which these methods are advancing the field. Finally, opportunities and challenges in the clinical implementation of AI are discussed. Hence, this article provides a new perspective on how AI technology can help improve cancer diagnosis and prognosis, and continue improving human health in the future.
Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developments in statistics and computer engineering over the years have encouraged many scientists to apply computational methods such as multivariate statistical analysis to analyze the prognosis of the disease, and the accuracy of such analyses is significantly higher than that of empirical predictions. Furthermore, as artificial intelligence (AI), especially machine learning and deep learning, has found popular applications in clinical cancer research in recent years, cancer prediction performance has reached new heights. This article reviews the literature on the application of AI to cancer diagnosis and prognosis, and summarizes its advantages. We explore how AI assists cancer diagnosis and prognosis, specifically with regard to its unprecedented accuracy, which is even higher than that of general statistical applications in oncology. We also demonstrate ways in which these methods are advancing the field. Finally, opportunities and challenges in the clinical implementation of AI are discussed. Hence, this article provides a new perspective on how AI technology can help improve cancer diagnosis and prognosis, and continue improving human health in the future.
Author Zhao, Qi
Fong, Simon
Yang, Jie
Huang, Shigao
Author_xml – sequence: 1
  givenname: Shigao
  surname: Huang
  fullname: Huang, Shigao
  organization: Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
– sequence: 2
  givenname: Jie
  surname: Yang
  fullname: Yang, Jie
  organization: Department of Computer and Information Science, University of Macau, Taipa, Macau, China
– sequence: 3
  givenname: Simon
  surname: Fong
  fullname: Fong, Simon
  email: ccfong@um.edu.mo
  organization: Department of Computer and Information Science, University of Macau, Taipa, Macau, China
– sequence: 4
  givenname: Qi
  surname: Zhao
  fullname: Zhao, Qi
  email: qizhao@um.edu.mo
  organization: Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31830558$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9r3DAQxUVJaTZpv0Ephl568Vb_bNmhBEJo0kIgl5YehSyNt7PVyltJLuTbV4uTy172NAzze4-ZeRfkLEwBCHnP6JpR1n7erq0JHvKaU9avGV9Tql6RFesUr1Xf0TOyooLKWnSiOScXKW0ppY1UzRtyLlgnaNN0K_LrJmYc0aLxFYYM3uMGgoXSVMXfQqwcmk2YEqbKBFft47R0V9Xjfj_FPAfMCMvQ_jbeQ9hAektej8YnePdcL8nPu68_br_VD4_3329vHmorpci1GpmTwzgo3kHfj7QDoVTb9LLnVrbcDUYaqew4OjXIhktprHNCNcAVjL3g4pJ8WnzLXn9nSFnvMNlyhgkwzUlzwVUvWM9VQT8eodtpjqFsVyhBVctkKwv14Zmahx04vY-4M_FJv7ysAFcLYOOUUoRRW8wm4xRyNOg1o_qQj97qJR99yEczrks-RSyPxC_-J2TXiwzKK_8hRJ0sHmJyGMFm7SY8ZfDlyMB6DGiN_wNPp-X_AQL9wC4
CitedBy_id crossref_primary_10_1038_s41598_025_97256_0
crossref_primary_10_1016_j_ejca_2025_115768
crossref_primary_10_2106_JBJS_24_01530
crossref_primary_10_1016_j_knosys_2024_111502
crossref_primary_10_1109_JBHI_2021_3133455
crossref_primary_10_3390_diagnostics14141477
crossref_primary_10_1186_s12911_023_02377_z
crossref_primary_10_1007_s43762_023_00097_8
crossref_primary_10_1145_3745022
crossref_primary_10_3389_fgene_2022_998442
crossref_primary_10_1016_j_cmpb_2024_108400
crossref_primary_10_1007_s13194_024_00614_4
crossref_primary_10_1016_j_compbiomed_2025_109918
crossref_primary_10_1080_07853890_2025_2527954
crossref_primary_10_1111_bioe_70019
crossref_primary_10_1002_ddr_22223
crossref_primary_10_1007_s10388_023_01014_y
crossref_primary_10_1186_s12920_022_01184_1
crossref_primary_10_1186_s40001_024_02138_2
crossref_primary_10_1016_j_heliyon_2024_e36743
crossref_primary_10_5528_wjtm_v9_i1_1
crossref_primary_10_3233_JIFS_236197
crossref_primary_10_1177_10732748221077351
crossref_primary_10_3389_froh_2021_686863
crossref_primary_10_1007_s00330_024_11082_y
crossref_primary_10_3390_en16031490
crossref_primary_10_3389_fonc_2023_1158948
crossref_primary_10_1016_j_jddst_2024_105892
crossref_primary_10_3390_cancers14061524
crossref_primary_10_1016_j_artmed_2021_102060
crossref_primary_10_1177_09746862221142332
crossref_primary_10_1007_s00521_021_06713_0
crossref_primary_10_2147_JMDH_S410301
crossref_primary_10_1016_j_ebiom_2021_103631
crossref_primary_10_2174_0113892010298852240528123911
crossref_primary_10_3389_fgene_2022_944278
crossref_primary_10_3390_diagnostics14111132
crossref_primary_10_1016_j_giec_2024_09_004
crossref_primary_10_1016_j_jrras_2024_100841
crossref_primary_10_1063_5_0022211
crossref_primary_10_1186_s12880_024_01517_9
crossref_primary_10_3390_rs15102641
crossref_primary_10_2174_0115733947288355240305080236
crossref_primary_10_1109_ACCESS_2024_3422317
crossref_primary_10_1007_s00521_025_11126_4
crossref_primary_10_1007_s11831_022_09737_4
crossref_primary_10_3389_fonc_2024_1485681
crossref_primary_10_3390_cancers13153651
crossref_primary_10_3389_fphy_2022_977683
crossref_primary_10_1016_j_ejrad_2024_111348
crossref_primary_10_1016_j_pccm_2023_05_001
crossref_primary_10_3389_fpubh_2023_1328918
crossref_primary_10_1038_s41598_023_46509_x
crossref_primary_10_1007_s11864_025_01331_7
crossref_primary_10_1002_sdtp_18954
crossref_primary_10_2174_0115733947304178240804182938
crossref_primary_10_1001_jamaoncol_2025_3153
crossref_primary_10_1016_j_ijid_2022_09_031
crossref_primary_10_3389_frai_2025_1620572
crossref_primary_10_1007_s12652_021_03091_2
crossref_primary_10_1016_j_jbusres_2022_113588
crossref_primary_10_1002_hsr2_2203
crossref_primary_10_30699_ijmm_18_2_66
crossref_primary_10_3390_cancers15092573
crossref_primary_10_3390_info16060444
crossref_primary_10_1007_s00330_023_10181_6
crossref_primary_10_1186_s12876_025_04105_5
crossref_primary_10_1186_s12872_023_03400_x
crossref_primary_10_1007_s00521_022_07290_6
crossref_primary_10_1080_26896583_2024_2445957
crossref_primary_10_1080_00207543_2023_2221743
crossref_primary_10_1097_JS9_0000000000001058
crossref_primary_10_1007_s10549_025_07727_1
crossref_primary_10_1016_j_cmpb_2023_107934
crossref_primary_10_1111_opo_13219
crossref_primary_10_3390_jcm12154995
crossref_primary_10_1016_j_cmpb_2022_106785
crossref_primary_10_1016_j_medj_2021_04_006
crossref_primary_10_1016_j_eswa_2024_124838
crossref_primary_10_1002_mco2_70247
crossref_primary_10_1007_s12553_024_00825_y
crossref_primary_10_1080_01913123_2021_1882628
crossref_primary_10_1016_j_procbio_2021_08_001
crossref_primary_10_3389_fimmu_2022_1027631
crossref_primary_10_1016_j_cej_2024_152295
crossref_primary_10_1186_s13000_024_01547_5
crossref_primary_10_1007_s00125_024_06089_5
crossref_primary_10_1080_09737766_2021_1958659
crossref_primary_10_1016_j_jii_2025_100905
crossref_primary_10_1016_j_compbiomed_2023_106544
crossref_primary_10_3390_cancers16152700
crossref_primary_10_3390_healthcare12020125
crossref_primary_10_1109_ACCESS_2023_3337117
crossref_primary_10_1111_jnp_70009
crossref_primary_10_1016_j_amjoto_2021_103327
crossref_primary_10_1007_s10620_022_07640_3
crossref_primary_10_1097_XCS_0000000000000573
crossref_primary_10_1002_hsr2_70200
crossref_primary_10_1016_j_bspc_2024_107221
crossref_primary_10_3389_fmed_2022_851890
crossref_primary_10_3390_cancers15184497
crossref_primary_10_57125_FEM_2025_09_30_01
crossref_primary_10_1016_j_soh_2023_100045
crossref_primary_10_3390_diagnostics13101720
crossref_primary_10_1186_s12967_024_05379_1
crossref_primary_10_3390_cancers14051199
crossref_primary_10_3389_fneur_2022_933940
crossref_primary_10_3748_wjg_v26_i42_6679
crossref_primary_10_1016_j_heliyon_2023_e22654
crossref_primary_10_1016_j_eswa_2021_115068
crossref_primary_10_1177_10732748221095946
crossref_primary_10_1007_s11831_025_10372_y
crossref_primary_10_1097_MD_0000000000021798
crossref_primary_10_3748_wjg_v31_i21_106964
crossref_primary_10_1007_s42979_022_01206_w
crossref_primary_10_1007_s10916_024_02098_4
crossref_primary_10_1080_1331677X_2023_2166555
crossref_primary_10_3390_diagnostics13010045
crossref_primary_10_1109_ACCESS_2022_3176091
crossref_primary_10_3389_fonc_2024_1343627
crossref_primary_10_7759_cureus_80335
crossref_primary_10_1016_j_cosrev_2023_100573
crossref_primary_10_2174_0109298673290777240301071513
crossref_primary_10_3389_fonc_2022_971190
crossref_primary_10_1039_D5RA03747F
crossref_primary_10_1016_j_prp_2023_154694
crossref_primary_10_1371_journal_pone_0305035
crossref_primary_10_1186_s12885_024_11887_6
crossref_primary_10_1016_j_engmed_2024_100024
crossref_primary_10_1177_15330338231199287
crossref_primary_10_1111_jan_16680
crossref_primary_10_1039_D3NR05648A
crossref_primary_10_1016_j_csbj_2024_07_012
crossref_primary_10_1016_j_compbiomed_2022_106140
crossref_primary_10_1186_s12911_022_01896_5
crossref_primary_10_3390_cancers13092133
crossref_primary_10_1016_j_breast_2021_04_011
crossref_primary_10_1016_j_nutos_2024_10_006
crossref_primary_10_3389_fgene_2021_741112
crossref_primary_10_3389_fonc_2022_950185
crossref_primary_10_1186_s12967_024_05609_6
crossref_primary_10_3390_healthcare13080892
crossref_primary_10_1016_j_gassur_2024_08_024
crossref_primary_10_1136_bmjopen_2020_047549
crossref_primary_10_1186_s13058_024_01895_6
crossref_primary_10_1109_TNNLS_2023_3248804
crossref_primary_10_1109_JBHI_2024_3363161
crossref_primary_10_1007_s00432_023_05216_w
crossref_primary_10_1016_j_seminoncol_2025_152343
crossref_primary_10_3390_jcm11092431
crossref_primary_10_3390_info15120783
crossref_primary_10_1016_j_tranon_2020_100907
crossref_primary_10_1093_bib_bbac555
crossref_primary_10_3390_pr9081466
crossref_primary_10_3389_fmolb_2024_1389325
crossref_primary_10_1007_s10120_022_01294_w
crossref_primary_10_3389_frai_2024_1446693
crossref_primary_10_2196_45815
crossref_primary_10_3390_biomedicines12071624
crossref_primary_10_3390_cells12060935
crossref_primary_10_1016_j_seminoncol_2025_152349
crossref_primary_10_1080_20476965_2024_2402128
crossref_primary_10_3389_ftox_2024_1461587
crossref_primary_10_3389_fmed_2024_1478842
crossref_primary_10_3390_cancers17121980
crossref_primary_10_3390_ijerph192013691
crossref_primary_10_2147_CMAR_S482837
crossref_primary_10_1016_j_joen_2021_06_003
crossref_primary_10_1016_j_molmed_2024_11_009
crossref_primary_10_1186_s12967_025_06839_y
crossref_primary_10_1080_10255842_2022_2160243
crossref_primary_10_1038_s41416_021_01386_x
crossref_primary_10_1186_s13058_024_01775_z
crossref_primary_10_1038_s41540_024_00486_7
crossref_primary_10_1111_aji_13435
crossref_primary_10_1016_j_ebiom_2023_104454
crossref_primary_10_1088_1758_5090_ad8966
crossref_primary_10_1186_s12871_022_01796_1
crossref_primary_10_1038_s41598_023_35627_1
crossref_primary_10_2147_IJGM_S339595
crossref_primary_10_1007_s12032_022_01815_8
crossref_primary_10_3390_cancers16193417
crossref_primary_10_1055_a_2520_3833
crossref_primary_10_1002_jmri_29098
crossref_primary_10_1002_cam4_70454
crossref_primary_10_1016_j_trac_2024_118106
crossref_primary_10_1016_j_critrevonc_2025_104963
crossref_primary_10_1007_s13205_020_02342_x
crossref_primary_10_1016_j_canlet_2025_217461
crossref_primary_10_1093_bib_bbaf209
crossref_primary_10_1145_3686922
crossref_primary_10_3390_bioengineering9070268
crossref_primary_10_1186_s12903_022_02607_2
crossref_primary_10_1177_10732748211044678
crossref_primary_10_1016_j_bspc_2024_106067
crossref_primary_10_1093_jamia_ocad213
crossref_primary_10_4103_sej_sej_199_23
crossref_primary_10_1016_j_lfs_2024_122634
crossref_primary_10_1186_s12912_024_02571_y
crossref_primary_10_3390_bioengineering11040337
crossref_primary_10_1002_jbio_202200354
crossref_primary_10_1016_j_oor_2025_100749
crossref_primary_10_1109_TKDE_2024_3364385
crossref_primary_10_1093_bib_bbad269
crossref_primary_10_2174_012212697X315512240821045542
crossref_primary_10_3390_healthcare11192675
crossref_primary_10_1016_j_heliyon_2024_e27854
crossref_primary_10_3390_cancers13174291
crossref_primary_10_1136_bmjopen_2025_101169
crossref_primary_10_2147_JMDH_S502351
crossref_primary_10_1097_MOU_0000000000000884
crossref_primary_10_7759_cureus_75713
crossref_primary_10_1177_14604582221077049
crossref_primary_10_1002_jcla_24667
crossref_primary_10_1016_j_clinimag_2025_110495
crossref_primary_10_3389_froh_2021_794248
crossref_primary_10_3389_fphar_2020_01177
crossref_primary_10_1007_s11255_025_04763_0
crossref_primary_10_1007_s10147_025_02722_4
crossref_primary_10_1093_bib_bbae028
crossref_primary_10_3390_cancers13153709
crossref_primary_10_1038_s44321_024_00039_9
crossref_primary_10_1177_11769351251371273
crossref_primary_10_1007_s12094_023_03291_6
crossref_primary_10_1200_EDBK_390084
crossref_primary_10_1016_j_ijpharm_2025_125901
crossref_primary_10_1038_s41598_023_35649_9
crossref_primary_10_3390_diagnostics13132175
crossref_primary_10_1016_j_arcmed_2022_11_011
crossref_primary_10_1016_j_techsoc_2024_102643
crossref_primary_10_1177_01945998221110076
crossref_primary_10_3389_fonc_2020_601869
crossref_primary_10_1097_MD_0000000000027516
crossref_primary_10_61969_jai_1469589
crossref_primary_10_7717_peerj_cs_1651
crossref_primary_10_1186_s12967_021_02910_6
crossref_primary_10_1016_j_compbiomed_2024_109261
crossref_primary_10_3389_fmed_2025_1606336
crossref_primary_10_1016_j_media_2022_102704
crossref_primary_10_1016_j_compbiomed_2025_110156
crossref_primary_10_31083_j_fbl2709254
crossref_primary_10_5812_iranjradiol_119266
crossref_primary_10_1002_cac2_12373
crossref_primary_10_1002_INMD_20230013
crossref_primary_10_1186_s12916_023_02990_9
crossref_primary_10_3390_mps5050078
crossref_primary_10_1016_j_metrad_2025_100151
crossref_primary_10_3390_diagnostics12123111
crossref_primary_10_3390_diagnostics14080842
crossref_primary_10_1016_j_cmpb_2024_108112
crossref_primary_10_1186_s12859_021_04261_x
crossref_primary_10_1002_bmm2_12117
crossref_primary_10_1038_s43018_025_00917_2
crossref_primary_10_3390_math12244041
crossref_primary_10_1016_j_clml_2023_05_013
crossref_primary_10_1039_D4NR01832J
crossref_primary_10_3390_jcm13174979
crossref_primary_10_1007_s12553_020_00495_6
crossref_primary_10_1016_j_compbiomed_2024_109391
crossref_primary_10_2174_0115748928361472250123105507
crossref_primary_10_1002_advs_202502271
crossref_primary_10_1051_vcm_2024011
crossref_primary_10_3390_ai6010002
crossref_primary_10_1007_s00521_024_09915_4
crossref_primary_10_1016_j_jbi_2023_104550
crossref_primary_10_3390_cancers17030523
crossref_primary_10_1007_s12032_022_01711_1
crossref_primary_10_1016_j_cmpbup_2024_100148
crossref_primary_10_1155_2022_6201067
crossref_primary_10_3390_diagnostics12040837
crossref_primary_10_1007_s10462_021_10034_y
crossref_primary_10_1049_cit2_12395
crossref_primary_10_1016_j_radonc_2024_110542
crossref_primary_10_1038_s41598_022_10287_9
crossref_primary_10_3389_fbioe_2022_822835
crossref_primary_10_1186_s12876_023_02729_z
crossref_primary_10_1016_j_csbj_2021_07_003
crossref_primary_10_1007_s10462_025_11117_w
crossref_primary_10_1080_0952813X_2025_2481037
crossref_primary_10_1093_haschl_qxaf108
crossref_primary_10_1016_j_artmed_2025_103099
crossref_primary_10_3390_cancers15030625
crossref_primary_10_1038_s41598_024_52493_7
crossref_primary_10_1007_s10552_024_01942_9
crossref_primary_10_1016_j_imed_2021_08_004
crossref_primary_10_1016_j_jogoh_2020_101962
crossref_primary_10_2147_JHC_S483647
crossref_primary_10_7759_cureus_74398
crossref_primary_10_1016_j_compbiomed_2024_108874
crossref_primary_10_1097_JS9_0000000000002481
crossref_primary_10_1186_s12909_024_05723_5
crossref_primary_10_1016_j_heliyon_2024_e27655
crossref_primary_10_5604_01_3001_0054_8929
crossref_primary_10_12688_f1000research_75469_1
crossref_primary_10_1136_bmjopen_2021_053352
crossref_primary_10_1002_asi_24743
crossref_primary_10_1177_11795549221116833
crossref_primary_10_12688_f1000research_75469_2
crossref_primary_10_3390_pharmaceutics16020260
crossref_primary_10_1007_s11831_024_10219_y
crossref_primary_10_32604_cmes_2022_019914
crossref_primary_10_1371_journal_pone_0312036
crossref_primary_10_1016_j_imu_2023_101171
crossref_primary_10_1186_s12911_022_02087_y
crossref_primary_10_1016_j_csbj_2021_10_006
crossref_primary_10_1007_s43032_024_01588_7
crossref_primary_10_1016_j_semcancer_2023_01_006
crossref_primary_10_3389_fimmu_2024_1492399
crossref_primary_10_2174_0115733947301672240528061642
crossref_primary_10_1177_11769351241289719
crossref_primary_10_1016_j_ijpharm_2021_120721
crossref_primary_10_3390_jpm11111172
crossref_primary_10_1186_s13072_025_00595_5
crossref_primary_10_2196_45770
crossref_primary_10_1016_j_bbe_2022_05_009
crossref_primary_10_7759_cureus_31008
crossref_primary_10_1002_dc_24520
crossref_primary_10_3389_fimmu_2022_964190
crossref_primary_10_1158_1940_6207_CAPR_24_0178
crossref_primary_10_1007_s00520_021_06774_w
crossref_primary_10_3390_mi12111349
crossref_primary_10_3390_diagnostics13172736
crossref_primary_10_1097_RLI_0000000000000673
crossref_primary_10_2196_31142
crossref_primary_10_3390_cells11243965
crossref_primary_10_1016_j_measurement_2023_114059
crossref_primary_10_1038_s41598_023_46751_3
crossref_primary_10_1016_j_ijmedinf_2021_104557
crossref_primary_10_1108_IDD_07_2024_0097
crossref_primary_10_1097_SCS_0000000000011654
crossref_primary_10_1016_j_dld_2024_09_012
crossref_primary_10_1002_ctm2_159
crossref_primary_10_1002_mp_15549
crossref_primary_10_1016_j_ijsu_2022_106851
crossref_primary_10_1016_j_wneu_2025_124142
crossref_primary_10_1038_s41591_022_01746_x
crossref_primary_10_1007_s12652_021_03612_z
crossref_primary_10_1016_j_semcancer_2023_06_005
crossref_primary_10_1055_a_2257_5122
crossref_primary_10_1007_s10462_021_10023_1
crossref_primary_10_3390_math11244937
Cites_doi 10.1016/j.eswa.2018.08.040
10.1109/TMI.2018.2870343
10.1038/d41586-018-02881-7
10.1148/radiol.2018180237
10.1002/ijc.31136
10.1016/j.gie.2018.11.011
10.1371/journal.pcbi.1006076
10.1055/s-0043-122385
10.1158/1078-0432.CCR-18-2495
10.1038/s41467-019-08718-9
10.1016/j.trecan.2019.02.002
10.1016/j.cmpb.2017.12.011
10.1038/s41591-018-0300-7
10.7150/ijbs.28608
10.1001/jama.2016.17438
10.1016/j.artmed.2014.12.008
10.1016/j.jpainsymman.2016.12.330
10.3892/ol.2014.2820
10.1158/1078-0432.CCR-17-3445
10.1016/S1470-2045(19)30086-5
10.1016/j.wneu.2018.07.276
10.1016/j.canlet.2019.02.054
10.1038/s41591-018-0307-0
10.1002/ijc.31896
10.1016/j.ins.2018.09.046
10.1016/S1470-2045(19)30025-7
10.1038/s41591-018-0177-5
10.1056/NEJMp1606181
10.1016/j.asoc.2013.09.014
10.1007/s00428-019-02642-5
10.1109/ACCESS.2019.2897078
10.1038/modpathol.2017.98
10.1016/j.ejca.2008.02.030
10.1016/j.gie.2018.12.019
10.1038/s41598-017-15720-y
10.1016/S1470-2045(18)30762-9
10.1016/j.ijmedinf.2017.09.013
10.3892/br.2013.140
10.1371/journal.pone.0210976
10.1002/jmri.25954
10.1148/rg.2017170077
10.1186/s12916-018-1122-7
10.1016/S0140-6736(96)11196-X
10.1371/journal.pmed.1002758
10.1056/NEJMp1702071
10.1245/s10434-018-6343-7
10.1007/s10916-018-1003-9
10.1056/NEJMp1716891
10.1109/ACCESS.2019.2908724
10.3390/cancers11081140
10.1016/j.inffus.2017.10.005
10.1016/j.engappai.2013.06.013
10.1016/j.ophtha.2018.12.033
10.1186/s13048-019-0508-2
10.1038/s41598-018-21758-3
10.3390/cancers11030328
10.1038/s41586-018-0317-6
10.1038/nature14539
10.1093/bioinformatics/btl230
10.3389/fgene.2019.01041
10.1371/journal.pcbi.1006657
10.1109/TCBB.2018.2806438
10.1038/ncomms12474
10.1007/s00259-015-3184-5
10.1016/j.dss.2015.04.003
10.1016/j.canlet.2019.05.015
10.1038/s41568-018-0016-5
10.7150/jca.26356
10.1038/nrc.2017.83
10.1001/jama.2017.7797
10.1002/ijc.31733
10.1016/S1470-2045(17)30904-X
10.1245/s10434-015-4475-6
10.1002/ijc.32380
10.1142/S1793545819410025
10.7150/jca.27399
10.1016/j.radonc.2018.10.019
10.1161/CIRCULATIONAHA.115.001593
10.1038/nature21056
10.1002/ijc.32030
10.1111/cas.13865
10.1002/ijc.10370
10.5858/arpa.2018-0147-OA
10.1093/annonc/mdy166
10.7150/jca.21261
10.1016/j.artmed.2004.07.002
10.1007/s11999-015-4446-z
10.1002/(SICI)1097-0215(19991008)83:2<203::AID-IJC10>3.0.CO;2-0
10.1093/bioinformatics/btl543
10.1016/j.ijmedinf.2016.11.001
10.1111/joim.12822
10.1007/s40815-018-0456-9
10.1016/j.media.2015.08.001
10.1002/ijc.31798
10.1038/s41568-018-0046-z
10.1177/1533033818790509
10.1016/j.patcog.2018.07.031
10.1016/j.csbj.2014.11.005
10.2967/jnumed.117.202267
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
2019. Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
– notice: 2019. Elsevier B.V.
DBID AAYXX
CITATION
NPM
7TO
7U9
H94
K9.
NAPCQ
7X8
DOI 10.1016/j.canlet.2019.12.007
DatabaseName CrossRef
PubMed
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
AIDS and Cancer Research Abstracts
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 1872-7980
EndPage 71
ExternalDocumentID 31830558
10_1016_j_canlet_2019_12_007
S0304383519306135
Genre Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4CK
4G.
5GY
5RE
5VS
6J9
6PF
7-5
71M
8FE
8FH
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
K-O
KOM
LK8
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSU
SSZ
T5K
Z5R
~G-
~HD
7RV
7X7
8C1
8FI
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKRA
AFKWA
AJOXV
AMFUW
AZQEC
BBNVY
BENPR
BHPHI
DOVZS
FYUFA
GUQSH
HCIFZ
LCYCR
M1P
M2M
M2O
M7P
.55
.GJ
3O-
53G
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFFNX
AFJKZ
AGQPQ
AGRDE
AI.
AIGII
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HED
HMK
HMO
HVGLF
HZ~
R2-
SAE
SEW
UDS
VH1
WUQ
X7M
ZGI
NPM
7TO
7U9
H94
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c443t-7f1d4bfb728e99f08e377659492c462dba4a47cffd7b45244acdd375e27ef9323
ISICitedReferencesCount 384
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509630300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3835
1872-7980
IngestDate Sun Sep 28 10:26:09 EDT 2025
Tue Oct 07 06:47:50 EDT 2025
Wed Feb 19 02:31:48 EST 2025
Tue Nov 18 22:37:43 EST 2025
Sat Nov 29 07:19:09 EST 2025
Fri Feb 23 02:50:03 EST 2024
Tue Oct 14 19:38:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Deep neural network
Prognosis prediction
Cancer diagnosis
Machine learning
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-7f1d4bfb728e99f08e377659492c462dba4a47cffd7b45244acdd375e27ef9323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 31830558
PQID 2330761464
PQPubID 2031080
PageCount 11
ParticipantIDs proquest_miscellaneous_2327931927
proquest_journals_2330761464
pubmed_primary_31830558
crossref_citationtrail_10_1016_j_canlet_2019_12_007
crossref_primary_10_1016_j_canlet_2019_12_007
elsevier_sciencedirect_doi_10_1016_j_canlet_2019_12_007
elsevier_clinicalkey_doi_10_1016_j_canlet_2019_12_007
PublicationCentury 2000
PublicationDate 2020-02-28
PublicationDateYYYYMMDD 2020-02-28
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-28
  day: 28
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
– name: Clare
PublicationTitle Cancer letters
PublicationTitleAlternate Cancer Lett
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Limited
Publisher_xml – name: Elsevier B.V
– name: Elsevier Limited
References Gao HX, Du, Zhang, Jiang, Kang, Mao, Zhao (bib25) 2018; 14
Shukla, Hagenbuchner, Win, Yang (bib65) 2018; 155
Tan, Huang, Zhang, Li (bib22) 2019; 458
Biglarian A, Kazemnejad (bib43) 2011; 40
Chen, Xing, Henson, Sheng, Schwartz, Cheng (bib18) 2009; 2009
Huang, Yang, Fong, Zhao (bib23) 2019; 11
Li, Zhang, Zhang, Wei, Pan, Zhao, Xin, Qin, Wang, Li, Yang, Zhao, Yang, Wang, Zheng, Zheng, Yang, Whitlow, Gurcan, Zhang, Wang, Pasche, Gao, Zhang, Chen (bib70) 2019; 20
Ferroni, Zanzotto, Riondino, Scarpato, Guadagni, Roselli (bib103) 2019; 11
Mintz, Brodie (bib20) 2019
Chang S W, Kallarakkal (bib48) 2011; 12
Thurtle, Greenberg, Lee, Huang, Pharoah, Gnanapragasam (bib113) 2019; 16
Allahyar, Ubels, de Ridder (bib8) 2019; 15
Yi, Guan, Chen, Zhang, Zhang, Li, Liu, Yu, Long, Liu, Chen, Zee (bib85) 2018; 9
Simmons, McMillan, McWilliams, Sande, Fearon, Tuck, Fallon, Laird (bib2) 2017; 53
Qian, Li, Wang, Li, Li, Wang, Li, Tang, Zhang, Fan, Chen, Li (bib21) 2019; 451
Alabi, Elmusrati, Sawazaki-Calone, Kowalski, Haglund, Coletta, Mäkitie, Salo, Leivo, Almangush (bib101) 2019; 475
Sepehri, Upadhaya, Desseroit, Visvikis, Le Rest, Hatt (bib50) 2018; 59
Gevaert, De Smet, Timmerman, Moreau, De Moor (bib36) 2006; 22
Kate, Nadig (bib63) 2017; 97
Romeo, Maurea, Cuocolo, Petretta, Mainenti, Verde, Coppola, Dell'Aversana, Brunetti (bib86) 2018; 48
Jiang, Xu (bib104) 2019; 98
Caruana, Lou, Gehrke, Koch, Sturm, Elhadad (bib108) 2015; vol. 15
Sun, Wang, Li (bib31) 2018; 16
Kuo, Huang, Cheng, Lin, Wu (bib37) 2015; 63
Bottaci, Drew, Hartley, Hadfield, Farouk, Lee, Macintyre, Duthie, Monson (bib45) 1997; 350
Yeung S, Fei-Fei (bib120) 2018; 378
Mitchell, Jain, Langer (bib9) 2017; 17
Hasnain, Mason, Gill, Miranda, Gill, Kuhn, Newton (bib42) 2019; 14
Acharya, Akter, Chowriappa, Dua, Raghavendra, Koh, Tan, Leong, Vijayananthan, Hagiwara, Ramli, Ng (bib54) 2018; 20
Passiglia, Rizzo, Incorvaia, Listi, Bazan, Russo (bib83) 2018; 142
Karhade, Thio, Ogink, Kim, Lozano-Calderon, Raskin, Schwab (bib57) 2018; 119
Coudray, Ocampo, Sakellaropoulos, Narula, Snuderl, Fenyo, Moreira, Razavian, Tsirigos (bib81) 2018; 24
Ching, Zhu, Garmire (bib29) 2018; 14
Chartrand, Cheng, Vorontsov, Drozdzal, Turcotte, Pal, Kadoury, Tang (bib105) 2017; 37
Wang, Liu, Rong, Zhou, Bai, Wei, Wei, Wang, Guo, Tian (bib95) 2019; 132
Wu, Lin, Shen, Wu (bib109) 2018; 143
Zhu, Wang, Xu, Zhang, Cheng, Zhong, Zhang, Chen, Yao, Zhou, Li (bib76) 2019; 89
Dart (bib112) 2018; 18
Enshaei, Robson, Edmondson (bib26) 2015; 22
Zhu, Luo, Su, Wei, Wei, Zhang, Zou (bib44) 2013; 1
Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (bib16) 2015; 13
Oh, Choi, Seo (bib68) 2018; 25
You, Liu, Lin, Huang, Tang, Zhang, Pan, Liu, Guo, Zou, Zhao, Kang, Liu, Lin, Hong, Mai, Zeng, Chen (bib99) 2019; 145
Chen, Asch (bib107) 2017; 376
Tabibu, Vinod, Jawahar (bib110) 2019
Bomane, Gonçalves, Ballester (bib30) 2019; 10
Xie, Yang, Sun, Chen, Zhang (bib80) 2019; 85
Caobelli, Alongi, Evangelista, Picchio, Saladini, Rensi, Geatti, Castello, Laghai, Popescu, Dolci, Crivellaro, Seghezzi, Kirienko, De Biasi, Cocciolillo, Quartuccio, Young (bib67) 2016; 43
LeCun, Bengio, Hinton (bib88) 2015; 521
Deo (bib11) 2015; 132
Haenssle, Fink, Schneiderbauer, Toberer, Buhl, Blum, Kalloo, Hassen, Thomas, Enk, Uhlmann (bib60) 2018; 29
Obermeyer, Emanuel (bib6) 2016; 375
Kinahan, Gillies, Hricak (bib7) 2015; 278
Wang, Makond, Chen, Wang (bib64) 2014; 20
Papp, Potsch, Grahovac, Schmidbauer, Woehrer, Preusser, Mitterhauser, Kiesel, Wadsak, Beyer, Hacker, Traub-Weidinger (bib56) 2018; 59
Ciompi, de Hoop, van Riel, Chung, Scholten, Oudkerk, de Jong, Prokop, van Ginneken (bib78) 2015; 26
Abdikenov, Iklassov, Sharipov, Hussain, Jamwal (bib66) 2019; 7
Yu, Zhang, Berry, Altman, Re, Rubin, Snyder (bib51) 2016; 7
Ha, Baek, Na (bib73) 2019; 20
Song, Gao, Tan (bib122) 2018; 9
He (bib97) 2019; 25
Lu, Kuo, Chen, Chang, Lin, Hu, Chiang, Cheng, Chen (bib52) 2019
Park, Ali, Kim, An, Kim, Shin (bib33) 2013; 26
Cabitza, Rasoini, Gensini (bib116) 2017; 318
Jha, Topol (bib12) 2016; 316
Huang, Zhao (bib4) 2019
Xing, Chen, Henson, Sheng (bib61) 2007
Janssen, van der Heijden, van Dijke, Ready, Raskin, Ferrone, Hornicek, Schwab (bib58) 2015; 473
Lu, Lewis, Dupont, Plummer, Janowczyk, Madabhushi (bib59) 2017; 30
Wu, Shen, Wu (bib84) 2018; 143
Wang, Yang, Weinreb, Han, Li, Kong, Yan, Ke, Luo, Liu, Wang (bib94) 2017; 7
Topol (bib117) 2019; 25
Zhang, Xu, Hui, Yang, Hu, Shao, Liang, Wang (bib38) 2017; 8
Simmons, McMillan, McWilliams, Sande, Fearon, Tuck, Fallon, Laird (bib15) 2017; 53
Nam, Park, Hwang, Lee, Jin, Lim, Vu, Sohn, Hwang, Goo (bib82) 2018; 290
Samala, Chan, Hadjiiski, Helvie, Richter, Cha (bib77) 2019; 38
Hosny, Parmar, Quackenbush, Schwartz, Aerts (bib10) 2018; 18
Handelman, Kok, Chandra, Razavi, Lee, Asadi (bib119) 2018; 284
Lu, Hsu, Hsieh, Kao, Cheng, Hsu, Tsai, Chen, Huang, Yen, Chen (bib55) 2018; 24
Xu X, Zou (bib62) 2012
Lan, Wang, Fong, Liu, Wong, Dey (bib106) 2018; 42
Abelson, Collord, Ng, Weissbrod, Mendelson Cohen, Niemeyer, Barda, Zuzarte, Heisler, Sundaravadanam, Luben, Hayat, Wang, Zhao, Cirlan, Pugh, Soave, Ng, Latimer, Hardy, Raine, Jones, Hoult, Britten, McPherson, Johansson, Mbabaali, Eagles, Miller, Pasternack, Timms, Krzyzanowski, Awadalla, Costa, Segal, Bratman, Beer, Behjati, Martincorena, Wang, Bowles, Quiros, Karakatsani, La Vecchia, Trichopoulou, Salamanca-Fernandez, Huerta, Barricarte, Travis, Tumino, Masala, Boeing, Panico, Kaaks, Kramer, Sieri, Riboli, Vineis, Foll, McKay, Polidoro, Sala, Khaw, Vermeulen, Campbell, Papaemmanuil, Minden, Tanay, Balicer, Wareham, Gerstung, Dick, Brennan, Vassiliou, Shlush (bib111) 2018; 559
Bychkov, Linder, Turkki, Nordling, Kovanen, Verrill, Walliander, Lundin, Haglund, Lundin (bib47) 2018; 8
Glare, Sinclair, Downing, Stone, Maltoni, Vigano (bib14) 2008; 44
Cossu, Leoncini, Megha (bib90) 1999; 83
Haag, Ahadova, Schmidt, Sisic, Blank, Heger, Apostolidis, Berger, Springfeld, Lasitschka, Jager, von Knebel Doeberitz, Kloor (bib100) 2019; 144
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib89) 2017; 542
Liu, Kohlberger, Norouzi, Dahl, Smith, Mohtashamian, Olson, Peng, Hipp, Stumpe (bib92) 2018; 143
Lu, Wang, Yoon (bib39) 2019; 116
Mori, Berzin, Kudo (bib74) 2019; 89
Lu, Arshad, Thornton, Avesani, Cunnea, Curry, Kanavati, Liang, Nixon, Williams, Hassan, Bowtell, Gabra, Fotopoulou, Rockall, Aboagye (bib53) 2019; 10
Dang, Li, Ma, Li, Yang, Lu, Huang (bib24) 2019; 17
Qian, Liu, Wang, Ge, Luo, Patz, Moorman, Su, Shen, Christiani, Wei (bib115) 2019; 144
Huang, Fong, Xu, Han, Yuan, Zhao (bib5) 2019; 12
Xu, Hosny, Zeleznik, Parmar, Coroller, Franco, Mak, Aerts (bib93) 2019; 25
Jhajharia, Varshney, Verma, Kumar (bib28) 2016
Frohlich, Balling, Beerenwinkel, Kohlbacher, Kumar, Lengauer, Maathuis, Moreau, Murphy, Przytycka, Rebhan, Rost, Schuppert, Schwab, Spang, Stekhoven, Sun, Weber, Ziemek, Zupan (bib118) 2018; 16
Siegel, Miller, Jemal (bib1) 2019; 69
Khan U, Choi (bib27) 2008
Brancati, De Pietro, Frucci, Riccio (bib91) 2019; 7
Stephan, Jung, Cammann, Vogel, Brux, Kristiansen, Rudolph, Hauptmann, Lein, Schnorr, Sinha, Loening (bib87) 2002; 99
Tian, Wu, Jiang, Gao, Wu, Hu (bib41) 2019; 110
Vasudevan, Murugesan (bib40) 2018; 17
Jin, Wang, Zhu, Dai, Xu, Yang, Shen, Ye (bib98) 2019; 10
Huang, Dang, Li, Wei, Ma, Qiao, Wang (bib3) 2015
Wong, Yip (bib13) 2018; 555
Hu, Peng, Niu (bib71) 2019; 20
Pedersen, Ehmsen, Beck, Conrads, Bak, Ditzel, Leth-Larsen (bib102) 2019; 144
Denkert, von Minckwitz, Darb-Esfahani, Lederer, Heppner, Weber, Budczies, Huober, Klauschen, Furlanetto, Schmitt, Blohmer, Karn, Pfitzner, Kümmel, Engels, Schneeweiss, Hartmann, Noske, Fasching, Jackisch, van Mackelenbergh, Sinn, Schem, Hanusch, Untch, Loibl (bib19) 2018; 19
L, N, H (bib32) 2007
Delen, Walker, Kadam (bib34) 2005; 34
Levine, Schlosser, Grewal, Coope, Jones, Yip (bib69) 2019; 5
Xie, Zhang, Xia, Fulham, Zhang (bib79) 2018; 42
Wang, Wang, Ye, Wang, Yin, Jin (bib46) 2019; 474
Obermeyer, Emanuel (bib121) 2016; 375
Sun, Goodison, Li, Liu, Farmerie (bib35) 2007; 23
Medeiros, Jammal, Thompson (bib96) 2019; 4
Topol (bib72) 2019; 25
Ichimasa, Kudo, Mori, Misawa, Matsudaira, Kouyama, Baba, Hidaka, Wakamura, Hayashi, Kudo, Ishigaki, Yagawa, Nakamura, Takeda, Haji, Hamatani, Mori, Ishida, Miyachi (bib75) 2018; 50
Feng, Gu, Li, Liu, Yang, Zhang (bib114) 2019; 12
Zolbanin, Delen, Hassan Zadeh (bib17) 2015; 74
Lynch, Abdollahi, Fuqua, de Carlo, Bartholomai, Balgemann, van Berkel, Frieboes (bib49) 2017; 108
Gao HX (10.1016/j.canlet.2019.12.007_bib25) 2018; 14
Romeo (10.1016/j.canlet.2019.12.007_bib86) 2018; 48
Chartrand (10.1016/j.canlet.2019.12.007_bib105) 2017; 37
Qian (10.1016/j.canlet.2019.12.007_bib21) 2019; 451
Hasnain (10.1016/j.canlet.2019.12.007_bib42) 2019; 14
Yeung S (10.1016/j.canlet.2019.12.007_bib120) 2018; 378
Huang (10.1016/j.canlet.2019.12.007_bib23) 2019; 11
Abdikenov (10.1016/j.canlet.2019.12.007_bib66) 2019; 7
Lu (10.1016/j.canlet.2019.12.007_bib53) 2019; 10
Mori (10.1016/j.canlet.2019.12.007_bib74) 2019; 89
Huang (10.1016/j.canlet.2019.12.007_bib5) 2019; 12
Acharya (10.1016/j.canlet.2019.12.007_bib54) 2018; 20
Zhu (10.1016/j.canlet.2019.12.007_bib44) 2013; 1
Sun (10.1016/j.canlet.2019.12.007_bib31) 2018; 16
Zhu (10.1016/j.canlet.2019.12.007_bib76) 2019; 89
Allahyar (10.1016/j.canlet.2019.12.007_bib8) 2019; 15
Zhang (10.1016/j.canlet.2019.12.007_bib38) 2017; 8
Caobelli (10.1016/j.canlet.2019.12.007_bib67) 2016; 43
Handelman (10.1016/j.canlet.2019.12.007_bib119) 2018; 284
Feng (10.1016/j.canlet.2019.12.007_bib114) 2019; 12
Dang (10.1016/j.canlet.2019.12.007_bib24) 2019; 17
Caruana (10.1016/j.canlet.2019.12.007_bib108) 2015; vol. 15
Simmons (10.1016/j.canlet.2019.12.007_bib2) 2017; 53
Levine (10.1016/j.canlet.2019.12.007_bib69) 2019; 5
Tan (10.1016/j.canlet.2019.12.007_bib22) 2019; 458
Chang S W (10.1016/j.canlet.2019.12.007_bib48) 2011; 12
Frohlich (10.1016/j.canlet.2019.12.007_bib118) 2018; 16
Kate (10.1016/j.canlet.2019.12.007_bib63) 2017; 97
Karhade (10.1016/j.canlet.2019.12.007_bib57) 2018; 119
Lynch (10.1016/j.canlet.2019.12.007_bib49) 2017; 108
L (10.1016/j.canlet.2019.12.007_bib32) 2007
Haag (10.1016/j.canlet.2019.12.007_bib100) 2019; 144
Medeiros (10.1016/j.canlet.2019.12.007_bib96) 2019; 4
Janssen (10.1016/j.canlet.2019.12.007_bib58) 2015; 473
Esteva (10.1016/j.canlet.2019.12.007_bib89) 2017; 542
Ha (10.1016/j.canlet.2019.12.007_bib73) 2019; 20
Abelson (10.1016/j.canlet.2019.12.007_bib111) 2018; 559
Wong (10.1016/j.canlet.2019.12.007_bib13) 2018; 555
Park (10.1016/j.canlet.2019.12.007_bib33) 2013; 26
Huang (10.1016/j.canlet.2019.12.007_bib4) 2019
Tian (10.1016/j.canlet.2019.12.007_bib41) 2019; 110
Mintz (10.1016/j.canlet.2019.12.007_bib20) 2019
Song (10.1016/j.canlet.2019.12.007_bib122) 2018; 9
Huang (10.1016/j.canlet.2019.12.007_bib3) 2015
Passiglia (10.1016/j.canlet.2019.12.007_bib83) 2018; 142
Alabi (10.1016/j.canlet.2019.12.007_bib101) 2019; 475
Ferroni (10.1016/j.canlet.2019.12.007_bib103) 2019; 11
Lan (10.1016/j.canlet.2019.12.007_bib106) 2018; 42
Obermeyer (10.1016/j.canlet.2019.12.007_bib6) 2016; 375
Dart (10.1016/j.canlet.2019.12.007_bib112) 2018; 18
Pedersen (10.1016/j.canlet.2019.12.007_bib102) 2019; 144
Brancati (10.1016/j.canlet.2019.12.007_bib91) 2019; 7
Sun (10.1016/j.canlet.2019.12.007_bib35) 2007; 23
Kinahan (10.1016/j.canlet.2019.12.007_bib7) 2015; 278
Haenssle (10.1016/j.canlet.2019.12.007_bib60) 2018; 29
Topol (10.1016/j.canlet.2019.12.007_bib72) 2019; 25
Jiang (10.1016/j.canlet.2019.12.007_bib104) 2019; 98
Lu (10.1016/j.canlet.2019.12.007_bib55) 2018; 24
Kourou (10.1016/j.canlet.2019.12.007_bib16) 2015; 13
Jin (10.1016/j.canlet.2019.12.007_bib98) 2019; 10
Hu (10.1016/j.canlet.2019.12.007_bib71) 2019; 20
Simmons (10.1016/j.canlet.2019.12.007_bib15) 2017; 53
Zolbanin (10.1016/j.canlet.2019.12.007_bib17) 2015; 74
LeCun (10.1016/j.canlet.2019.12.007_bib88) 2015; 521
Kuo (10.1016/j.canlet.2019.12.007_bib37) 2015; 63
Wang (10.1016/j.canlet.2019.12.007_bib64) 2014; 20
Sepehri (10.1016/j.canlet.2019.12.007_bib50) 2018; 59
Xie (10.1016/j.canlet.2019.12.007_bib79) 2018; 42
Yi (10.1016/j.canlet.2019.12.007_bib85) 2018; 9
Stephan (10.1016/j.canlet.2019.12.007_bib87) 2002; 99
Lu (10.1016/j.canlet.2019.12.007_bib59) 2017; 30
Wu (10.1016/j.canlet.2019.12.007_bib84) 2018; 143
Gevaert (10.1016/j.canlet.2019.12.007_bib36) 2006; 22
Ciompi (10.1016/j.canlet.2019.12.007_bib78) 2015; 26
He (10.1016/j.canlet.2019.12.007_bib97) 2019; 25
Denkert (10.1016/j.canlet.2019.12.007_bib19) 2018; 19
Bottaci (10.1016/j.canlet.2019.12.007_bib45) 1997; 350
Vasudevan (10.1016/j.canlet.2019.12.007_bib40) 2018; 17
Ichimasa (10.1016/j.canlet.2019.12.007_bib75) 2018; 50
Chen (10.1016/j.canlet.2019.12.007_bib18) 2009; 2009
Ching (10.1016/j.canlet.2019.12.007_bib29) 2018; 14
Bomane (10.1016/j.canlet.2019.12.007_bib30) 2019; 10
Xu X (10.1016/j.canlet.2019.12.007_bib62) 2012
Wang (10.1016/j.canlet.2019.12.007_bib46) 2019; 474
Enshaei (10.1016/j.canlet.2019.12.007_bib26) 2015; 22
Wang (10.1016/j.canlet.2019.12.007_bib94) 2017; 7
Glare (10.1016/j.canlet.2019.12.007_bib14) 2008; 44
Lu (10.1016/j.canlet.2019.12.007_bib39) 2019; 116
Qian (10.1016/j.canlet.2019.12.007_bib115) 2019; 144
Cabitza (10.1016/j.canlet.2019.12.007_bib116) 2017; 318
Wang (10.1016/j.canlet.2019.12.007_bib95) 2019; 132
Yu (10.1016/j.canlet.2019.12.007_bib51) 2016; 7
Liu (10.1016/j.canlet.2019.12.007_bib92) 2018; 143
Topol (10.1016/j.canlet.2019.12.007_bib117) 2019; 25
Delen (10.1016/j.canlet.2019.12.007_bib34) 2005; 34
Mitchell (10.1016/j.canlet.2019.12.007_bib9) 2017; 17
Cossu (10.1016/j.canlet.2019.12.007_bib90) 1999; 83
Lu (10.1016/j.canlet.2019.12.007_bib52) 2019
Jha (10.1016/j.canlet.2019.12.007_bib12) 2016; 316
Li (10.1016/j.canlet.2019.12.007_bib70) 2019; 20
Xie (10.1016/j.canlet.2019.12.007_bib80) 2019; 85
Nam (10.1016/j.canlet.2019.12.007_bib82) 2018; 290
Deo (10.1016/j.canlet.2019.12.007_bib11) 2015; 132
Thurtle (10.1016/j.canlet.2019.12.007_bib113) 2019; 16
Siegel (10.1016/j.canlet.2019.12.007_bib1) 2019; 69
Biglarian A (10.1016/j.canlet.2019.12.007_bib43) 2011; 40
Hosny (10.1016/j.canlet.2019.12.007_bib10) 2018; 18
Samala (10.1016/j.canlet.2019.12.007_bib77) 2019; 38
Xu (10.1016/j.canlet.2019.12.007_bib93) 2019; 25
Bychkov (10.1016/j.canlet.2019.12.007_bib47) 2018; 8
Papp (10.1016/j.canlet.2019.12.007_bib56) 2018; 59
Xing (10.1016/j.canlet.2019.12.007_bib61) 2007
Wu (10.1016/j.canlet.2019.12.007_bib109) 2018; 143
Coudray (10.1016/j.canlet.2019.12.007_bib81) 2018; 24
Tabibu (10.1016/j.canlet.2019.12.007_bib110) 2019
You (10.1016/j.canlet.2019.12.007_bib99) 2019; 145
Obermeyer (10.1016/j.canlet.2019.12.007_bib121) 2016; 375
Chen (10.1016/j.canlet.2019.12.007_bib107) 2017; 376
Khan U (10.1016/j.canlet.2019.12.007_bib27) 2008
Oh (10.1016/j.canlet.2019.12.007_bib68) 2018; 25
Jhajharia (10.1016/j.canlet.2019.12.007_bib28) 2016
Shukla (10.1016/j.canlet.2019.12.007_bib65) 2018; 155
References_xml – volume: 25
  start-page: 44
  year: 2019
  end-page: 56
  ident: bib72
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat. Med.
– volume: 20
  year: 2019
  ident: bib73
  article-title: Deep convolutional neural network models for the diagnosis of thyroid cancer
  publication-title: Lancet Oncol.
– volume: 24
  start-page: 1559
  year: 2018
  end-page: 1567
  ident: bib81
  article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
  publication-title: Nat. Med.
– volume: 25
  start-page: 1153
  year: 2018
  end-page: 1159
  ident: bib68
  article-title: ASO author reflections: use of the survival recurrent network for prediction of overall survival in patients with gastric cancer
  publication-title: Ann. Surg. Oncol.
– volume: 83
  start-page: 203
  year: 1999
  end-page: 209
  ident: bib90
  article-title: Expression of p34cdc2 and cyclins A and B compared to other proliferative features of non‐Hodgkin's lymphomas A multivariate cluster analysis
  publication-title: Int. J. Cancer
– volume: 17
  start-page: 149
  year: 2019
  end-page: 158
  ident: bib24
  article-title: 18F-FDG-PET/CT-guided intensity-modulated radiotherapy for 42 FIGO III/IV ovarian cancer: a retrospective study
  publication-title: Oncol. Lett.
– volume: 25
  start-page: 30
  year: 2019
  end-page: 36
  ident: bib97
  article-title: The practical implementation of artificial intelligence technologies in medicine
  publication-title: Nat. Med.
– start-page: 1896
  year: 2016
  end-page: 1901
  ident: bib28
  article-title: A neural network based breast cancer prognosis model with PCA processed features
  publication-title: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
– volume: 284
  start-page: 603
  year: 2018
  end-page: 619
  ident: bib119
  article-title: eDoctor: machine learning and the future of medicine
  publication-title: J. Intern. Med.
– start-page: 11
  year: 2019
  ident: bib52
  article-title: Developing a prognostic gene panel of epithelial ovarian cancer patients by a machine learning model
  publication-title: Cancers
– start-page: 1
  year: 2019
  end-page: 9
  ident: bib20
  article-title: Introduction to artificial intelligence in medicine
  publication-title: Minim. Invasive Ther. Allied Technol.
– volume: 18
  start-page: 529
  year: 2018
  ident: bib112
  article-title: How to predict the future
  publication-title: Nat. Rev. Cancer
– volume: 316
  start-page: 2353
  year: 2016
  end-page: 2354
  ident: bib12
  article-title: Adapting to artificial intelligence: radiologists and pathologists as information specialists
  publication-title: J. Am. Med. Assoc.
– volume: 42
  start-page: 139
  year: 2018
  ident: bib106
  article-title: A survey of data mining and deep learning in bioinformatics
  publication-title: J. Med. Syst.
– volume: 16
  start-page: 841
  year: 2018
  end-page: 850
  ident: bib31
  article-title: A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinform
– volume: 10
  start-page: 764
  year: 2019
  ident: bib53
  article-title: A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer
  publication-title: Nat. Commun.
– volume: 99
  start-page: 466
  year: 2002
  end-page: 473
  ident: bib87
  article-title: An artificial neural network considerably improves the diagnostic power of percent free prostate-specific antigen in prostate cancer diagnosis: results of a 5-year investigation
  publication-title: Int. J. Cancer
– volume: 108
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib49
  article-title: Prediction of lung cancer patient survival via supervised machine learning classification techniques
  publication-title: Int. J. Med. Inform.
– volume: 119
  start-page: e842
  year: 2018
  end-page: e847
  ident: bib57
  article-title: Development of machine learning algorithms for prediction of 5-year spinal chordoma survival
  publication-title: World Neurosurg.
– volume: 53
  start-page: 962
  year: 2017
  end-page: 970 e910
  ident: bib15
  article-title: Prognostic tools in patients with advanced cancer: a systematic review
  publication-title: J. Pain Symptom Manag.
– start-page: 1239
  year: 2015
  end-page: 1243
  ident: bib3
  article-title: Biological intensity-modulated radiotherapy plus neoadjuvant chemotherapy for multiple peritoneal metastases of ovarian cancer: a case report
  publication-title: Oncol. Lett.
– volume: 44
  start-page: 1146
  year: 2008
  end-page: 1156
  ident: bib14
  article-title: Predicting survival in patients with advanced disease
  publication-title: Eur. J. Cancer
– start-page: 541
  year: 2007
  end-page: 546
  ident: bib61
  article-title: A clustering-based approach to predict outcome in cancer patients
  publication-title: Sixth International Conference on Machine Learning and Applications (ICMLA 2007)
– volume: 145
  start-page: 2873
  year: 2019
  end-page: 2883
  ident: bib99
  article-title: Relationship of circulating tumor cells and Epstein-Barr virus DNA to progression-free survival and overall survival in metastatic nasopharyngeal carcinoma patients
  publication-title: Int. J. Cancer
– volume: 15
  year: 2019
  ident: bib8
  article-title: A data-driven interactome of synergistic genes improves network-based cancer outcome prediction
  publication-title: PLoS Comput. Biol.
– volume: 53
  start-page: 962
  year: 2017
  end-page: 970 e910
  ident: bib2
  article-title: Prognostic tools in patients with advanced cancer: a systematic review
  publication-title: J. Pain Symptom Manag.
– volume: 2009
  start-page: 632786
  year: 2009
  ident: bib18
  article-title: Developing prognostic systems of cancer patients by ensemble clustering
  publication-title: J. Biomed. Biotechnol.
– volume: 26
  start-page: 2194
  year: 2013
  end-page: 2205
  ident: bib33
  article-title: Robust predictive model for evaluating breast cancer survivability
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 559401
  year: 2019
  ident: bib110
  article-title: A Deep Learning Approach for Pan-Renal Cell Carcinoma Classification and Survival Prediction from Histopathology Images
– volume: 12
  start-page: 1941002
  year: 2019
  ident: bib5
  article-title: Nano-loaded natural killer cells as carriers of indocyanine green for synergetic cancer immunotherapy and phototherapy
  publication-title: J. Innov. Opt. Health Sci.
– volume: 375
  start-page: 1216
  year: 2016
  end-page: 1219
  ident: bib121
  article-title: Predicting the future - big data, machine learning, and clinical medicine
  publication-title: N. Engl. J. Med.
– volume: 144
  start-page: 1697
  year: 2019
  end-page: 1703
  ident: bib100
  article-title: Prognostic significance of microsatellite-instability in gastric and gastroesophageal junction cancer patients undergoing neoadjuvant chemotherapy
  publication-title: Int. J. Cancer
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib89
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 20
  start-page: 193
  year: 2019
  end-page: 201
  ident: bib70
  article-title: Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study
  publication-title: Lancet Oncol.
– volume: 85
  start-page: 109
  year: 2019
  end-page: 119
  ident: bib80
  article-title: Automated pulmonary nodule detection in CT images using deep convolutional neural networks
  publication-title: Pattern Recognit.
– volume: 555
  start-page: 446
  year: 2018
  end-page: 447
  ident: bib13
  article-title: Machine learning classifies cancer
  publication-title: Nature
– volume: 89
  start-page: 816
  year: 2019
  end-page: 817
  ident: bib74
  article-title: Artificial intelligence for early gastric cancer: early promise and the path ahead
  publication-title: Gastrointest. Endosc.
– start-page: 928
  year: 2012
  end-page: 931
  ident: bib62
  article-title: A gene signature for breast cancer prognosis using support vector machine
  publication-title: 2012 5th International Conference on BioMedical Engineering and Informatics
– volume: 16
  year: 2019
  ident: bib113
  article-title: Individual prognosis at diagnosis in nonmetastatic prostate cancer: development and external validation of the PREDICT Prostate multivariable model
  publication-title: PLoS Med.
– volume: 23
  start-page: 30
  year: 2007
  end-page: 37
  ident: bib35
  article-title: Improved breast cancer prognosis through the combination of clinical and genetic markers
  publication-title: Bioinformatics
– volume: 26
  start-page: 195
  year: 2015
  end-page: 202
  ident: bib78
  article-title: Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
  publication-title: Med. Image Anal.
– volume: 290
  start-page: 218
  year: 2018
  end-page: 228
  ident: bib82
  article-title: Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs
  publication-title: Radiology
– volume: 50
  start-page: 230
  year: 2018
  end-page: 240
  ident: bib75
  article-title: Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer
  publication-title: Endoscopy
– volume: 69
  start-page: 7
  year: 2019
  end-page: 34
  ident: bib1
  article-title: Cancer statistics, 2019
  publication-title: CA A Cancer J. Clin.
– volume: 142
  start-page: 1277
  year: 2018
  end-page: 1284
  ident: bib83
  article-title: Looking for the best immune-checkpoint inhibitor in pre-treated NSCLC patients: an indirect comparison between nivolumab, pembrolizumab and atezolizumab
  publication-title: Int. J. Cancer
– volume: 14
  year: 2018
  ident: bib29
  article-title: Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data
  publication-title: PLoS Comput. Biol.
– volume: 375
  start-page: 1216
  year: 2016
  end-page: 1219
  ident: bib6
  article-title: Predicting the future - big data, machine learning, and clinical medicine
  publication-title: N. Engl. J. Med.
– volume: vol. 15
  start-page: 1721
  year: 2015
  end-page: 1730
  ident: bib108
  article-title: Intelligible models for HealthCare: predicting pneumonia risk and hospital 30-day readmission
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD
– volume: 18
  start-page: 500
  year: 2018
  end-page: 510
  ident: bib10
  article-title: Artificial intelligence in radiology
  publication-title: Nat. Rev. Cancer
– volume: 43
  start-page: 404
  year: 2016
  end-page: 413
  ident: bib67
  article-title: Predictive value of (18)F-FDG PET/CT in restaging patients affected by ovarian carcinoma: a multicentre study
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 9
  start-page: 3577
  year: 2018
  end-page: 3582
  ident: bib85
  article-title: Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma
  publication-title: J. Cancer
– volume: 17
  year: 2018
  ident: bib40
  article-title: Cancer subtype discovery using prognosis-enhanced neural network classifier in multigenomic data
  publication-title: Technol. Cancer Res. Treat.
– volume: 63
  start-page: 119
  year: 2015
  end-page: 133
  ident: bib37
  article-title: Application of a two-stage fuzzy neural network to a prostate cancer prognosis system
  publication-title: Artif. Intell. Med.
– volume: 11
  start-page: 328
  year: 2019
  ident: bib103
  article-title: Breast cancer prognosis using a machine learning approach
  publication-title: Cancers
– volume: 132
  start-page: 171
  year: 2019
  end-page: 177
  ident: bib95
  article-title: Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer
  publication-title: Radiother. Oncol.
– volume: 16
  start-page: 150
  year: 2018
  ident: bib118
  article-title: From hype to reality: data science enabling personalized medicine
  publication-title: BMC Med.
– volume: 59
  year: 2018
  ident: bib50
  article-title: Comparison of machine learning algorithms for building prognostic models in non-small cell lung cancer using clinical and radiomics features from 18F-FDG PET/CT images
  publication-title: J. Nucl. Med.
– volume: 24
  start-page: 4429
  year: 2018
  end-page: 4436
  ident: bib55
  article-title: Machine learning-based radiomics for molecular subtyping of gliomas
  publication-title: Clin. Cancer Res.
– volume: 98
  year: 2019
  ident: bib104
  article-title: Exploring the survival prognosis of lung adenocarcinoma based on the cancer genome atlas database using artificial neural network
  publication-title: Medicine
– volume: 7
  start-page: 12474
  year: 2016
  ident: bib51
  article-title: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
  publication-title: Nat. Commun.
– volume: 20
  start-page: 15
  year: 2014
  end-page: 24
  ident: bib64
  article-title: A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients
  publication-title: Appl. Soft Comput.
– volume: 40
  year: 2011
  ident: bib43
  article-title: Application of artificial neural network in predicting the survival rate of gastric cancer patients
  publication-title: Iran. J. Public Health
– volume: 144
  start-page: 631
  year: 2019
  end-page: 640
  ident: bib102
  article-title: CYPOR is a novel and independent prognostic biomarker of recurrence-free survival in triple-negative breast cancer patients
  publication-title: Int. J. Cancer
– volume: 378
  start-page: 1269
  year: 2018
  end-page: 1271
  ident: bib120
  article-title: Bedside computer vision–moving artificial intelligence from driver assistance to patient safety
  publication-title: N. Engl. J. Med.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib88
  article-title: Deep learning
  publication-title: Nature
– volume: 458
  start-page: 39
  year: 2019
  end-page: 45
  ident: bib22
  article-title: Network-based cancer precision medicine: a new emerging paradigm
  publication-title: Cancer Lett.
– volume: 12
  start-page: 2659
  year: 2011
  end-page: 2664
  ident: bib48
  article-title: Feature selection methods for optimizing clinicopathologic input variables in oral cancer prognosis
  publication-title: Asian Pac. J. Cancer Prev. APJCP
– volume: 89
  start-page: 806
  year: 2019
  end-page: 815 e801
  ident: bib76
  article-title: Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy
  publication-title: Gastrointest. Endosc.
– start-page: 130
  year: 2007
  ident: bib32
  article-title: Application of artificial neural network-based survival analysis on two breast cancer datasets
  publication-title: AMIA Annual Symposium Proceedings
– volume: 4
  start-page: 513
  year: 2019
  end-page: 521
  ident: bib96
  article-title: From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs
  publication-title: Ophthalmology
– volume: 12
  start-page: 35
  year: 2019
  ident: bib114
  article-title: Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis
  publication-title: J. Ovarian Res.
– volume: 37
  start-page: 2113
  year: 2017
  end-page: 2131
  ident: bib105
  article-title: Deep learning: a primer for radiologists
  publication-title: RadioGraphics
– volume: 318
  start-page: 517
  year: 2017
  end-page: 518
  ident: bib116
  article-title: Unintended consequences of machine learning in medicine
  publication-title: J. Am. Med. Assoc.
– volume: 10
  start-page: 249
  year: 2019
  end-page: 256
  ident: bib98
  article-title: Log odds could better predict survival in muscle-invasive bladder cancer patients compared with pN and lymph node ratio
  publication-title: J. Cancer
– volume: 350
  start-page: 469
  year: 1997
  end-page: 472
  ident: bib45
  article-title: Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions
  publication-title: The Lancet
– volume: 59
  start-page: 892
  year: 2018
  end-page: 899
  ident: bib56
  article-title: Glioma survival prediction with combined analysis of in vivo (11)C-met PET features, ex vivo features, and patient features by supervised machine learning
  publication-title: J. Nucl. Med.
– volume: 20
  year: 2019
  ident: bib71
  article-title: Deep convolutional neural network models for the diagnosis of thyroid cancer
  publication-title: Lancet Oncol.
– volume: 144
  start-page: 1867
  year: 2019
  end-page: 1876
  ident: bib115
  article-title: Potentially functional genetic variants in the complement-related immunity gene-set are associated with non-small cell lung cancer survival
  publication-title: Int. J. Cancer
– volume: 132
  start-page: 1920
  year: 2015
  end-page: 1930
  ident: bib11
  article-title: Machine learning in medicine
  publication-title: Circulation
– volume: 1
  start-page: 757
  year: 2013
  end-page: 760
  ident: bib44
  article-title: Comparison between artificial neural network and Cox regression model in predicting the survival rate of gastric cancer patients
  publication-title: Biomed. Rep.
– volume: 475
  start-page: 489
  year: 2019
  end-page: 497
  ident: bib101
  article-title: Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool
  publication-title: Virchows Arch.
– volume: 19
  start-page: 40
  year: 2018
  end-page: 50
  ident: bib19
  article-title: Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy
  publication-title: Lancet Oncol.
– volume: 116
  start-page: 340
  year: 2019
  end-page: 350
  ident: bib39
  article-title: A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis
  publication-title: Expert Syst. Appl.
– volume: 143
  start-page: 859
  year: 2018
  end-page: 868
  ident: bib92
  article-title: Artificial intelligence-based breast cancer nodal metastasis detection
  publication-title: Arch. Pathol. Lab Med.
– volume: 20
  start-page: 1385
  year: 2018
  end-page: 1402
  ident: bib54
  article-title: Use of nonlinear features for automated characterization of suspicious ovarian tumors using ultrasound images in fuzzy forest framework
  publication-title: Int. J. Fuzzy Syst.
– volume: 42
  start-page: 102
  year: 2018
  end-page: 110
  ident: bib79
  article-title: Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT
  publication-title: Inf. Fusion
– volume: 38
  start-page: 686
  year: 2019
  end-page: 696
  ident: bib77
  article-title: Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets
  publication-title: IEEE Trans. Med. Imaging
– volume: 110
  start-page: 458
  year: 2019
  end-page: 467
  ident: bib41
  article-title: Neural precursor cell expressed, developmentally downregulated 8 promotes tumor progression and predicts poor prognosis of patients with bladder cancer
  publication-title: Cancer Sci.
– volume: 143
  start-page: 3038
  year: 2018
  end-page: 3040
  ident: bib109
  article-title: Comparison between PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab, and atezolizumab) in pretreated NSCLC patients: evidence from a Bayesian network model
  publication-title: Int. J. Cancer
– volume: 7
  start-page: 15415
  year: 2017
  ident: bib94
  article-title: Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning
  publication-title: Sci. Rep.
– volume: 278
  start-page: 563
  year: 2015
  end-page: 577
  ident: bib7
  article-title: Radiomics images are more than pictures, They are data
  publication-title: Radiology
– volume: 473
  start-page: 3112
  year: 2015
  end-page: 3121
  ident: bib58
  article-title: Marshall urist young investigator award: prognostication in patients with long bone metastases: does a boosting algorithm improve survival estimates?
  publication-title: Clin. Orthop. Relat. Res.
– volume: 451
  start-page: 128
  year: 2019
  end-page: 135
  ident: bib21
  article-title: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers
  publication-title: Cancer Lett.
– volume: 22
  start-page: e184
  year: 2006
  end-page: 190
  ident: bib36
  article-title: Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
  publication-title: Bioinformatics
– volume: 29
  start-page: 1836
  year: 2018
  end-page: 1842
  ident: bib60
  article-title: I. Reader study level, I.I.G. level, Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
  publication-title: Ann. Oncol.
– volume: 97
  start-page: 304
  year: 2017
  end-page: 311
  ident: bib63
  article-title: Stage-specific predictive models for breast cancer survivability
  publication-title: Int. J. Med. Inform.
– volume: 7
  start-page: 44709
  year: 2019
  end-page: 44720
  ident: bib91
  article-title: A deep learning approach for breast invasive ductal carcinoma detection and lymphoma multi-classification in histological images
  publication-title: IEEE Access
– volume: 11
  start-page: 1140
  year: 2019
  ident: bib23
  article-title: Mining prognosis index of brain metastases using artificial intelligence
  publication-title: Cancers
– volume: 14
  year: 2019
  ident: bib42
  article-title: Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients
  publication-title: PLoS One
– volume: 8
  start-page: 3261
  year: 2017
  end-page: 3267
  ident: bib38
  article-title: Improvement in prediction of prostate cancer prognosis with somatic mutational signatures
  publication-title: J. Cancer
– start-page: 141
  year: 2008
  end-page: 152
  ident: bib27
  article-title: wFDT weighted fuzzy decision trees for prognosis of breast cancer survivability
  publication-title: Proceedings of the 7th Australasian Data Mining Conference
– volume: 25
  start-page: 44
  year: 2019
  end-page: 56
  ident: bib117
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat. Med.
– volume: 30
  start-page: 1655
  year: 2017
  end-page: 1665
  ident: bib59
  article-title: An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival
  publication-title: Mod. Pathol.
– volume: 155
  start-page: 199
  year: 2018
  end-page: 208
  ident: bib65
  article-title: Breast cancer data analysis for survivability studies and prediction
  publication-title: Comput. Methods Progr. Biomed.
– volume: 143
  start-page: 3038
  year: 2018
  end-page: 3040
  ident: bib84
  article-title: Comparison between PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab, and atezolizumab) in pretreated NSCLC patients: evidence from a Bayesian network model
  publication-title: Int. J. Cancer
– volume: 34
  start-page: 113
  year: 2005
  end-page: 127
  ident: bib34
  article-title: Predicting breast cancer survivability: a comparison of three data mining methods
  publication-title: Artif. Intell. Med.
– volume: 74
  start-page: 150
  year: 2015
  end-page: 161
  ident: bib17
  article-title: Predicting overall survivability in comorbidity of cancers: a data mining approach
  publication-title: Decis. Support Syst.
– volume: 17
  start-page: 659
  year: 2017
  end-page: 675
  ident: bib9
  article-title: Engineering and physical sciences in oncology: challenges and opportunities
  publication-title: Nat. Rev. Cancer
– volume: 376
  start-page: 2507
  year: 2017
  ident: bib107
  article-title: Machine learning and prediction in medicine—beyond the peak of inflated expectations
  publication-title: N. Engl. J. Med.
– volume: 22
  start-page: 3970
  year: 2015
  end-page: 3975
  ident: bib26
  article-title: Artificial intelligence systems as prognostic and predictive tools in ovarian cancer
  publication-title: Ann. Surg. Oncol.
– volume: 474
  start-page: 106
  year: 2019
  end-page: 124
  ident: bib46
  article-title: A tree ensemble-based two-stage model for advanced-stage colorectal cancer survival prediction
  publication-title: Inf. Sci.
– volume: 5
  start-page: 157
  year: 2019
  end-page: 169
  ident: bib69
  article-title: Rise of the machines: advances in deep learning for cancer diagnosis
  publication-title: Trends Cancer
– volume: 9
  start-page: 3971
  year: 2018
  ident: bib122
  article-title: Multiple machine learnings revealed similar predictive accuracy for prognosis of pnets from the surveillance, epidemiology, and end result database
  publication-title: J. Canc.
– volume: 13
  start-page: 8
  year: 2015
  end-page: 17
  ident: bib16
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 25
  start-page: 3266
  year: 2019
  end-page: 3275
  ident: bib93
  article-title: Deep learning predicts lung cancer treatment response from serial medical imaging
  publication-title: Clin. Cancer Res.
– volume: 7
  start-page: 18050
  year: 2019
  end-page: 18060
  ident: bib66
  article-title: Analytics of heterogeneous breast cancer data using neuroevolution
  publication-title: IEEE Access
– volume: 8
  start-page: 3395
  year: 2018
  ident: bib47
  article-title: Deep learning based tissue analysis predicts outcome in colorectal cancer
  publication-title: Sci. Rep.
– year: 2019
  ident: bib4
  article-title: Nanomedicine-combined immunotherapy for cancer
  publication-title: Curr. Med. Chem.
– volume: 559
  start-page: 400
  year: 2018
  end-page: 404
  ident: bib111
  article-title: Prediction of acute myeloid leukaemia risk in healthy individuals
  publication-title: Nature
– volume: 14
  start-page: 2065
  year: 2018
  end-page: 2072
  ident: bib25
  article-title: Comparison of prognostic indices in NSCLC patients with brain metastases after radiosurgery
  publication-title: Int. J. Biol. Sci.
– volume: 10
  year: 2019
  ident: bib30
  article-title: Paclitaxel response can Be predicted with interpretable multi-variate classifiers exploiting DNA-methylation and miRNA data
  publication-title: Front. Genet.
– volume: 48
  start-page: 198
  year: 2018
  end-page: 204
  ident: bib86
  article-title: Characterization of adrenal lesions on unenhanced MRI using texture analysis: a machine-learning approach
  publication-title: J. Magn. Reson. Imaging
– volume: 116
  start-page: 340
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib39
  article-title: A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.040
– volume: 38
  start-page: 686
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib77
  article-title: Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2870343
– volume: 278
  start-page: 563
  year: 2015
  ident: 10.1016/j.canlet.2019.12.007_bib7
  article-title: Radiomics images are more than pictures, They are data
  publication-title: Radiology
– volume: 555
  start-page: 446
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib13
  article-title: Machine learning classifies cancer
  publication-title: Nature
  doi: 10.1038/d41586-018-02881-7
– volume: 290
  start-page: 218
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib82
  article-title: Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs
  publication-title: Radiology
  doi: 10.1148/radiol.2018180237
– volume: 142
  start-page: 1277
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib83
  article-title: Looking for the best immune-checkpoint inhibitor in pre-treated NSCLC patients: an indirect comparison between nivolumab, pembrolizumab and atezolizumab
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31136
– volume: 89
  start-page: 806
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib76
  article-title: Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2018.11.011
– volume: 14
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib29
  article-title: Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006076
– start-page: 928
  year: 2012
  ident: 10.1016/j.canlet.2019.12.007_bib62
  article-title: A gene signature for breast cancer prognosis using support vector machine
– volume: 50
  start-page: 230
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib75
  article-title: Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer
  publication-title: Endoscopy
  doi: 10.1055/s-0043-122385
– volume: 25
  start-page: 3266
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib93
  article-title: Deep learning predicts lung cancer treatment response from serial medical imaging
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-2495
– volume: 10
  start-page: 764
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib53
  article-title: A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08718-9
– volume: 5
  start-page: 157
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib69
  article-title: Rise of the machines: advances in deep learning for cancer diagnosis
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2019.02.002
– volume: 155
  start-page: 199
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib65
  article-title: Breast cancer data analysis for survivability studies and prediction
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2017.12.011
– volume: 25
  start-page: 44
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib117
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0300-7
– volume: 14
  start-page: 2065
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib25
  article-title: Comparison of prognostic indices in NSCLC patients with brain metastases after radiosurgery
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.28608
– volume: 316
  start-page: 2353
  year: 2016
  ident: 10.1016/j.canlet.2019.12.007_bib12
  article-title: Adapting to artificial intelligence: radiologists and pathologists as information specialists
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2016.17438
– volume: 63
  start-page: 119
  year: 2015
  ident: 10.1016/j.canlet.2019.12.007_bib37
  article-title: Application of a two-stage fuzzy neural network to a prostate cancer prognosis system
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2014.12.008
– volume: 53
  start-page: 962
  issue: 5
  year: 2017
  ident: 10.1016/j.canlet.2019.12.007_bib2
  article-title: Prognostic tools in patients with advanced cancer: a systematic review
  publication-title: J. Pain Symptom Manag.
  doi: 10.1016/j.jpainsymman.2016.12.330
– start-page: 1239
  year: 2015
  ident: 10.1016/j.canlet.2019.12.007_bib3
  article-title: Biological intensity-modulated radiotherapy plus neoadjuvant chemotherapy for multiple peritoneal metastases of ovarian cancer: a case report
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2014.2820
– volume: 24
  start-page: 4429
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib55
  article-title: Machine learning-based radiomics for molecular subtyping of gliomas
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-3445
– volume: 20
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib73
  article-title: Deep convolutional neural network models for the diagnosis of thyroid cancer
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(19)30086-5
– volume: 119
  start-page: e842
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib57
  article-title: Development of machine learning algorithms for prediction of 5-year spinal chordoma survival
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2018.07.276
– volume: 451
  start-page: 128
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib21
  article-title: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.02.054
– volume: 25
  start-page: 30
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib97
  article-title: The practical implementation of artificial intelligence technologies in medicine
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0307-0
– volume: 144
  start-page: 1867
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib115
  article-title: Potentially functional genetic variants in the complement-related immunity gene-set are associated with non-small cell lung cancer survival
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31896
– volume: 474
  start-page: 106
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib46
  article-title: A tree ensemble-based two-stage model for advanced-stage colorectal cancer survival prediction
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.09.046
– volume: 20
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib71
  article-title: Deep convolutional neural network models for the diagnosis of thyroid cancer
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(19)30025-7
– volume: 24
  start-page: 1559
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib81
  article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0177-5
– volume: 375
  start-page: 1216
  year: 2016
  ident: 10.1016/j.canlet.2019.12.007_bib121
  article-title: Predicting the future - big data, machine learning, and clinical medicine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1606181
– volume: 20
  start-page: 15
  year: 2014
  ident: 10.1016/j.canlet.2019.12.007_bib64
  article-title: A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.09.014
– volume: 475
  start-page: 489
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib101
  article-title: Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool
  publication-title: Virchows Arch.
  doi: 10.1007/s00428-019-02642-5
– volume: 7
  start-page: 18050
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib66
  article-title: Analytics of heterogeneous breast cancer data using neuroevolution
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897078
– volume: 30
  start-page: 1655
  year: 2017
  ident: 10.1016/j.canlet.2019.12.007_bib59
  article-title: An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.2017.98
– volume: 69
  start-page: 7
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib1
  article-title: Cancer statistics, 2019
  publication-title: CA A Cancer J. Clin.
– volume: 44
  start-page: 1146
  year: 2008
  ident: 10.1016/j.canlet.2019.12.007_bib14
  article-title: Predicting survival in patients with advanced disease
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2008.02.030
– volume: 89
  start-page: 816
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib74
  article-title: Artificial intelligence for early gastric cancer: early promise and the path ahead
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2018.12.019
– volume: 7
  start-page: 15415
  year: 2017
  ident: 10.1016/j.canlet.2019.12.007_bib94
  article-title: Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15720-y
– start-page: 1896
  year: 2016
  ident: 10.1016/j.canlet.2019.12.007_bib28
  article-title: A neural network based breast cancer prognosis model with PCA processed features
– start-page: 141
  year: 2008
  ident: 10.1016/j.canlet.2019.12.007_bib27
  article-title: wFDT weighted fuzzy decision trees for prognosis of breast cancer survivability
– volume: 20
  start-page: 193
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib70
  article-title: Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(18)30762-9
– volume: 108
  start-page: 1
  year: 2017
  ident: 10.1016/j.canlet.2019.12.007_bib49
  article-title: Prediction of lung cancer patient survival via supervised machine learning classification techniques
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2017.09.013
– volume: 1
  start-page: 757
  year: 2013
  ident: 10.1016/j.canlet.2019.12.007_bib44
  article-title: Comparison between artificial neural network and Cox regression model in predicting the survival rate of gastric cancer patients
  publication-title: Biomed. Rep.
  doi: 10.3892/br.2013.140
– volume: 14
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib42
  article-title: Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0210976
– volume: 48
  start-page: 198
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib86
  article-title: Characterization of adrenal lesions on unenhanced MRI using texture analysis: a machine-learning approach
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25954
– volume: 53
  start-page: 962
  year: 2017
  ident: 10.1016/j.canlet.2019.12.007_bib15
  article-title: Prognostic tools in patients with advanced cancer: a systematic review
  publication-title: J. Pain Symptom Manag.
  doi: 10.1016/j.jpainsymman.2016.12.330
– volume: 37
  start-page: 2113
  year: 2017
  ident: 10.1016/j.canlet.2019.12.007_bib105
  article-title: Deep learning: a primer for radiologists
  publication-title: RadioGraphics
  doi: 10.1148/rg.2017170077
– volume: 2009
  start-page: 632786
  year: 2009
  ident: 10.1016/j.canlet.2019.12.007_bib18
  article-title: Developing prognostic systems of cancer patients by ensemble clustering
  publication-title: J. Biomed. Biotechnol.
– volume: 16
  start-page: 150
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib118
  article-title: From hype to reality: data science enabling personalized medicine
  publication-title: BMC Med.
  doi: 10.1186/s12916-018-1122-7
– volume: 350
  start-page: 469
  year: 1997
  ident: 10.1016/j.canlet.2019.12.007_bib45
  article-title: Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(96)11196-X
– volume: 16
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib113
  article-title: Individual prognosis at diagnosis in nonmetastatic prostate cancer: development and external validation of the PREDICT Prostate multivariable model
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002758
– volume: 376
  start-page: 2507
  year: 2017
  ident: 10.1016/j.canlet.2019.12.007_bib107
  article-title: Machine learning and prediction in medicine—beyond the peak of inflated expectations
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1702071
– volume: 25
  start-page: 1153
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib68
  article-title: ASO author reflections: use of the survival recurrent network for prediction of overall survival in patients with gastric cancer
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-018-6343-7
– start-page: 11
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib52
  article-title: Developing a prognostic gene panel of epithelial ovarian cancer patients by a machine learning model
  publication-title: Cancers
– volume: 42
  start-page: 139
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib106
  article-title: A survey of data mining and deep learning in bioinformatics
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1003-9
– volume: 378
  start-page: 1269
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib120
  article-title: Bedside computer vision–moving artificial intelligence from driver assistance to patient safety
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1716891
– volume: 7
  start-page: 44709
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib91
  article-title: A deep learning approach for breast invasive ductal carcinoma detection and lymphoma multi-classification in histological images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2908724
– volume: 11
  start-page: 1140
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib23
  article-title: Mining prognosis index of brain metastases using artificial intelligence
  publication-title: Cancers
  doi: 10.3390/cancers11081140
– volume: 42
  start-page: 102
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib79
  article-title: Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.10.005
– volume: 26
  start-page: 2194
  year: 2013
  ident: 10.1016/j.canlet.2019.12.007_bib33
  article-title: Robust predictive model for evaluating breast cancer survivability
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2013.06.013
– start-page: 559401
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib110
– volume: vol. 15
  start-page: 1721
  year: 2015
  ident: 10.1016/j.canlet.2019.12.007_bib108
  article-title: Intelligible models for HealthCare: predicting pneumonia risk and hospital 30-day readmission
– volume: 4
  start-page: 513
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib96
  article-title: From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.12.033
– volume: 12
  start-page: 35
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib114
  article-title: Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis
  publication-title: J. Ovarian Res.
  doi: 10.1186/s13048-019-0508-2
– volume: 8
  start-page: 3395
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib47
  article-title: Deep learning based tissue analysis predicts outcome in colorectal cancer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21758-3
– volume: 11
  start-page: 328
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib103
  article-title: Breast cancer prognosis using a machine learning approach
  publication-title: Cancers
  doi: 10.3390/cancers11030328
– volume: 559
  start-page: 400
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib111
  article-title: Prediction of acute myeloid leukaemia risk in healthy individuals
  publication-title: Nature
  doi: 10.1038/s41586-018-0317-6
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.canlet.2019.12.007_bib88
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 22
  start-page: e184
  year: 2006
  ident: 10.1016/j.canlet.2019.12.007_bib36
  article-title: Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl230
– volume: 10
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib30
  article-title: Paclitaxel response can Be predicted with interpretable multi-variate classifiers exploiting DNA-methylation and miRNA data
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.01041
– volume: 59
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib50
  article-title: Comparison of machine learning algorithms for building prognostic models in non-small cell lung cancer using clinical and radiomics features from 18F-FDG PET/CT images
  publication-title: J. Nucl. Med.
– volume: 15
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib8
  article-title: A data-driven interactome of synergistic genes improves network-based cancer outcome prediction
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006657
– volume: 16
  start-page: 841
  issue: 3
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib31
  article-title: A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinform
  doi: 10.1109/TCBB.2018.2806438
– volume: 7
  start-page: 12474
  year: 2016
  ident: 10.1016/j.canlet.2019.12.007_bib51
  article-title: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12474
– start-page: 1
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib20
  article-title: Introduction to artificial intelligence in medicine
  publication-title: Minim. Invasive Ther. Allied Technol.
– volume: 40
  year: 2011
  ident: 10.1016/j.canlet.2019.12.007_bib43
  article-title: Application of artificial neural network in predicting the survival rate of gastric cancer patients
  publication-title: Iran. J. Public Health
– volume: 25
  start-page: 44
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib72
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0300-7
– volume: 43
  start-page: 404
  year: 2016
  ident: 10.1016/j.canlet.2019.12.007_bib67
  article-title: Predictive value of (18)F-FDG PET/CT in restaging patients affected by ovarian carcinoma: a multicentre study
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-015-3184-5
– volume: 74
  start-page: 150
  year: 2015
  ident: 10.1016/j.canlet.2019.12.007_bib17
  article-title: Predicting overall survivability in comorbidity of cancers: a data mining approach
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2015.04.003
– volume: 458
  start-page: 39
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib22
  article-title: Network-based cancer precision medicine: a new emerging paradigm
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.05.015
– volume: 18
  start-page: 500
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib10
  article-title: Artificial intelligence in radiology
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0016-5
– volume: 9
  start-page: 3577
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib85
  article-title: Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma
  publication-title: J. Cancer
  doi: 10.7150/jca.26356
– volume: 17
  start-page: 659
  year: 2017
  ident: 10.1016/j.canlet.2019.12.007_bib9
  article-title: Engineering and physical sciences in oncology: challenges and opportunities
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2017.83
– volume: 318
  start-page: 517
  year: 2017
  ident: 10.1016/j.canlet.2019.12.007_bib116
  article-title: Unintended consequences of machine learning in medicine
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2017.7797
– volume: 12
  start-page: 2659
  year: 2011
  ident: 10.1016/j.canlet.2019.12.007_bib48
  article-title: Feature selection methods for optimizing clinicopathologic input variables in oral cancer prognosis
  publication-title: Asian Pac. J. Cancer Prev. APJCP
– volume: 143
  start-page: 3038
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib109
  article-title: Comparison between PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab, and atezolizumab) in pretreated NSCLC patients: evidence from a Bayesian network model
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31733
– start-page: 541
  year: 2007
  ident: 10.1016/j.canlet.2019.12.007_bib61
  article-title: A clustering-based approach to predict outcome in cancer patients
– volume: 17
  start-page: 149
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib24
  article-title: 18F-FDG-PET/CT-guided intensity-modulated radiotherapy for 42 FIGO III/IV ovarian cancer: a retrospective study
  publication-title: Oncol. Lett.
– volume: 19
  start-page: 40
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib19
  article-title: Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(17)30904-X
– volume: 375
  start-page: 1216
  year: 2016
  ident: 10.1016/j.canlet.2019.12.007_bib6
  article-title: Predicting the future - big data, machine learning, and clinical medicine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1606181
– volume: 22
  start-page: 3970
  year: 2015
  ident: 10.1016/j.canlet.2019.12.007_bib26
  article-title: Artificial intelligence systems as prognostic and predictive tools in ovarian cancer
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-015-4475-6
– volume: 145
  start-page: 2873
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib99
  article-title: Relationship of circulating tumor cells and Epstein-Barr virus DNA to progression-free survival and overall survival in metastatic nasopharyngeal carcinoma patients
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.32380
– volume: 12
  start-page: 1941002
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib5
  article-title: Nano-loaded natural killer cells as carriers of indocyanine green for synergetic cancer immunotherapy and phototherapy
  publication-title: J. Innov. Opt. Health Sci.
  doi: 10.1142/S1793545819410025
– volume: 10
  start-page: 249
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib98
  article-title: Log odds could better predict survival in muscle-invasive bladder cancer patients compared with pN and lymph node ratio
  publication-title: J. Cancer
  doi: 10.7150/jca.27399
– volume: 132
  start-page: 171
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib95
  article-title: Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2018.10.019
– volume: 132
  start-page: 1920
  year: 2015
  ident: 10.1016/j.canlet.2019.12.007_bib11
  article-title: Machine learning in medicine
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.001593
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.1016/j.canlet.2019.12.007_bib89
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 98
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib104
  article-title: Exploring the survival prognosis of lung adenocarcinoma based on the cancer genome atlas database using artificial neural network
  publication-title: Medicine
– volume: 144
  start-page: 1697
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib100
  article-title: Prognostic significance of microsatellite-instability in gastric and gastroesophageal junction cancer patients undergoing neoadjuvant chemotherapy
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.32030
– volume: 110
  start-page: 458
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib41
  article-title: Neural precursor cell expressed, developmentally downregulated 8 promotes tumor progression and predicts poor prognosis of patients with bladder cancer
  publication-title: Cancer Sci.
  doi: 10.1111/cas.13865
– volume: 99
  start-page: 466
  year: 2002
  ident: 10.1016/j.canlet.2019.12.007_bib87
  article-title: An artificial neural network considerably improves the diagnostic power of percent free prostate-specific antigen in prostate cancer diagnosis: results of a 5-year investigation
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.10370
– volume: 143
  start-page: 859
  issue: 7
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib92
  article-title: Artificial intelligence-based breast cancer nodal metastasis detection
  publication-title: Arch. Pathol. Lab Med.
  doi: 10.5858/arpa.2018-0147-OA
– volume: 29
  start-page: 1836
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib60
  article-title: I. Reader study level, I.I.G. level, Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdy166
– volume: 8
  start-page: 3261
  year: 2017
  ident: 10.1016/j.canlet.2019.12.007_bib38
  article-title: Improvement in prediction of prostate cancer prognosis with somatic mutational signatures
  publication-title: J. Cancer
  doi: 10.7150/jca.21261
– volume: 34
  start-page: 113
  year: 2005
  ident: 10.1016/j.canlet.2019.12.007_bib34
  article-title: Predicting breast cancer survivability: a comparison of three data mining methods
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2004.07.002
– year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib4
  article-title: Nanomedicine-combined immunotherapy for cancer
  publication-title: Curr. Med. Chem.
– start-page: 130
  year: 2007
  ident: 10.1016/j.canlet.2019.12.007_bib32
  article-title: Application of artificial neural network-based survival analysis on two breast cancer datasets
– volume: 473
  start-page: 3112
  year: 2015
  ident: 10.1016/j.canlet.2019.12.007_bib58
  article-title: Marshall urist young investigator award: prognostication in patients with long bone metastases: does a boosting algorithm improve survival estimates?
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-015-4446-z
– volume: 83
  start-page: 203
  year: 1999
  ident: 10.1016/j.canlet.2019.12.007_bib90
  article-title: Expression of p34cdc2 and cyclins A and B compared to other proliferative features of non‐Hodgkin's lymphomas A multivariate cluster analysis
  publication-title: Int. J. Cancer
  doi: 10.1002/(SICI)1097-0215(19991008)83:2<203::AID-IJC10>3.0.CO;2-0
– volume: 23
  start-page: 30
  year: 2007
  ident: 10.1016/j.canlet.2019.12.007_bib35
  article-title: Improved breast cancer prognosis through the combination of clinical and genetic markers
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl543
– volume: 97
  start-page: 304
  year: 2017
  ident: 10.1016/j.canlet.2019.12.007_bib63
  article-title: Stage-specific predictive models for breast cancer survivability
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2016.11.001
– volume: 284
  start-page: 603
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib119
  article-title: eDoctor: machine learning and the future of medicine
  publication-title: J. Intern. Med.
  doi: 10.1111/joim.12822
– volume: 20
  start-page: 1385
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib54
  article-title: Use of nonlinear features for automated characterization of suspicious ovarian tumors using ultrasound images in fuzzy forest framework
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-018-0456-9
– volume: 26
  start-page: 195
  year: 2015
  ident: 10.1016/j.canlet.2019.12.007_bib78
  article-title: Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.08.001
– volume: 144
  start-page: 631
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib102
  article-title: CYPOR is a novel and independent prognostic biomarker of recurrence-free survival in triple-negative breast cancer patients
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31798
– volume: 9
  start-page: 3971
  issue: 21
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib122
  article-title: Multiple machine learnings revealed similar predictive accuracy for prognosis of pnets from the surveillance, epidemiology, and end result database
  publication-title: J. Canc.
– volume: 18
  start-page: 529
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib112
  article-title: How to predict the future
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0046-z
– volume: 17
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib40
  article-title: Cancer subtype discovery using prognosis-enhanced neural network classifier in multigenomic data
  publication-title: Technol. Cancer Res. Treat.
  doi: 10.1177/1533033818790509
– volume: 143
  start-page: 3038
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib84
  article-title: Comparison between PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab, and atezolizumab) in pretreated NSCLC patients: evidence from a Bayesian network model
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31733
– volume: 85
  start-page: 109
  year: 2019
  ident: 10.1016/j.canlet.2019.12.007_bib80
  article-title: Automated pulmonary nodule detection in CT images using deep convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.07.031
– volume: 13
  start-page: 8
  year: 2015
  ident: 10.1016/j.canlet.2019.12.007_bib16
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.11.005
– volume: 59
  start-page: 892
  year: 2018
  ident: 10.1016/j.canlet.2019.12.007_bib56
  article-title: Glioma survival prediction with combined analysis of in vivo (11)C-met PET features, ex vivo features, and patient features by supervised machine learning
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.117.202267
SSID ssj0005475
Score 2.706169
SecondaryResourceType review_article
Snippet Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 61
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Bioinformatics
Cancer
Cancer diagnosis
Cancer therapies
Computer applications
Deep learning
Deep neural network
Diagnosis
Learning algorithms
Machine learning
Medical diagnosis
Medical prognosis
Medical research
Medical statistics
Metastasis
Oncology
Prognosis
Prognosis prediction
Software
Statistical analysis
Statistics
Survival
Title Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0304383519306135
https://dx.doi.org/10.1016/j.canlet.2019.12.007
https://www.ncbi.nlm.nih.gov/pubmed/31830558
https://www.proquest.com/docview/2330761464
https://www.proquest.com/docview/2327931927
Volume 471
WOSCitedRecordID wos000509630300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7980
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005475
  issn: 0304-3835
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYhqa9IL4pjClIvEZaHbtn81ZNm2CCAWJAxYuVD3vLtKVV06L9-Zy_kqKp2njgJWrs2Gn9-_l8vt75CHlrhMmFHMpU8FGVssoMUwmGp1wy0CgNOXVRaT8-wsmJmEzklxCu2Lp0AtA04vpazv4r1FiGYNvQ2X-Au-sUC_Azgo5XhB2vdwJ-PHfuPy4Zx-p5m9bh3EI8t_ZW615Xt-GUgKm_s8aBzzOrjy8bd86qj3mL2VbaVT32wPd06YKB2p4b0fp8Xp_l006ihNLjumPRUfAE_lZf9X4Av85zZ7j9Wq_aInDj2cd2ay8_BaDCLn1ypihgmU-yEkSkP3v9huT2RoQL3JU3-N2tz510dlqfE3cFt9mVA87Kon3ORb-Odd6FsWqDbFHgEmXd1vjD4eS4d_1BDsYwSufrd_OlO2Q7drNOY1m3I3GayelD8iBsKZKxp8Ijck83j8n2p-A08YT87BmRrDICbxLPiKRjRIKQJx0j3iV_8cFV9nx4Sr4fHZ4evE9DPo20ZCxbpGCGFStMAVRoKc2-0BnACGelpCUb0arIWc6gNKaCgnHU-_KyqjLgmoI2qOdnz8hmM230C5JQWUCZA2haWscqXgBUWvMcaJVJ1IsGJItjpspw2LzNeXKpolfhhfKDruygqyFVOOgDknatZv6wlVue5xEOFQOJcelTyKlb2kHXLiiaXoG8Q8vdiLoKc75VNMusNZCN2IC86apRTNv_3vJGT5f2GYorIW6nsIvnni3dT4xEe7m25hXZ6afbLtlczJf6Nblf_l7U7XyPbMBE7AWS_wGFYLhJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+cancer+diagnosis+and+prognosis%3A+Opportunities+and+challenges&rft.jtitle=Cancer+letters&rft.au=Huang%2C+Shigao&rft.au=Yang%2C+Jie&rft.au=Fong%2C+Simon&rft.au=Zhao%2C+Qi&rft.date=2020-02-28&rft.eissn=1872-7980&rft.volume=471&rft.spage=61&rft_id=info:doi/10.1016%2Fj.canlet.2019.12.007&rft_id=info%3Apmid%2F31830558&rft.externalDocID=31830558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3835&client=summon