Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges
Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developmen...
Uloženo v:
| Vydáno v: | Cancer letters Ročník 471; s. 61 - 71 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Ireland
Elsevier B.V
28.02.2020
Elsevier Limited |
| Témata: | |
| ISSN: | 0304-3835, 1872-7980, 1872-7980 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developments in statistics and computer engineering over the years have encouraged many scientists to apply computational methods such as multivariate statistical analysis to analyze the prognosis of the disease, and the accuracy of such analyses is significantly higher than that of empirical predictions. Furthermore, as artificial intelligence (AI), especially machine learning and deep learning, has found popular applications in clinical cancer research in recent years, cancer prediction performance has reached new heights. This article reviews the literature on the application of AI to cancer diagnosis and prognosis, and summarizes its advantages. We explore how AI assists cancer diagnosis and prognosis, specifically with regard to its unprecedented accuracy, which is even higher than that of general statistical applications in oncology. We also demonstrate ways in which these methods are advancing the field. Finally, opportunities and challenges in the clinical implementation of AI are discussed. Hence, this article provides a new perspective on how AI technology can help improve cancer diagnosis and prognosis, and continue improving human health in the future.
•Artificial intelligence (AI) has reached new heights in clinical cancer research in recent years.•AI is applied to assist cancer diagnosis and prognosis, given its unprecedented accuracy level, which is even higher than that of general statistical expert.•An overview of how AI applied in clinical cancer could be leveraged in this area and thereby contribute to improved human health. |
|---|---|
| AbstractList | Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developments in statistics and computer engineering over the years have encouraged many scientists to apply computational methods such as multivariate statistical analysis to analyze the prognosis of the disease, and the accuracy of such analyses is significantly higher than that of empirical predictions. Furthermore, as artificial intelligence (AI), especially machine learning and deep learning, has found popular applications in clinical cancer research in recent years, cancer prediction performance has reached new heights. This article reviews the literature on the application of AI to cancer diagnosis and prognosis, and summarizes its advantages. We explore how AI assists cancer diagnosis and prognosis, specifically with regard to its unprecedented accuracy, which is even higher than that of general statistical applications in oncology. We also demonstrate ways in which these methods are advancing the field. Finally, opportunities and challenges in the clinical implementation of AI are discussed. Hence, this article provides a new perspective on how AI technology can help improve cancer diagnosis and prognosis, and continue improving human health in the future.
•Artificial intelligence (AI) has reached new heights in clinical cancer research in recent years.•AI is applied to assist cancer diagnosis and prognosis, given its unprecedented accuracy level, which is even higher than that of general statistical expert.•An overview of how AI applied in clinical cancer could be leveraged in this area and thereby contribute to improved human health. Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developments in statistics and computer engineering over the years have encouraged many scientists to apply computational methods such as multivariate statistical analysis to analyze the prognosis of the disease, and the accuracy of such analyses is significantly higher than that of empirical predictions. Furthermore, as artificial intelligence (AI), especially machine learning and deep learning, has found popular applications in clinical cancer research in recent years, cancer prediction performance has reached new heights. This article reviews the literature on the application of AI to cancer diagnosis and prognosis, and summarizes its advantages. We explore how AI assists cancer diagnosis and prognosis, specifically with regard to its unprecedented accuracy, which is even higher than that of general statistical applications in oncology. We also demonstrate ways in which these methods are advancing the field. Finally, opportunities and challenges in the clinical implementation of AI are discussed. Hence, this article provides a new perspective on how AI technology can help improve cancer diagnosis and prognosis, and continue improving human health in the future.Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developments in statistics and computer engineering over the years have encouraged many scientists to apply computational methods such as multivariate statistical analysis to analyze the prognosis of the disease, and the accuracy of such analyses is significantly higher than that of empirical predictions. Furthermore, as artificial intelligence (AI), especially machine learning and deep learning, has found popular applications in clinical cancer research in recent years, cancer prediction performance has reached new heights. This article reviews the literature on the application of AI to cancer diagnosis and prognosis, and summarizes its advantages. We explore how AI assists cancer diagnosis and prognosis, specifically with regard to its unprecedented accuracy, which is even higher than that of general statistical applications in oncology. We also demonstrate ways in which these methods are advancing the field. Finally, opportunities and challenges in the clinical implementation of AI are discussed. Hence, this article provides a new perspective on how AI technology can help improve cancer diagnosis and prognosis, and continue improving human health in the future. Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer are essential to enhance the patient's survival rate. Developments in statistics and computer engineering over the years have encouraged many scientists to apply computational methods such as multivariate statistical analysis to analyze the prognosis of the disease, and the accuracy of such analyses is significantly higher than that of empirical predictions. Furthermore, as artificial intelligence (AI), especially machine learning and deep learning, has found popular applications in clinical cancer research in recent years, cancer prediction performance has reached new heights. This article reviews the literature on the application of AI to cancer diagnosis and prognosis, and summarizes its advantages. We explore how AI assists cancer diagnosis and prognosis, specifically with regard to its unprecedented accuracy, which is even higher than that of general statistical applications in oncology. We also demonstrate ways in which these methods are advancing the field. Finally, opportunities and challenges in the clinical implementation of AI are discussed. Hence, this article provides a new perspective on how AI technology can help improve cancer diagnosis and prognosis, and continue improving human health in the future. |
| Author | Zhao, Qi Fong, Simon Yang, Jie Huang, Shigao |
| Author_xml | – sequence: 1 givenname: Shigao surname: Huang fullname: Huang, Shigao organization: Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China – sequence: 2 givenname: Jie surname: Yang fullname: Yang, Jie organization: Department of Computer and Information Science, University of Macau, Taipa, Macau, China – sequence: 3 givenname: Simon surname: Fong fullname: Fong, Simon email: ccfong@um.edu.mo organization: Department of Computer and Information Science, University of Macau, Taipa, Macau, China – sequence: 4 givenname: Qi surname: Zhao fullname: Zhao, Qi email: qizhao@um.edu.mo organization: Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31830558$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9r3DAQxUVJaTZpv0Ephl568Vb_bNmhBEJo0kIgl5YehSyNt7PVyltJLuTbV4uTy172NAzze4-ZeRfkLEwBCHnP6JpR1n7erq0JHvKaU9avGV9Tql6RFesUr1Xf0TOyooLKWnSiOScXKW0ppY1UzRtyLlgnaNN0K_LrJmYc0aLxFYYM3uMGgoXSVMXfQqwcmk2YEqbKBFft47R0V9Xjfj_FPAfMCMvQ_jbeQ9hAektej8YnePdcL8nPu68_br_VD4_3329vHmorpci1GpmTwzgo3kHfj7QDoVTb9LLnVrbcDUYaqew4OjXIhktprHNCNcAVjL3g4pJ8WnzLXn9nSFnvMNlyhgkwzUlzwVUvWM9VQT8eodtpjqFsVyhBVctkKwv14Zmahx04vY-4M_FJv7ysAFcLYOOUUoRRW8wm4xRyNOg1o_qQj97qJR99yEczrks-RSyPxC_-J2TXiwzKK_8hRJ0sHmJyGMFm7SY8ZfDlyMB6DGiN_wNPp-X_AQL9wC4 |
| CitedBy_id | crossref_primary_10_1038_s41598_025_97256_0 crossref_primary_10_1016_j_ejca_2025_115768 crossref_primary_10_2106_JBJS_24_01530 crossref_primary_10_1016_j_knosys_2024_111502 crossref_primary_10_1109_JBHI_2021_3133455 crossref_primary_10_3390_diagnostics14141477 crossref_primary_10_1186_s12911_023_02377_z crossref_primary_10_1007_s43762_023_00097_8 crossref_primary_10_1145_3745022 crossref_primary_10_3389_fgene_2022_998442 crossref_primary_10_1016_j_cmpb_2024_108400 crossref_primary_10_1007_s13194_024_00614_4 crossref_primary_10_1016_j_compbiomed_2025_109918 crossref_primary_10_1080_07853890_2025_2527954 crossref_primary_10_1111_bioe_70019 crossref_primary_10_1002_ddr_22223 crossref_primary_10_1007_s10388_023_01014_y crossref_primary_10_1186_s12920_022_01184_1 crossref_primary_10_1186_s40001_024_02138_2 crossref_primary_10_1016_j_heliyon_2024_e36743 crossref_primary_10_5528_wjtm_v9_i1_1 crossref_primary_10_3233_JIFS_236197 crossref_primary_10_1177_10732748221077351 crossref_primary_10_3389_froh_2021_686863 crossref_primary_10_1007_s00330_024_11082_y crossref_primary_10_3390_en16031490 crossref_primary_10_3389_fonc_2023_1158948 crossref_primary_10_1016_j_jddst_2024_105892 crossref_primary_10_3390_cancers14061524 crossref_primary_10_1016_j_artmed_2021_102060 crossref_primary_10_1177_09746862221142332 crossref_primary_10_1007_s00521_021_06713_0 crossref_primary_10_2147_JMDH_S410301 crossref_primary_10_1016_j_ebiom_2021_103631 crossref_primary_10_2174_0113892010298852240528123911 crossref_primary_10_3389_fgene_2022_944278 crossref_primary_10_3390_diagnostics14111132 crossref_primary_10_1016_j_giec_2024_09_004 crossref_primary_10_1016_j_jrras_2024_100841 crossref_primary_10_1063_5_0022211 crossref_primary_10_1186_s12880_024_01517_9 crossref_primary_10_3390_rs15102641 crossref_primary_10_2174_0115733947288355240305080236 crossref_primary_10_1109_ACCESS_2024_3422317 crossref_primary_10_1007_s00521_025_11126_4 crossref_primary_10_1007_s11831_022_09737_4 crossref_primary_10_3389_fonc_2024_1485681 crossref_primary_10_3390_cancers13153651 crossref_primary_10_3389_fphy_2022_977683 crossref_primary_10_1016_j_ejrad_2024_111348 crossref_primary_10_1016_j_pccm_2023_05_001 crossref_primary_10_3389_fpubh_2023_1328918 crossref_primary_10_1038_s41598_023_46509_x crossref_primary_10_1007_s11864_025_01331_7 crossref_primary_10_1002_sdtp_18954 crossref_primary_10_2174_0115733947304178240804182938 crossref_primary_10_1001_jamaoncol_2025_3153 crossref_primary_10_1016_j_ijid_2022_09_031 crossref_primary_10_3389_frai_2025_1620572 crossref_primary_10_1007_s12652_021_03091_2 crossref_primary_10_1016_j_jbusres_2022_113588 crossref_primary_10_1002_hsr2_2203 crossref_primary_10_30699_ijmm_18_2_66 crossref_primary_10_3390_cancers15092573 crossref_primary_10_3390_info16060444 crossref_primary_10_1007_s00330_023_10181_6 crossref_primary_10_1186_s12876_025_04105_5 crossref_primary_10_1186_s12872_023_03400_x crossref_primary_10_1007_s00521_022_07290_6 crossref_primary_10_1080_26896583_2024_2445957 crossref_primary_10_1080_00207543_2023_2221743 crossref_primary_10_1097_JS9_0000000000001058 crossref_primary_10_1007_s10549_025_07727_1 crossref_primary_10_1016_j_cmpb_2023_107934 crossref_primary_10_1111_opo_13219 crossref_primary_10_3390_jcm12154995 crossref_primary_10_1016_j_cmpb_2022_106785 crossref_primary_10_1016_j_medj_2021_04_006 crossref_primary_10_1016_j_eswa_2024_124838 crossref_primary_10_1002_mco2_70247 crossref_primary_10_1007_s12553_024_00825_y crossref_primary_10_1080_01913123_2021_1882628 crossref_primary_10_1016_j_procbio_2021_08_001 crossref_primary_10_3389_fimmu_2022_1027631 crossref_primary_10_1016_j_cej_2024_152295 crossref_primary_10_1186_s13000_024_01547_5 crossref_primary_10_1007_s00125_024_06089_5 crossref_primary_10_1080_09737766_2021_1958659 crossref_primary_10_1016_j_jii_2025_100905 crossref_primary_10_1016_j_compbiomed_2023_106544 crossref_primary_10_3390_cancers16152700 crossref_primary_10_3390_healthcare12020125 crossref_primary_10_1109_ACCESS_2023_3337117 crossref_primary_10_1111_jnp_70009 crossref_primary_10_1016_j_amjoto_2021_103327 crossref_primary_10_1007_s10620_022_07640_3 crossref_primary_10_1097_XCS_0000000000000573 crossref_primary_10_1002_hsr2_70200 crossref_primary_10_1016_j_bspc_2024_107221 crossref_primary_10_3389_fmed_2022_851890 crossref_primary_10_3390_cancers15184497 crossref_primary_10_57125_FEM_2025_09_30_01 crossref_primary_10_1016_j_soh_2023_100045 crossref_primary_10_3390_diagnostics13101720 crossref_primary_10_1186_s12967_024_05379_1 crossref_primary_10_3390_cancers14051199 crossref_primary_10_3389_fneur_2022_933940 crossref_primary_10_3748_wjg_v26_i42_6679 crossref_primary_10_1016_j_heliyon_2023_e22654 crossref_primary_10_1016_j_eswa_2021_115068 crossref_primary_10_1177_10732748221095946 crossref_primary_10_1007_s11831_025_10372_y crossref_primary_10_1097_MD_0000000000021798 crossref_primary_10_3748_wjg_v31_i21_106964 crossref_primary_10_1007_s42979_022_01206_w crossref_primary_10_1007_s10916_024_02098_4 crossref_primary_10_1080_1331677X_2023_2166555 crossref_primary_10_3390_diagnostics13010045 crossref_primary_10_1109_ACCESS_2022_3176091 crossref_primary_10_3389_fonc_2024_1343627 crossref_primary_10_7759_cureus_80335 crossref_primary_10_1016_j_cosrev_2023_100573 crossref_primary_10_2174_0109298673290777240301071513 crossref_primary_10_3389_fonc_2022_971190 crossref_primary_10_1039_D5RA03747F crossref_primary_10_1016_j_prp_2023_154694 crossref_primary_10_1371_journal_pone_0305035 crossref_primary_10_1186_s12885_024_11887_6 crossref_primary_10_1016_j_engmed_2024_100024 crossref_primary_10_1177_15330338231199287 crossref_primary_10_1111_jan_16680 crossref_primary_10_1039_D3NR05648A crossref_primary_10_1016_j_csbj_2024_07_012 crossref_primary_10_1016_j_compbiomed_2022_106140 crossref_primary_10_1186_s12911_022_01896_5 crossref_primary_10_3390_cancers13092133 crossref_primary_10_1016_j_breast_2021_04_011 crossref_primary_10_1016_j_nutos_2024_10_006 crossref_primary_10_3389_fgene_2021_741112 crossref_primary_10_3389_fonc_2022_950185 crossref_primary_10_1186_s12967_024_05609_6 crossref_primary_10_3390_healthcare13080892 crossref_primary_10_1016_j_gassur_2024_08_024 crossref_primary_10_1136_bmjopen_2020_047549 crossref_primary_10_1186_s13058_024_01895_6 crossref_primary_10_1109_TNNLS_2023_3248804 crossref_primary_10_1109_JBHI_2024_3363161 crossref_primary_10_1007_s00432_023_05216_w crossref_primary_10_1016_j_seminoncol_2025_152343 crossref_primary_10_3390_jcm11092431 crossref_primary_10_3390_info15120783 crossref_primary_10_1016_j_tranon_2020_100907 crossref_primary_10_1093_bib_bbac555 crossref_primary_10_3390_pr9081466 crossref_primary_10_3389_fmolb_2024_1389325 crossref_primary_10_1007_s10120_022_01294_w crossref_primary_10_3389_frai_2024_1446693 crossref_primary_10_2196_45815 crossref_primary_10_3390_biomedicines12071624 crossref_primary_10_3390_cells12060935 crossref_primary_10_1016_j_seminoncol_2025_152349 crossref_primary_10_1080_20476965_2024_2402128 crossref_primary_10_3389_ftox_2024_1461587 crossref_primary_10_3389_fmed_2024_1478842 crossref_primary_10_3390_cancers17121980 crossref_primary_10_3390_ijerph192013691 crossref_primary_10_2147_CMAR_S482837 crossref_primary_10_1016_j_joen_2021_06_003 crossref_primary_10_1016_j_molmed_2024_11_009 crossref_primary_10_1186_s12967_025_06839_y crossref_primary_10_1080_10255842_2022_2160243 crossref_primary_10_1038_s41416_021_01386_x crossref_primary_10_1186_s13058_024_01775_z crossref_primary_10_1038_s41540_024_00486_7 crossref_primary_10_1111_aji_13435 crossref_primary_10_1016_j_ebiom_2023_104454 crossref_primary_10_1088_1758_5090_ad8966 crossref_primary_10_1186_s12871_022_01796_1 crossref_primary_10_1038_s41598_023_35627_1 crossref_primary_10_2147_IJGM_S339595 crossref_primary_10_1007_s12032_022_01815_8 crossref_primary_10_3390_cancers16193417 crossref_primary_10_1055_a_2520_3833 crossref_primary_10_1002_jmri_29098 crossref_primary_10_1002_cam4_70454 crossref_primary_10_1016_j_trac_2024_118106 crossref_primary_10_1016_j_critrevonc_2025_104963 crossref_primary_10_1007_s13205_020_02342_x crossref_primary_10_1016_j_canlet_2025_217461 crossref_primary_10_1093_bib_bbaf209 crossref_primary_10_1145_3686922 crossref_primary_10_3390_bioengineering9070268 crossref_primary_10_1186_s12903_022_02607_2 crossref_primary_10_1177_10732748211044678 crossref_primary_10_1016_j_bspc_2024_106067 crossref_primary_10_1093_jamia_ocad213 crossref_primary_10_4103_sej_sej_199_23 crossref_primary_10_1016_j_lfs_2024_122634 crossref_primary_10_1186_s12912_024_02571_y crossref_primary_10_3390_bioengineering11040337 crossref_primary_10_1002_jbio_202200354 crossref_primary_10_1016_j_oor_2025_100749 crossref_primary_10_1109_TKDE_2024_3364385 crossref_primary_10_1093_bib_bbad269 crossref_primary_10_2174_012212697X315512240821045542 crossref_primary_10_3390_healthcare11192675 crossref_primary_10_1016_j_heliyon_2024_e27854 crossref_primary_10_3390_cancers13174291 crossref_primary_10_1136_bmjopen_2025_101169 crossref_primary_10_2147_JMDH_S502351 crossref_primary_10_1097_MOU_0000000000000884 crossref_primary_10_7759_cureus_75713 crossref_primary_10_1177_14604582221077049 crossref_primary_10_1002_jcla_24667 crossref_primary_10_1016_j_clinimag_2025_110495 crossref_primary_10_3389_froh_2021_794248 crossref_primary_10_3389_fphar_2020_01177 crossref_primary_10_1007_s11255_025_04763_0 crossref_primary_10_1007_s10147_025_02722_4 crossref_primary_10_1093_bib_bbae028 crossref_primary_10_3390_cancers13153709 crossref_primary_10_1038_s44321_024_00039_9 crossref_primary_10_1177_11769351251371273 crossref_primary_10_1007_s12094_023_03291_6 crossref_primary_10_1200_EDBK_390084 crossref_primary_10_1016_j_ijpharm_2025_125901 crossref_primary_10_1038_s41598_023_35649_9 crossref_primary_10_3390_diagnostics13132175 crossref_primary_10_1016_j_arcmed_2022_11_011 crossref_primary_10_1016_j_techsoc_2024_102643 crossref_primary_10_1177_01945998221110076 crossref_primary_10_3389_fonc_2020_601869 crossref_primary_10_1097_MD_0000000000027516 crossref_primary_10_61969_jai_1469589 crossref_primary_10_7717_peerj_cs_1651 crossref_primary_10_1186_s12967_021_02910_6 crossref_primary_10_1016_j_compbiomed_2024_109261 crossref_primary_10_3389_fmed_2025_1606336 crossref_primary_10_1016_j_media_2022_102704 crossref_primary_10_1016_j_compbiomed_2025_110156 crossref_primary_10_31083_j_fbl2709254 crossref_primary_10_5812_iranjradiol_119266 crossref_primary_10_1002_cac2_12373 crossref_primary_10_1002_INMD_20230013 crossref_primary_10_1186_s12916_023_02990_9 crossref_primary_10_3390_mps5050078 crossref_primary_10_1016_j_metrad_2025_100151 crossref_primary_10_3390_diagnostics12123111 crossref_primary_10_3390_diagnostics14080842 crossref_primary_10_1016_j_cmpb_2024_108112 crossref_primary_10_1186_s12859_021_04261_x crossref_primary_10_1002_bmm2_12117 crossref_primary_10_1038_s43018_025_00917_2 crossref_primary_10_3390_math12244041 crossref_primary_10_1016_j_clml_2023_05_013 crossref_primary_10_1039_D4NR01832J crossref_primary_10_3390_jcm13174979 crossref_primary_10_1007_s12553_020_00495_6 crossref_primary_10_1016_j_compbiomed_2024_109391 crossref_primary_10_2174_0115748928361472250123105507 crossref_primary_10_1002_advs_202502271 crossref_primary_10_1051_vcm_2024011 crossref_primary_10_3390_ai6010002 crossref_primary_10_1007_s00521_024_09915_4 crossref_primary_10_1016_j_jbi_2023_104550 crossref_primary_10_3390_cancers17030523 crossref_primary_10_1007_s12032_022_01711_1 crossref_primary_10_1016_j_cmpbup_2024_100148 crossref_primary_10_1155_2022_6201067 crossref_primary_10_3390_diagnostics12040837 crossref_primary_10_1007_s10462_021_10034_y crossref_primary_10_1049_cit2_12395 crossref_primary_10_1016_j_radonc_2024_110542 crossref_primary_10_1038_s41598_022_10287_9 crossref_primary_10_3389_fbioe_2022_822835 crossref_primary_10_1186_s12876_023_02729_z crossref_primary_10_1016_j_csbj_2021_07_003 crossref_primary_10_1007_s10462_025_11117_w crossref_primary_10_1080_0952813X_2025_2481037 crossref_primary_10_1093_haschl_qxaf108 crossref_primary_10_1016_j_artmed_2025_103099 crossref_primary_10_3390_cancers15030625 crossref_primary_10_1038_s41598_024_52493_7 crossref_primary_10_1007_s10552_024_01942_9 crossref_primary_10_1016_j_imed_2021_08_004 crossref_primary_10_1016_j_jogoh_2020_101962 crossref_primary_10_2147_JHC_S483647 crossref_primary_10_7759_cureus_74398 crossref_primary_10_1016_j_compbiomed_2024_108874 crossref_primary_10_1097_JS9_0000000000002481 crossref_primary_10_1186_s12909_024_05723_5 crossref_primary_10_1016_j_heliyon_2024_e27655 crossref_primary_10_5604_01_3001_0054_8929 crossref_primary_10_12688_f1000research_75469_1 crossref_primary_10_1136_bmjopen_2021_053352 crossref_primary_10_1002_asi_24743 crossref_primary_10_1177_11795549221116833 crossref_primary_10_12688_f1000research_75469_2 crossref_primary_10_3390_pharmaceutics16020260 crossref_primary_10_1007_s11831_024_10219_y crossref_primary_10_32604_cmes_2022_019914 crossref_primary_10_1371_journal_pone_0312036 crossref_primary_10_1016_j_imu_2023_101171 crossref_primary_10_1186_s12911_022_02087_y crossref_primary_10_1016_j_csbj_2021_10_006 crossref_primary_10_1007_s43032_024_01588_7 crossref_primary_10_1016_j_semcancer_2023_01_006 crossref_primary_10_3389_fimmu_2024_1492399 crossref_primary_10_2174_0115733947301672240528061642 crossref_primary_10_1177_11769351241289719 crossref_primary_10_1016_j_ijpharm_2021_120721 crossref_primary_10_3390_jpm11111172 crossref_primary_10_1186_s13072_025_00595_5 crossref_primary_10_2196_45770 crossref_primary_10_1016_j_bbe_2022_05_009 crossref_primary_10_7759_cureus_31008 crossref_primary_10_1002_dc_24520 crossref_primary_10_3389_fimmu_2022_964190 crossref_primary_10_1158_1940_6207_CAPR_24_0178 crossref_primary_10_1007_s00520_021_06774_w crossref_primary_10_3390_mi12111349 crossref_primary_10_3390_diagnostics13172736 crossref_primary_10_1097_RLI_0000000000000673 crossref_primary_10_2196_31142 crossref_primary_10_3390_cells11243965 crossref_primary_10_1016_j_measurement_2023_114059 crossref_primary_10_1038_s41598_023_46751_3 crossref_primary_10_1016_j_ijmedinf_2021_104557 crossref_primary_10_1108_IDD_07_2024_0097 crossref_primary_10_1097_SCS_0000000000011654 crossref_primary_10_1016_j_dld_2024_09_012 crossref_primary_10_1002_ctm2_159 crossref_primary_10_1002_mp_15549 crossref_primary_10_1016_j_ijsu_2022_106851 crossref_primary_10_1016_j_wneu_2025_124142 crossref_primary_10_1038_s41591_022_01746_x crossref_primary_10_1007_s12652_021_03612_z crossref_primary_10_1016_j_semcancer_2023_06_005 crossref_primary_10_1055_a_2257_5122 crossref_primary_10_1007_s10462_021_10023_1 crossref_primary_10_3390_math11244937 |
| Cites_doi | 10.1016/j.eswa.2018.08.040 10.1109/TMI.2018.2870343 10.1038/d41586-018-02881-7 10.1148/radiol.2018180237 10.1002/ijc.31136 10.1016/j.gie.2018.11.011 10.1371/journal.pcbi.1006076 10.1055/s-0043-122385 10.1158/1078-0432.CCR-18-2495 10.1038/s41467-019-08718-9 10.1016/j.trecan.2019.02.002 10.1016/j.cmpb.2017.12.011 10.1038/s41591-018-0300-7 10.7150/ijbs.28608 10.1001/jama.2016.17438 10.1016/j.artmed.2014.12.008 10.1016/j.jpainsymman.2016.12.330 10.3892/ol.2014.2820 10.1158/1078-0432.CCR-17-3445 10.1016/S1470-2045(19)30086-5 10.1016/j.wneu.2018.07.276 10.1016/j.canlet.2019.02.054 10.1038/s41591-018-0307-0 10.1002/ijc.31896 10.1016/j.ins.2018.09.046 10.1016/S1470-2045(19)30025-7 10.1038/s41591-018-0177-5 10.1056/NEJMp1606181 10.1016/j.asoc.2013.09.014 10.1007/s00428-019-02642-5 10.1109/ACCESS.2019.2897078 10.1038/modpathol.2017.98 10.1016/j.ejca.2008.02.030 10.1016/j.gie.2018.12.019 10.1038/s41598-017-15720-y 10.1016/S1470-2045(18)30762-9 10.1016/j.ijmedinf.2017.09.013 10.3892/br.2013.140 10.1371/journal.pone.0210976 10.1002/jmri.25954 10.1148/rg.2017170077 10.1186/s12916-018-1122-7 10.1016/S0140-6736(96)11196-X 10.1371/journal.pmed.1002758 10.1056/NEJMp1702071 10.1245/s10434-018-6343-7 10.1007/s10916-018-1003-9 10.1056/NEJMp1716891 10.1109/ACCESS.2019.2908724 10.3390/cancers11081140 10.1016/j.inffus.2017.10.005 10.1016/j.engappai.2013.06.013 10.1016/j.ophtha.2018.12.033 10.1186/s13048-019-0508-2 10.1038/s41598-018-21758-3 10.3390/cancers11030328 10.1038/s41586-018-0317-6 10.1038/nature14539 10.1093/bioinformatics/btl230 10.3389/fgene.2019.01041 10.1371/journal.pcbi.1006657 10.1109/TCBB.2018.2806438 10.1038/ncomms12474 10.1007/s00259-015-3184-5 10.1016/j.dss.2015.04.003 10.1016/j.canlet.2019.05.015 10.1038/s41568-018-0016-5 10.7150/jca.26356 10.1038/nrc.2017.83 10.1001/jama.2017.7797 10.1002/ijc.31733 10.1016/S1470-2045(17)30904-X 10.1245/s10434-015-4475-6 10.1002/ijc.32380 10.1142/S1793545819410025 10.7150/jca.27399 10.1016/j.radonc.2018.10.019 10.1161/CIRCULATIONAHA.115.001593 10.1038/nature21056 10.1002/ijc.32030 10.1111/cas.13865 10.1002/ijc.10370 10.5858/arpa.2018-0147-OA 10.1093/annonc/mdy166 10.7150/jca.21261 10.1016/j.artmed.2004.07.002 10.1007/s11999-015-4446-z 10.1002/(SICI)1097-0215(19991008)83:2<203::AID-IJC10>3.0.CO;2-0 10.1093/bioinformatics/btl543 10.1016/j.ijmedinf.2016.11.001 10.1111/joim.12822 10.1007/s40815-018-0456-9 10.1016/j.media.2015.08.001 10.1002/ijc.31798 10.1038/s41568-018-0046-z 10.1177/1533033818790509 10.1016/j.patcog.2018.07.031 10.1016/j.csbj.2014.11.005 10.2967/jnumed.117.202267 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. 2019. Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. – notice: 2019. Elsevier B.V. |
| DBID | AAYXX CITATION NPM 7TO 7U9 H94 K9. NAPCQ 7X8 |
| DOI | 10.1016/j.canlet.2019.12.007 |
| DatabaseName | CrossRef PubMed Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics |
| EISSN | 1872-7980 |
| EndPage | 71 |
| ExternalDocumentID | 31830558 10_1016_j_canlet_2019_12_007 S0304383519306135 |
| Genre | Journal Article |
| GeographicLocations | United States--US China |
| GeographicLocations_xml | – name: China – name: United States--US |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4CK 4G. 5GY 5RE 5VS 6J9 6PF 7-5 71M 8FE 8FH 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABGSF ABJNI ABMAC ABMZM ABUDA ACDAQ ACGFO ACGFS ACIEU ACIUM ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IH2 IHE J1W K-O KOM LK8 M29 M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 ROL RPZ SCC SDF SDG SDP SEL SES SPCBC SSH SSU SSZ T5K Z5R ~G- ~HD 7RV 7X7 8C1 8FI AACTN AAIAV ABLVK ABYKQ AFCTW AFKRA AFKWA AJOXV AMFUW AZQEC BBNVY BENPR BHPHI DOVZS FYUFA GUQSH HCIFZ LCYCR M1P M2M M2O M7P .55 .GJ 3O- 53G 9DU AAQXK AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO AFFNX AFJKZ AGQPQ AGRDE AI. AIGII ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HED HMK HMO HVGLF HZ~ R2- SAE SEW UDS VH1 WUQ X7M ZGI NPM 7TO 7U9 H94 K9. NAPCQ 7X8 |
| ID | FETCH-LOGICAL-c443t-7f1d4bfb728e99f08e377659492c462dba4a47cffd7b45244acdd375e27ef9323 |
| ISICitedReferencesCount | 384 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509630300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-3835 1872-7980 |
| IngestDate | Sun Sep 28 10:26:09 EDT 2025 Tue Oct 07 06:47:50 EDT 2025 Wed Feb 19 02:31:48 EST 2025 Tue Nov 18 22:37:43 EST 2025 Sat Nov 29 07:19:09 EST 2025 Fri Feb 23 02:50:03 EST 2024 Tue Oct 14 19:38:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Deep neural network Prognosis prediction Cancer diagnosis Machine learning |
| Language | English |
| License | Copyright © 2019 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c443t-7f1d4bfb728e99f08e377659492c462dba4a47cffd7b45244acdd375e27ef9323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| PMID | 31830558 |
| PQID | 2330761464 |
| PQPubID | 2031080 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2327931927 proquest_journals_2330761464 pubmed_primary_31830558 crossref_citationtrail_10_1016_j_canlet_2019_12_007 crossref_primary_10_1016_j_canlet_2019_12_007 elsevier_sciencedirect_doi_10_1016_j_canlet_2019_12_007 elsevier_clinicalkey_doi_10_1016_j_canlet_2019_12_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-28 |
| PublicationDateYYYYMMDD | 2020-02-28 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland – name: Clare |
| PublicationTitle | Cancer letters |
| PublicationTitleAlternate | Cancer Lett |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier Limited |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Limited |
| References | Gao HX, Du, Zhang, Jiang, Kang, Mao, Zhao (bib25) 2018; 14 Shukla, Hagenbuchner, Win, Yang (bib65) 2018; 155 Tan, Huang, Zhang, Li (bib22) 2019; 458 Biglarian A, Kazemnejad (bib43) 2011; 40 Chen, Xing, Henson, Sheng, Schwartz, Cheng (bib18) 2009; 2009 Huang, Yang, Fong, Zhao (bib23) 2019; 11 Li, Zhang, Zhang, Wei, Pan, Zhao, Xin, Qin, Wang, Li, Yang, Zhao, Yang, Wang, Zheng, Zheng, Yang, Whitlow, Gurcan, Zhang, Wang, Pasche, Gao, Zhang, Chen (bib70) 2019; 20 Ferroni, Zanzotto, Riondino, Scarpato, Guadagni, Roselli (bib103) 2019; 11 Mintz, Brodie (bib20) 2019 Chang S W, Kallarakkal (bib48) 2011; 12 Thurtle, Greenberg, Lee, Huang, Pharoah, Gnanapragasam (bib113) 2019; 16 Allahyar, Ubels, de Ridder (bib8) 2019; 15 Yi, Guan, Chen, Zhang, Zhang, Li, Liu, Yu, Long, Liu, Chen, Zee (bib85) 2018; 9 Simmons, McMillan, McWilliams, Sande, Fearon, Tuck, Fallon, Laird (bib2) 2017; 53 Qian, Li, Wang, Li, Li, Wang, Li, Tang, Zhang, Fan, Chen, Li (bib21) 2019; 451 Alabi, Elmusrati, Sawazaki-Calone, Kowalski, Haglund, Coletta, Mäkitie, Salo, Leivo, Almangush (bib101) 2019; 475 Sepehri, Upadhaya, Desseroit, Visvikis, Le Rest, Hatt (bib50) 2018; 59 Gevaert, De Smet, Timmerman, Moreau, De Moor (bib36) 2006; 22 Kate, Nadig (bib63) 2017; 97 Romeo, Maurea, Cuocolo, Petretta, Mainenti, Verde, Coppola, Dell'Aversana, Brunetti (bib86) 2018; 48 Jiang, Xu (bib104) 2019; 98 Caruana, Lou, Gehrke, Koch, Sturm, Elhadad (bib108) 2015; vol. 15 Sun, Wang, Li (bib31) 2018; 16 Kuo, Huang, Cheng, Lin, Wu (bib37) 2015; 63 Bottaci, Drew, Hartley, Hadfield, Farouk, Lee, Macintyre, Duthie, Monson (bib45) 1997; 350 Yeung S, Fei-Fei (bib120) 2018; 378 Mitchell, Jain, Langer (bib9) 2017; 17 Hasnain, Mason, Gill, Miranda, Gill, Kuhn, Newton (bib42) 2019; 14 Acharya, Akter, Chowriappa, Dua, Raghavendra, Koh, Tan, Leong, Vijayananthan, Hagiwara, Ramli, Ng (bib54) 2018; 20 Passiglia, Rizzo, Incorvaia, Listi, Bazan, Russo (bib83) 2018; 142 Karhade, Thio, Ogink, Kim, Lozano-Calderon, Raskin, Schwab (bib57) 2018; 119 Coudray, Ocampo, Sakellaropoulos, Narula, Snuderl, Fenyo, Moreira, Razavian, Tsirigos (bib81) 2018; 24 Ching, Zhu, Garmire (bib29) 2018; 14 Chartrand, Cheng, Vorontsov, Drozdzal, Turcotte, Pal, Kadoury, Tang (bib105) 2017; 37 Wang, Liu, Rong, Zhou, Bai, Wei, Wei, Wang, Guo, Tian (bib95) 2019; 132 Wu, Lin, Shen, Wu (bib109) 2018; 143 Zhu, Wang, Xu, Zhang, Cheng, Zhong, Zhang, Chen, Yao, Zhou, Li (bib76) 2019; 89 Dart (bib112) 2018; 18 Enshaei, Robson, Edmondson (bib26) 2015; 22 Zhu, Luo, Su, Wei, Wei, Zhang, Zou (bib44) 2013; 1 Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (bib16) 2015; 13 Oh, Choi, Seo (bib68) 2018; 25 You, Liu, Lin, Huang, Tang, Zhang, Pan, Liu, Guo, Zou, Zhao, Kang, Liu, Lin, Hong, Mai, Zeng, Chen (bib99) 2019; 145 Chen, Asch (bib107) 2017; 376 Tabibu, Vinod, Jawahar (bib110) 2019 Bomane, Gonçalves, Ballester (bib30) 2019; 10 Xie, Yang, Sun, Chen, Zhang (bib80) 2019; 85 Caobelli, Alongi, Evangelista, Picchio, Saladini, Rensi, Geatti, Castello, Laghai, Popescu, Dolci, Crivellaro, Seghezzi, Kirienko, De Biasi, Cocciolillo, Quartuccio, Young (bib67) 2016; 43 LeCun, Bengio, Hinton (bib88) 2015; 521 Deo (bib11) 2015; 132 Haenssle, Fink, Schneiderbauer, Toberer, Buhl, Blum, Kalloo, Hassen, Thomas, Enk, Uhlmann (bib60) 2018; 29 Obermeyer, Emanuel (bib6) 2016; 375 Kinahan, Gillies, Hricak (bib7) 2015; 278 Wang, Makond, Chen, Wang (bib64) 2014; 20 Papp, Potsch, Grahovac, Schmidbauer, Woehrer, Preusser, Mitterhauser, Kiesel, Wadsak, Beyer, Hacker, Traub-Weidinger (bib56) 2018; 59 Ciompi, de Hoop, van Riel, Chung, Scholten, Oudkerk, de Jong, Prokop, van Ginneken (bib78) 2015; 26 Abdikenov, Iklassov, Sharipov, Hussain, Jamwal (bib66) 2019; 7 Yu, Zhang, Berry, Altman, Re, Rubin, Snyder (bib51) 2016; 7 Ha, Baek, Na (bib73) 2019; 20 Song, Gao, Tan (bib122) 2018; 9 He (bib97) 2019; 25 Lu, Kuo, Chen, Chang, Lin, Hu, Chiang, Cheng, Chen (bib52) 2019 Park, Ali, Kim, An, Kim, Shin (bib33) 2013; 26 Cabitza, Rasoini, Gensini (bib116) 2017; 318 Jha, Topol (bib12) 2016; 316 Huang, Zhao (bib4) 2019 Xing, Chen, Henson, Sheng (bib61) 2007 Janssen, van der Heijden, van Dijke, Ready, Raskin, Ferrone, Hornicek, Schwab (bib58) 2015; 473 Lu, Lewis, Dupont, Plummer, Janowczyk, Madabhushi (bib59) 2017; 30 Wu, Shen, Wu (bib84) 2018; 143 Wang, Yang, Weinreb, Han, Li, Kong, Yan, Ke, Luo, Liu, Wang (bib94) 2017; 7 Topol (bib117) 2019; 25 Zhang, Xu, Hui, Yang, Hu, Shao, Liang, Wang (bib38) 2017; 8 Simmons, McMillan, McWilliams, Sande, Fearon, Tuck, Fallon, Laird (bib15) 2017; 53 Nam, Park, Hwang, Lee, Jin, Lim, Vu, Sohn, Hwang, Goo (bib82) 2018; 290 Samala, Chan, Hadjiiski, Helvie, Richter, Cha (bib77) 2019; 38 Hosny, Parmar, Quackenbush, Schwartz, Aerts (bib10) 2018; 18 Handelman, Kok, Chandra, Razavi, Lee, Asadi (bib119) 2018; 284 Lu, Hsu, Hsieh, Kao, Cheng, Hsu, Tsai, Chen, Huang, Yen, Chen (bib55) 2018; 24 Xu X, Zou (bib62) 2012 Lan, Wang, Fong, Liu, Wong, Dey (bib106) 2018; 42 Abelson, Collord, Ng, Weissbrod, Mendelson Cohen, Niemeyer, Barda, Zuzarte, Heisler, Sundaravadanam, Luben, Hayat, Wang, Zhao, Cirlan, Pugh, Soave, Ng, Latimer, Hardy, Raine, Jones, Hoult, Britten, McPherson, Johansson, Mbabaali, Eagles, Miller, Pasternack, Timms, Krzyzanowski, Awadalla, Costa, Segal, Bratman, Beer, Behjati, Martincorena, Wang, Bowles, Quiros, Karakatsani, La Vecchia, Trichopoulou, Salamanca-Fernandez, Huerta, Barricarte, Travis, Tumino, Masala, Boeing, Panico, Kaaks, Kramer, Sieri, Riboli, Vineis, Foll, McKay, Polidoro, Sala, Khaw, Vermeulen, Campbell, Papaemmanuil, Minden, Tanay, Balicer, Wareham, Gerstung, Dick, Brennan, Vassiliou, Shlush (bib111) 2018; 559 Bychkov, Linder, Turkki, Nordling, Kovanen, Verrill, Walliander, Lundin, Haglund, Lundin (bib47) 2018; 8 Glare, Sinclair, Downing, Stone, Maltoni, Vigano (bib14) 2008; 44 Cossu, Leoncini, Megha (bib90) 1999; 83 Haag, Ahadova, Schmidt, Sisic, Blank, Heger, Apostolidis, Berger, Springfeld, Lasitschka, Jager, von Knebel Doeberitz, Kloor (bib100) 2019; 144 Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib89) 2017; 542 Liu, Kohlberger, Norouzi, Dahl, Smith, Mohtashamian, Olson, Peng, Hipp, Stumpe (bib92) 2018; 143 Lu, Wang, Yoon (bib39) 2019; 116 Mori, Berzin, Kudo (bib74) 2019; 89 Lu, Arshad, Thornton, Avesani, Cunnea, Curry, Kanavati, Liang, Nixon, Williams, Hassan, Bowtell, Gabra, Fotopoulou, Rockall, Aboagye (bib53) 2019; 10 Dang, Li, Ma, Li, Yang, Lu, Huang (bib24) 2019; 17 Qian, Liu, Wang, Ge, Luo, Patz, Moorman, Su, Shen, Christiani, Wei (bib115) 2019; 144 Huang, Fong, Xu, Han, Yuan, Zhao (bib5) 2019; 12 Xu, Hosny, Zeleznik, Parmar, Coroller, Franco, Mak, Aerts (bib93) 2019; 25 Jhajharia, Varshney, Verma, Kumar (bib28) 2016 Frohlich, Balling, Beerenwinkel, Kohlbacher, Kumar, Lengauer, Maathuis, Moreau, Murphy, Przytycka, Rebhan, Rost, Schuppert, Schwab, Spang, Stekhoven, Sun, Weber, Ziemek, Zupan (bib118) 2018; 16 Siegel, Miller, Jemal (bib1) 2019; 69 Khan U, Choi (bib27) 2008 Brancati, De Pietro, Frucci, Riccio (bib91) 2019; 7 Stephan, Jung, Cammann, Vogel, Brux, Kristiansen, Rudolph, Hauptmann, Lein, Schnorr, Sinha, Loening (bib87) 2002; 99 Tian, Wu, Jiang, Gao, Wu, Hu (bib41) 2019; 110 Vasudevan, Murugesan (bib40) 2018; 17 Jin, Wang, Zhu, Dai, Xu, Yang, Shen, Ye (bib98) 2019; 10 Huang, Dang, Li, Wei, Ma, Qiao, Wang (bib3) 2015 Wong, Yip (bib13) 2018; 555 Hu, Peng, Niu (bib71) 2019; 20 Pedersen, Ehmsen, Beck, Conrads, Bak, Ditzel, Leth-Larsen (bib102) 2019; 144 Denkert, von Minckwitz, Darb-Esfahani, Lederer, Heppner, Weber, Budczies, Huober, Klauschen, Furlanetto, Schmitt, Blohmer, Karn, Pfitzner, Kümmel, Engels, Schneeweiss, Hartmann, Noske, Fasching, Jackisch, van Mackelenbergh, Sinn, Schem, Hanusch, Untch, Loibl (bib19) 2018; 19 L, N, H (bib32) 2007 Delen, Walker, Kadam (bib34) 2005; 34 Levine, Schlosser, Grewal, Coope, Jones, Yip (bib69) 2019; 5 Xie, Zhang, Xia, Fulham, Zhang (bib79) 2018; 42 Wang, Wang, Ye, Wang, Yin, Jin (bib46) 2019; 474 Obermeyer, Emanuel (bib121) 2016; 375 Sun, Goodison, Li, Liu, Farmerie (bib35) 2007; 23 Medeiros, Jammal, Thompson (bib96) 2019; 4 Topol (bib72) 2019; 25 Ichimasa, Kudo, Mori, Misawa, Matsudaira, Kouyama, Baba, Hidaka, Wakamura, Hayashi, Kudo, Ishigaki, Yagawa, Nakamura, Takeda, Haji, Hamatani, Mori, Ishida, Miyachi (bib75) 2018; 50 Feng, Gu, Li, Liu, Yang, Zhang (bib114) 2019; 12 Zolbanin, Delen, Hassan Zadeh (bib17) 2015; 74 Lynch, Abdollahi, Fuqua, de Carlo, Bartholomai, Balgemann, van Berkel, Frieboes (bib49) 2017; 108 Gao HX (10.1016/j.canlet.2019.12.007_bib25) 2018; 14 Romeo (10.1016/j.canlet.2019.12.007_bib86) 2018; 48 Chartrand (10.1016/j.canlet.2019.12.007_bib105) 2017; 37 Qian (10.1016/j.canlet.2019.12.007_bib21) 2019; 451 Hasnain (10.1016/j.canlet.2019.12.007_bib42) 2019; 14 Yeung S (10.1016/j.canlet.2019.12.007_bib120) 2018; 378 Huang (10.1016/j.canlet.2019.12.007_bib23) 2019; 11 Abdikenov (10.1016/j.canlet.2019.12.007_bib66) 2019; 7 Lu (10.1016/j.canlet.2019.12.007_bib53) 2019; 10 Mori (10.1016/j.canlet.2019.12.007_bib74) 2019; 89 Huang (10.1016/j.canlet.2019.12.007_bib5) 2019; 12 Acharya (10.1016/j.canlet.2019.12.007_bib54) 2018; 20 Zhu (10.1016/j.canlet.2019.12.007_bib44) 2013; 1 Sun (10.1016/j.canlet.2019.12.007_bib31) 2018; 16 Zhu (10.1016/j.canlet.2019.12.007_bib76) 2019; 89 Allahyar (10.1016/j.canlet.2019.12.007_bib8) 2019; 15 Zhang (10.1016/j.canlet.2019.12.007_bib38) 2017; 8 Caobelli (10.1016/j.canlet.2019.12.007_bib67) 2016; 43 Handelman (10.1016/j.canlet.2019.12.007_bib119) 2018; 284 Feng (10.1016/j.canlet.2019.12.007_bib114) 2019; 12 Dang (10.1016/j.canlet.2019.12.007_bib24) 2019; 17 Caruana (10.1016/j.canlet.2019.12.007_bib108) 2015; vol. 15 Simmons (10.1016/j.canlet.2019.12.007_bib2) 2017; 53 Levine (10.1016/j.canlet.2019.12.007_bib69) 2019; 5 Tan (10.1016/j.canlet.2019.12.007_bib22) 2019; 458 Chang S W (10.1016/j.canlet.2019.12.007_bib48) 2011; 12 Frohlich (10.1016/j.canlet.2019.12.007_bib118) 2018; 16 Kate (10.1016/j.canlet.2019.12.007_bib63) 2017; 97 Karhade (10.1016/j.canlet.2019.12.007_bib57) 2018; 119 Lynch (10.1016/j.canlet.2019.12.007_bib49) 2017; 108 L (10.1016/j.canlet.2019.12.007_bib32) 2007 Haag (10.1016/j.canlet.2019.12.007_bib100) 2019; 144 Medeiros (10.1016/j.canlet.2019.12.007_bib96) 2019; 4 Janssen (10.1016/j.canlet.2019.12.007_bib58) 2015; 473 Esteva (10.1016/j.canlet.2019.12.007_bib89) 2017; 542 Ha (10.1016/j.canlet.2019.12.007_bib73) 2019; 20 Abelson (10.1016/j.canlet.2019.12.007_bib111) 2018; 559 Wong (10.1016/j.canlet.2019.12.007_bib13) 2018; 555 Park (10.1016/j.canlet.2019.12.007_bib33) 2013; 26 Huang (10.1016/j.canlet.2019.12.007_bib4) 2019 Tian (10.1016/j.canlet.2019.12.007_bib41) 2019; 110 Mintz (10.1016/j.canlet.2019.12.007_bib20) 2019 Song (10.1016/j.canlet.2019.12.007_bib122) 2018; 9 Huang (10.1016/j.canlet.2019.12.007_bib3) 2015 Passiglia (10.1016/j.canlet.2019.12.007_bib83) 2018; 142 Alabi (10.1016/j.canlet.2019.12.007_bib101) 2019; 475 Ferroni (10.1016/j.canlet.2019.12.007_bib103) 2019; 11 Lan (10.1016/j.canlet.2019.12.007_bib106) 2018; 42 Obermeyer (10.1016/j.canlet.2019.12.007_bib6) 2016; 375 Dart (10.1016/j.canlet.2019.12.007_bib112) 2018; 18 Pedersen (10.1016/j.canlet.2019.12.007_bib102) 2019; 144 Brancati (10.1016/j.canlet.2019.12.007_bib91) 2019; 7 Sun (10.1016/j.canlet.2019.12.007_bib35) 2007; 23 Kinahan (10.1016/j.canlet.2019.12.007_bib7) 2015; 278 Haenssle (10.1016/j.canlet.2019.12.007_bib60) 2018; 29 Topol (10.1016/j.canlet.2019.12.007_bib72) 2019; 25 Jiang (10.1016/j.canlet.2019.12.007_bib104) 2019; 98 Lu (10.1016/j.canlet.2019.12.007_bib55) 2018; 24 Kourou (10.1016/j.canlet.2019.12.007_bib16) 2015; 13 Jin (10.1016/j.canlet.2019.12.007_bib98) 2019; 10 Hu (10.1016/j.canlet.2019.12.007_bib71) 2019; 20 Simmons (10.1016/j.canlet.2019.12.007_bib15) 2017; 53 Zolbanin (10.1016/j.canlet.2019.12.007_bib17) 2015; 74 LeCun (10.1016/j.canlet.2019.12.007_bib88) 2015; 521 Kuo (10.1016/j.canlet.2019.12.007_bib37) 2015; 63 Wang (10.1016/j.canlet.2019.12.007_bib64) 2014; 20 Sepehri (10.1016/j.canlet.2019.12.007_bib50) 2018; 59 Xie (10.1016/j.canlet.2019.12.007_bib79) 2018; 42 Yi (10.1016/j.canlet.2019.12.007_bib85) 2018; 9 Stephan (10.1016/j.canlet.2019.12.007_bib87) 2002; 99 Lu (10.1016/j.canlet.2019.12.007_bib59) 2017; 30 Wu (10.1016/j.canlet.2019.12.007_bib84) 2018; 143 Gevaert (10.1016/j.canlet.2019.12.007_bib36) 2006; 22 Ciompi (10.1016/j.canlet.2019.12.007_bib78) 2015; 26 He (10.1016/j.canlet.2019.12.007_bib97) 2019; 25 Denkert (10.1016/j.canlet.2019.12.007_bib19) 2018; 19 Bottaci (10.1016/j.canlet.2019.12.007_bib45) 1997; 350 Vasudevan (10.1016/j.canlet.2019.12.007_bib40) 2018; 17 Ichimasa (10.1016/j.canlet.2019.12.007_bib75) 2018; 50 Chen (10.1016/j.canlet.2019.12.007_bib18) 2009; 2009 Ching (10.1016/j.canlet.2019.12.007_bib29) 2018; 14 Bomane (10.1016/j.canlet.2019.12.007_bib30) 2019; 10 Xu X (10.1016/j.canlet.2019.12.007_bib62) 2012 Wang (10.1016/j.canlet.2019.12.007_bib46) 2019; 474 Enshaei (10.1016/j.canlet.2019.12.007_bib26) 2015; 22 Wang (10.1016/j.canlet.2019.12.007_bib94) 2017; 7 Glare (10.1016/j.canlet.2019.12.007_bib14) 2008; 44 Lu (10.1016/j.canlet.2019.12.007_bib39) 2019; 116 Qian (10.1016/j.canlet.2019.12.007_bib115) 2019; 144 Cabitza (10.1016/j.canlet.2019.12.007_bib116) 2017; 318 Wang (10.1016/j.canlet.2019.12.007_bib95) 2019; 132 Yu (10.1016/j.canlet.2019.12.007_bib51) 2016; 7 Liu (10.1016/j.canlet.2019.12.007_bib92) 2018; 143 Topol (10.1016/j.canlet.2019.12.007_bib117) 2019; 25 Delen (10.1016/j.canlet.2019.12.007_bib34) 2005; 34 Mitchell (10.1016/j.canlet.2019.12.007_bib9) 2017; 17 Cossu (10.1016/j.canlet.2019.12.007_bib90) 1999; 83 Lu (10.1016/j.canlet.2019.12.007_bib52) 2019 Jha (10.1016/j.canlet.2019.12.007_bib12) 2016; 316 Li (10.1016/j.canlet.2019.12.007_bib70) 2019; 20 Xie (10.1016/j.canlet.2019.12.007_bib80) 2019; 85 Nam (10.1016/j.canlet.2019.12.007_bib82) 2018; 290 Deo (10.1016/j.canlet.2019.12.007_bib11) 2015; 132 Thurtle (10.1016/j.canlet.2019.12.007_bib113) 2019; 16 Siegel (10.1016/j.canlet.2019.12.007_bib1) 2019; 69 Biglarian A (10.1016/j.canlet.2019.12.007_bib43) 2011; 40 Hosny (10.1016/j.canlet.2019.12.007_bib10) 2018; 18 Samala (10.1016/j.canlet.2019.12.007_bib77) 2019; 38 Xu (10.1016/j.canlet.2019.12.007_bib93) 2019; 25 Bychkov (10.1016/j.canlet.2019.12.007_bib47) 2018; 8 Papp (10.1016/j.canlet.2019.12.007_bib56) 2018; 59 Xing (10.1016/j.canlet.2019.12.007_bib61) 2007 Wu (10.1016/j.canlet.2019.12.007_bib109) 2018; 143 Coudray (10.1016/j.canlet.2019.12.007_bib81) 2018; 24 Tabibu (10.1016/j.canlet.2019.12.007_bib110) 2019 You (10.1016/j.canlet.2019.12.007_bib99) 2019; 145 Obermeyer (10.1016/j.canlet.2019.12.007_bib121) 2016; 375 Chen (10.1016/j.canlet.2019.12.007_bib107) 2017; 376 Khan U (10.1016/j.canlet.2019.12.007_bib27) 2008 Oh (10.1016/j.canlet.2019.12.007_bib68) 2018; 25 Jhajharia (10.1016/j.canlet.2019.12.007_bib28) 2016 Shukla (10.1016/j.canlet.2019.12.007_bib65) 2018; 155 |
| References_xml | – volume: 25 start-page: 44 year: 2019 end-page: 56 ident: bib72 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat. Med. – volume: 20 year: 2019 ident: bib73 article-title: Deep convolutional neural network models for the diagnosis of thyroid cancer publication-title: Lancet Oncol. – volume: 24 start-page: 1559 year: 2018 end-page: 1567 ident: bib81 article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning publication-title: Nat. Med. – volume: 25 start-page: 1153 year: 2018 end-page: 1159 ident: bib68 article-title: ASO author reflections: use of the survival recurrent network for prediction of overall survival in patients with gastric cancer publication-title: Ann. Surg. Oncol. – volume: 83 start-page: 203 year: 1999 end-page: 209 ident: bib90 article-title: Expression of p34cdc2 and cyclins A and B compared to other proliferative features of non‐Hodgkin's lymphomas A multivariate cluster analysis publication-title: Int. J. Cancer – volume: 17 start-page: 149 year: 2019 end-page: 158 ident: bib24 article-title: 18F-FDG-PET/CT-guided intensity-modulated radiotherapy for 42 FIGO III/IV ovarian cancer: a retrospective study publication-title: Oncol. Lett. – volume: 25 start-page: 30 year: 2019 end-page: 36 ident: bib97 article-title: The practical implementation of artificial intelligence technologies in medicine publication-title: Nat. Med. – start-page: 1896 year: 2016 end-page: 1901 ident: bib28 article-title: A neural network based breast cancer prognosis model with PCA processed features publication-title: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI) – volume: 284 start-page: 603 year: 2018 end-page: 619 ident: bib119 article-title: eDoctor: machine learning and the future of medicine publication-title: J. Intern. Med. – start-page: 11 year: 2019 ident: bib52 article-title: Developing a prognostic gene panel of epithelial ovarian cancer patients by a machine learning model publication-title: Cancers – start-page: 1 year: 2019 end-page: 9 ident: bib20 article-title: Introduction to artificial intelligence in medicine publication-title: Minim. Invasive Ther. Allied Technol. – volume: 18 start-page: 529 year: 2018 ident: bib112 article-title: How to predict the future publication-title: Nat. Rev. Cancer – volume: 316 start-page: 2353 year: 2016 end-page: 2354 ident: bib12 article-title: Adapting to artificial intelligence: radiologists and pathologists as information specialists publication-title: J. Am. Med. Assoc. – volume: 42 start-page: 139 year: 2018 ident: bib106 article-title: A survey of data mining and deep learning in bioinformatics publication-title: J. Med. Syst. – volume: 16 start-page: 841 year: 2018 end-page: 850 ident: bib31 article-title: A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data publication-title: IEEE ACM Trans. Comput. Biol. Bioinform – volume: 10 start-page: 764 year: 2019 ident: bib53 article-title: A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer publication-title: Nat. Commun. – volume: 99 start-page: 466 year: 2002 end-page: 473 ident: bib87 article-title: An artificial neural network considerably improves the diagnostic power of percent free prostate-specific antigen in prostate cancer diagnosis: results of a 5-year investigation publication-title: Int. J. Cancer – volume: 108 start-page: 1 year: 2017 end-page: 8 ident: bib49 article-title: Prediction of lung cancer patient survival via supervised machine learning classification techniques publication-title: Int. J. Med. Inform. – volume: 119 start-page: e842 year: 2018 end-page: e847 ident: bib57 article-title: Development of machine learning algorithms for prediction of 5-year spinal chordoma survival publication-title: World Neurosurg. – volume: 53 start-page: 962 year: 2017 end-page: 970 e910 ident: bib15 article-title: Prognostic tools in patients with advanced cancer: a systematic review publication-title: J. Pain Symptom Manag. – start-page: 1239 year: 2015 end-page: 1243 ident: bib3 article-title: Biological intensity-modulated radiotherapy plus neoadjuvant chemotherapy for multiple peritoneal metastases of ovarian cancer: a case report publication-title: Oncol. Lett. – volume: 44 start-page: 1146 year: 2008 end-page: 1156 ident: bib14 article-title: Predicting survival in patients with advanced disease publication-title: Eur. J. Cancer – start-page: 541 year: 2007 end-page: 546 ident: bib61 article-title: A clustering-based approach to predict outcome in cancer patients publication-title: Sixth International Conference on Machine Learning and Applications (ICMLA 2007) – volume: 145 start-page: 2873 year: 2019 end-page: 2883 ident: bib99 article-title: Relationship of circulating tumor cells and Epstein-Barr virus DNA to progression-free survival and overall survival in metastatic nasopharyngeal carcinoma patients publication-title: Int. J. Cancer – volume: 15 year: 2019 ident: bib8 article-title: A data-driven interactome of synergistic genes improves network-based cancer outcome prediction publication-title: PLoS Comput. Biol. – volume: 53 start-page: 962 year: 2017 end-page: 970 e910 ident: bib2 article-title: Prognostic tools in patients with advanced cancer: a systematic review publication-title: J. Pain Symptom Manag. – volume: 2009 start-page: 632786 year: 2009 ident: bib18 article-title: Developing prognostic systems of cancer patients by ensemble clustering publication-title: J. Biomed. Biotechnol. – volume: 26 start-page: 2194 year: 2013 end-page: 2205 ident: bib33 article-title: Robust predictive model for evaluating breast cancer survivability publication-title: Eng. Appl. Artif. Intell. – start-page: 559401 year: 2019 ident: bib110 article-title: A Deep Learning Approach for Pan-Renal Cell Carcinoma Classification and Survival Prediction from Histopathology Images – volume: 12 start-page: 1941002 year: 2019 ident: bib5 article-title: Nano-loaded natural killer cells as carriers of indocyanine green for synergetic cancer immunotherapy and phototherapy publication-title: J. Innov. Opt. Health Sci. – volume: 375 start-page: 1216 year: 2016 end-page: 1219 ident: bib121 article-title: Predicting the future - big data, machine learning, and clinical medicine publication-title: N. Engl. J. Med. – volume: 144 start-page: 1697 year: 2019 end-page: 1703 ident: bib100 article-title: Prognostic significance of microsatellite-instability in gastric and gastroesophageal junction cancer patients undergoing neoadjuvant chemotherapy publication-title: Int. J. Cancer – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib89 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 20 start-page: 193 year: 2019 end-page: 201 ident: bib70 article-title: Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study publication-title: Lancet Oncol. – volume: 85 start-page: 109 year: 2019 end-page: 119 ident: bib80 article-title: Automated pulmonary nodule detection in CT images using deep convolutional neural networks publication-title: Pattern Recognit. – volume: 555 start-page: 446 year: 2018 end-page: 447 ident: bib13 article-title: Machine learning classifies cancer publication-title: Nature – volume: 89 start-page: 816 year: 2019 end-page: 817 ident: bib74 article-title: Artificial intelligence for early gastric cancer: early promise and the path ahead publication-title: Gastrointest. Endosc. – start-page: 928 year: 2012 end-page: 931 ident: bib62 article-title: A gene signature for breast cancer prognosis using support vector machine publication-title: 2012 5th International Conference on BioMedical Engineering and Informatics – volume: 16 year: 2019 ident: bib113 article-title: Individual prognosis at diagnosis in nonmetastatic prostate cancer: development and external validation of the PREDICT Prostate multivariable model publication-title: PLoS Med. – volume: 23 start-page: 30 year: 2007 end-page: 37 ident: bib35 article-title: Improved breast cancer prognosis through the combination of clinical and genetic markers publication-title: Bioinformatics – volume: 26 start-page: 195 year: 2015 end-page: 202 ident: bib78 article-title: Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box publication-title: Med. Image Anal. – volume: 290 start-page: 218 year: 2018 end-page: 228 ident: bib82 article-title: Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs publication-title: Radiology – volume: 50 start-page: 230 year: 2018 end-page: 240 ident: bib75 article-title: Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer publication-title: Endoscopy – volume: 69 start-page: 7 year: 2019 end-page: 34 ident: bib1 article-title: Cancer statistics, 2019 publication-title: CA A Cancer J. Clin. – volume: 142 start-page: 1277 year: 2018 end-page: 1284 ident: bib83 article-title: Looking for the best immune-checkpoint inhibitor in pre-treated NSCLC patients: an indirect comparison between nivolumab, pembrolizumab and atezolizumab publication-title: Int. J. Cancer – volume: 14 year: 2018 ident: bib29 article-title: Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data publication-title: PLoS Comput. Biol. – volume: 375 start-page: 1216 year: 2016 end-page: 1219 ident: bib6 article-title: Predicting the future - big data, machine learning, and clinical medicine publication-title: N. Engl. J. Med. – volume: vol. 15 start-page: 1721 year: 2015 end-page: 1730 ident: bib108 article-title: Intelligible models for HealthCare: predicting pneumonia risk and hospital 30-day readmission publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD – volume: 18 start-page: 500 year: 2018 end-page: 510 ident: bib10 article-title: Artificial intelligence in radiology publication-title: Nat. Rev. Cancer – volume: 43 start-page: 404 year: 2016 end-page: 413 ident: bib67 article-title: Predictive value of (18)F-FDG PET/CT in restaging patients affected by ovarian carcinoma: a multicentre study publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 9 start-page: 3577 year: 2018 end-page: 3582 ident: bib85 article-title: Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma publication-title: J. Cancer – volume: 17 year: 2018 ident: bib40 article-title: Cancer subtype discovery using prognosis-enhanced neural network classifier in multigenomic data publication-title: Technol. Cancer Res. Treat. – volume: 63 start-page: 119 year: 2015 end-page: 133 ident: bib37 article-title: Application of a two-stage fuzzy neural network to a prostate cancer prognosis system publication-title: Artif. Intell. Med. – volume: 11 start-page: 328 year: 2019 ident: bib103 article-title: Breast cancer prognosis using a machine learning approach publication-title: Cancers – volume: 132 start-page: 171 year: 2019 end-page: 177 ident: bib95 article-title: Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer publication-title: Radiother. Oncol. – volume: 16 start-page: 150 year: 2018 ident: bib118 article-title: From hype to reality: data science enabling personalized medicine publication-title: BMC Med. – volume: 59 year: 2018 ident: bib50 article-title: Comparison of machine learning algorithms for building prognostic models in non-small cell lung cancer using clinical and radiomics features from 18F-FDG PET/CT images publication-title: J. Nucl. Med. – volume: 24 start-page: 4429 year: 2018 end-page: 4436 ident: bib55 article-title: Machine learning-based radiomics for molecular subtyping of gliomas publication-title: Clin. Cancer Res. – volume: 98 year: 2019 ident: bib104 article-title: Exploring the survival prognosis of lung adenocarcinoma based on the cancer genome atlas database using artificial neural network publication-title: Medicine – volume: 7 start-page: 12474 year: 2016 ident: bib51 article-title: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features publication-title: Nat. Commun. – volume: 20 start-page: 15 year: 2014 end-page: 24 ident: bib64 article-title: A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients publication-title: Appl. Soft Comput. – volume: 40 year: 2011 ident: bib43 article-title: Application of artificial neural network in predicting the survival rate of gastric cancer patients publication-title: Iran. J. Public Health – volume: 144 start-page: 631 year: 2019 end-page: 640 ident: bib102 article-title: CYPOR is a novel and independent prognostic biomarker of recurrence-free survival in triple-negative breast cancer patients publication-title: Int. J. Cancer – volume: 378 start-page: 1269 year: 2018 end-page: 1271 ident: bib120 article-title: Bedside computer vision–moving artificial intelligence from driver assistance to patient safety publication-title: N. Engl. J. Med. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib88 article-title: Deep learning publication-title: Nature – volume: 458 start-page: 39 year: 2019 end-page: 45 ident: bib22 article-title: Network-based cancer precision medicine: a new emerging paradigm publication-title: Cancer Lett. – volume: 12 start-page: 2659 year: 2011 end-page: 2664 ident: bib48 article-title: Feature selection methods for optimizing clinicopathologic input variables in oral cancer prognosis publication-title: Asian Pac. J. Cancer Prev. APJCP – volume: 89 start-page: 806 year: 2019 end-page: 815 e801 ident: bib76 article-title: Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy publication-title: Gastrointest. Endosc. – start-page: 130 year: 2007 ident: bib32 article-title: Application of artificial neural network-based survival analysis on two breast cancer datasets publication-title: AMIA Annual Symposium Proceedings – volume: 4 start-page: 513 year: 2019 end-page: 521 ident: bib96 article-title: From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs publication-title: Ophthalmology – volume: 12 start-page: 35 year: 2019 ident: bib114 article-title: Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis publication-title: J. Ovarian Res. – volume: 37 start-page: 2113 year: 2017 end-page: 2131 ident: bib105 article-title: Deep learning: a primer for radiologists publication-title: RadioGraphics – volume: 318 start-page: 517 year: 2017 end-page: 518 ident: bib116 article-title: Unintended consequences of machine learning in medicine publication-title: J. Am. Med. Assoc. – volume: 10 start-page: 249 year: 2019 end-page: 256 ident: bib98 article-title: Log odds could better predict survival in muscle-invasive bladder cancer patients compared with pN and lymph node ratio publication-title: J. Cancer – volume: 350 start-page: 469 year: 1997 end-page: 472 ident: bib45 article-title: Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions publication-title: The Lancet – volume: 59 start-page: 892 year: 2018 end-page: 899 ident: bib56 article-title: Glioma survival prediction with combined analysis of in vivo (11)C-met PET features, ex vivo features, and patient features by supervised machine learning publication-title: J. Nucl. Med. – volume: 20 year: 2019 ident: bib71 article-title: Deep convolutional neural network models for the diagnosis of thyroid cancer publication-title: Lancet Oncol. – volume: 144 start-page: 1867 year: 2019 end-page: 1876 ident: bib115 article-title: Potentially functional genetic variants in the complement-related immunity gene-set are associated with non-small cell lung cancer survival publication-title: Int. J. Cancer – volume: 132 start-page: 1920 year: 2015 end-page: 1930 ident: bib11 article-title: Machine learning in medicine publication-title: Circulation – volume: 1 start-page: 757 year: 2013 end-page: 760 ident: bib44 article-title: Comparison between artificial neural network and Cox regression model in predicting the survival rate of gastric cancer patients publication-title: Biomed. Rep. – volume: 475 start-page: 489 year: 2019 end-page: 497 ident: bib101 article-title: Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool publication-title: Virchows Arch. – volume: 19 start-page: 40 year: 2018 end-page: 50 ident: bib19 article-title: Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy publication-title: Lancet Oncol. – volume: 116 start-page: 340 year: 2019 end-page: 350 ident: bib39 article-title: A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis publication-title: Expert Syst. Appl. – volume: 143 start-page: 859 year: 2018 end-page: 868 ident: bib92 article-title: Artificial intelligence-based breast cancer nodal metastasis detection publication-title: Arch. Pathol. Lab Med. – volume: 20 start-page: 1385 year: 2018 end-page: 1402 ident: bib54 article-title: Use of nonlinear features for automated characterization of suspicious ovarian tumors using ultrasound images in fuzzy forest framework publication-title: Int. J. Fuzzy Syst. – volume: 42 start-page: 102 year: 2018 end-page: 110 ident: bib79 article-title: Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT publication-title: Inf. Fusion – volume: 38 start-page: 686 year: 2019 end-page: 696 ident: bib77 article-title: Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets publication-title: IEEE Trans. Med. Imaging – volume: 110 start-page: 458 year: 2019 end-page: 467 ident: bib41 article-title: Neural precursor cell expressed, developmentally downregulated 8 promotes tumor progression and predicts poor prognosis of patients with bladder cancer publication-title: Cancer Sci. – volume: 143 start-page: 3038 year: 2018 end-page: 3040 ident: bib109 article-title: Comparison between PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab, and atezolizumab) in pretreated NSCLC patients: evidence from a Bayesian network model publication-title: Int. J. Cancer – volume: 7 start-page: 15415 year: 2017 ident: bib94 article-title: Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning publication-title: Sci. Rep. – volume: 278 start-page: 563 year: 2015 end-page: 577 ident: bib7 article-title: Radiomics images are more than pictures, They are data publication-title: Radiology – volume: 473 start-page: 3112 year: 2015 end-page: 3121 ident: bib58 article-title: Marshall urist young investigator award: prognostication in patients with long bone metastases: does a boosting algorithm improve survival estimates? publication-title: Clin. Orthop. Relat. Res. – volume: 451 start-page: 128 year: 2019 end-page: 135 ident: bib21 article-title: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers publication-title: Cancer Lett. – volume: 22 start-page: e184 year: 2006 end-page: 190 ident: bib36 article-title: Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks publication-title: Bioinformatics – volume: 29 start-page: 1836 year: 2018 end-page: 1842 ident: bib60 article-title: I. Reader study level, I.I.G. level, Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists publication-title: Ann. Oncol. – volume: 97 start-page: 304 year: 2017 end-page: 311 ident: bib63 article-title: Stage-specific predictive models for breast cancer survivability publication-title: Int. J. Med. Inform. – volume: 7 start-page: 44709 year: 2019 end-page: 44720 ident: bib91 article-title: A deep learning approach for breast invasive ductal carcinoma detection and lymphoma multi-classification in histological images publication-title: IEEE Access – volume: 11 start-page: 1140 year: 2019 ident: bib23 article-title: Mining prognosis index of brain metastases using artificial intelligence publication-title: Cancers – volume: 14 year: 2019 ident: bib42 article-title: Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients publication-title: PLoS One – volume: 8 start-page: 3261 year: 2017 end-page: 3267 ident: bib38 article-title: Improvement in prediction of prostate cancer prognosis with somatic mutational signatures publication-title: J. Cancer – start-page: 141 year: 2008 end-page: 152 ident: bib27 article-title: wFDT weighted fuzzy decision trees for prognosis of breast cancer survivability publication-title: Proceedings of the 7th Australasian Data Mining Conference – volume: 25 start-page: 44 year: 2019 end-page: 56 ident: bib117 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat. Med. – volume: 30 start-page: 1655 year: 2017 end-page: 1665 ident: bib59 article-title: An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival publication-title: Mod. Pathol. – volume: 155 start-page: 199 year: 2018 end-page: 208 ident: bib65 article-title: Breast cancer data analysis for survivability studies and prediction publication-title: Comput. Methods Progr. Biomed. – volume: 143 start-page: 3038 year: 2018 end-page: 3040 ident: bib84 article-title: Comparison between PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab, and atezolizumab) in pretreated NSCLC patients: evidence from a Bayesian network model publication-title: Int. J. Cancer – volume: 34 start-page: 113 year: 2005 end-page: 127 ident: bib34 article-title: Predicting breast cancer survivability: a comparison of three data mining methods publication-title: Artif. Intell. Med. – volume: 74 start-page: 150 year: 2015 end-page: 161 ident: bib17 article-title: Predicting overall survivability in comorbidity of cancers: a data mining approach publication-title: Decis. Support Syst. – volume: 17 start-page: 659 year: 2017 end-page: 675 ident: bib9 article-title: Engineering and physical sciences in oncology: challenges and opportunities publication-title: Nat. Rev. Cancer – volume: 376 start-page: 2507 year: 2017 ident: bib107 article-title: Machine learning and prediction in medicine—beyond the peak of inflated expectations publication-title: N. Engl. J. Med. – volume: 22 start-page: 3970 year: 2015 end-page: 3975 ident: bib26 article-title: Artificial intelligence systems as prognostic and predictive tools in ovarian cancer publication-title: Ann. Surg. Oncol. – volume: 474 start-page: 106 year: 2019 end-page: 124 ident: bib46 article-title: A tree ensemble-based two-stage model for advanced-stage colorectal cancer survival prediction publication-title: Inf. Sci. – volume: 5 start-page: 157 year: 2019 end-page: 169 ident: bib69 article-title: Rise of the machines: advances in deep learning for cancer diagnosis publication-title: Trends Cancer – volume: 9 start-page: 3971 year: 2018 ident: bib122 article-title: Multiple machine learnings revealed similar predictive accuracy for prognosis of pnets from the surveillance, epidemiology, and end result database publication-title: J. Canc. – volume: 13 start-page: 8 year: 2015 end-page: 17 ident: bib16 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput. Struct. Biotechnol. J. – volume: 25 start-page: 3266 year: 2019 end-page: 3275 ident: bib93 article-title: Deep learning predicts lung cancer treatment response from serial medical imaging publication-title: Clin. Cancer Res. – volume: 7 start-page: 18050 year: 2019 end-page: 18060 ident: bib66 article-title: Analytics of heterogeneous breast cancer data using neuroevolution publication-title: IEEE Access – volume: 8 start-page: 3395 year: 2018 ident: bib47 article-title: Deep learning based tissue analysis predicts outcome in colorectal cancer publication-title: Sci. Rep. – year: 2019 ident: bib4 article-title: Nanomedicine-combined immunotherapy for cancer publication-title: Curr. Med. Chem. – volume: 559 start-page: 400 year: 2018 end-page: 404 ident: bib111 article-title: Prediction of acute myeloid leukaemia risk in healthy individuals publication-title: Nature – volume: 14 start-page: 2065 year: 2018 end-page: 2072 ident: bib25 article-title: Comparison of prognostic indices in NSCLC patients with brain metastases after radiosurgery publication-title: Int. J. Biol. Sci. – volume: 10 year: 2019 ident: bib30 article-title: Paclitaxel response can Be predicted with interpretable multi-variate classifiers exploiting DNA-methylation and miRNA data publication-title: Front. Genet. – volume: 48 start-page: 198 year: 2018 end-page: 204 ident: bib86 article-title: Characterization of adrenal lesions on unenhanced MRI using texture analysis: a machine-learning approach publication-title: J. Magn. Reson. Imaging – volume: 116 start-page: 340 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib39 article-title: A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.040 – volume: 38 start-page: 686 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib77 article-title: Breast cancer diagnosis in digital breast tomosynthesis: effects of training sample size on multi-stage transfer learning using deep neural nets publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2870343 – volume: 278 start-page: 563 year: 2015 ident: 10.1016/j.canlet.2019.12.007_bib7 article-title: Radiomics images are more than pictures, They are data publication-title: Radiology – volume: 555 start-page: 446 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib13 article-title: Machine learning classifies cancer publication-title: Nature doi: 10.1038/d41586-018-02881-7 – volume: 290 start-page: 218 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib82 article-title: Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs publication-title: Radiology doi: 10.1148/radiol.2018180237 – volume: 142 start-page: 1277 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib83 article-title: Looking for the best immune-checkpoint inhibitor in pre-treated NSCLC patients: an indirect comparison between nivolumab, pembrolizumab and atezolizumab publication-title: Int. J. Cancer doi: 10.1002/ijc.31136 – volume: 89 start-page: 806 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib76 article-title: Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2018.11.011 – volume: 14 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib29 article-title: Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006076 – start-page: 928 year: 2012 ident: 10.1016/j.canlet.2019.12.007_bib62 article-title: A gene signature for breast cancer prognosis using support vector machine – volume: 50 start-page: 230 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib75 article-title: Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer publication-title: Endoscopy doi: 10.1055/s-0043-122385 – volume: 25 start-page: 3266 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib93 article-title: Deep learning predicts lung cancer treatment response from serial medical imaging publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-2495 – volume: 10 start-page: 764 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib53 article-title: A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer publication-title: Nat. Commun. doi: 10.1038/s41467-019-08718-9 – volume: 5 start-page: 157 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib69 article-title: Rise of the machines: advances in deep learning for cancer diagnosis publication-title: Trends Cancer doi: 10.1016/j.trecan.2019.02.002 – volume: 155 start-page: 199 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib65 article-title: Breast cancer data analysis for survivability studies and prediction publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2017.12.011 – volume: 25 start-page: 44 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib117 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 – volume: 14 start-page: 2065 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib25 article-title: Comparison of prognostic indices in NSCLC patients with brain metastases after radiosurgery publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.28608 – volume: 316 start-page: 2353 year: 2016 ident: 10.1016/j.canlet.2019.12.007_bib12 article-title: Adapting to artificial intelligence: radiologists and pathologists as information specialists publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2016.17438 – volume: 63 start-page: 119 year: 2015 ident: 10.1016/j.canlet.2019.12.007_bib37 article-title: Application of a two-stage fuzzy neural network to a prostate cancer prognosis system publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2014.12.008 – volume: 53 start-page: 962 issue: 5 year: 2017 ident: 10.1016/j.canlet.2019.12.007_bib2 article-title: Prognostic tools in patients with advanced cancer: a systematic review publication-title: J. Pain Symptom Manag. doi: 10.1016/j.jpainsymman.2016.12.330 – start-page: 1239 year: 2015 ident: 10.1016/j.canlet.2019.12.007_bib3 article-title: Biological intensity-modulated radiotherapy plus neoadjuvant chemotherapy for multiple peritoneal metastases of ovarian cancer: a case report publication-title: Oncol. Lett. doi: 10.3892/ol.2014.2820 – volume: 24 start-page: 4429 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib55 article-title: Machine learning-based radiomics for molecular subtyping of gliomas publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-3445 – volume: 20 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib73 article-title: Deep convolutional neural network models for the diagnosis of thyroid cancer publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(19)30086-5 – volume: 119 start-page: e842 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib57 article-title: Development of machine learning algorithms for prediction of 5-year spinal chordoma survival publication-title: World Neurosurg. doi: 10.1016/j.wneu.2018.07.276 – volume: 451 start-page: 128 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib21 article-title: Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.02.054 – volume: 25 start-page: 30 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib97 article-title: The practical implementation of artificial intelligence technologies in medicine publication-title: Nat. Med. doi: 10.1038/s41591-018-0307-0 – volume: 144 start-page: 1867 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib115 article-title: Potentially functional genetic variants in the complement-related immunity gene-set are associated with non-small cell lung cancer survival publication-title: Int. J. Cancer doi: 10.1002/ijc.31896 – volume: 474 start-page: 106 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib46 article-title: A tree ensemble-based two-stage model for advanced-stage colorectal cancer survival prediction publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.09.046 – volume: 20 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib71 article-title: Deep convolutional neural network models for the diagnosis of thyroid cancer publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(19)30025-7 – volume: 24 start-page: 1559 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib81 article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 – volume: 375 start-page: 1216 year: 2016 ident: 10.1016/j.canlet.2019.12.007_bib121 article-title: Predicting the future - big data, machine learning, and clinical medicine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1606181 – volume: 20 start-page: 15 year: 2014 ident: 10.1016/j.canlet.2019.12.007_bib64 article-title: A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.09.014 – volume: 475 start-page: 489 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib101 article-title: Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool publication-title: Virchows Arch. doi: 10.1007/s00428-019-02642-5 – volume: 7 start-page: 18050 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib66 article-title: Analytics of heterogeneous breast cancer data using neuroevolution publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897078 – volume: 30 start-page: 1655 year: 2017 ident: 10.1016/j.canlet.2019.12.007_bib59 article-title: An oral cavity squamous cell carcinoma quantitative histomorphometric-based image classifier of nuclear morphology can risk stratify patients for disease-specific survival publication-title: Mod. Pathol. doi: 10.1038/modpathol.2017.98 – volume: 69 start-page: 7 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib1 article-title: Cancer statistics, 2019 publication-title: CA A Cancer J. Clin. – volume: 44 start-page: 1146 year: 2008 ident: 10.1016/j.canlet.2019.12.007_bib14 article-title: Predicting survival in patients with advanced disease publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2008.02.030 – volume: 89 start-page: 816 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib74 article-title: Artificial intelligence for early gastric cancer: early promise and the path ahead publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2018.12.019 – volume: 7 start-page: 15415 year: 2017 ident: 10.1016/j.canlet.2019.12.007_bib94 article-title: Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-017-15720-y – start-page: 1896 year: 2016 ident: 10.1016/j.canlet.2019.12.007_bib28 article-title: A neural network based breast cancer prognosis model with PCA processed features – start-page: 141 year: 2008 ident: 10.1016/j.canlet.2019.12.007_bib27 article-title: wFDT weighted fuzzy decision trees for prognosis of breast cancer survivability – volume: 20 start-page: 193 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib70 article-title: Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(18)30762-9 – volume: 108 start-page: 1 year: 2017 ident: 10.1016/j.canlet.2019.12.007_bib49 article-title: Prediction of lung cancer patient survival via supervised machine learning classification techniques publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2017.09.013 – volume: 1 start-page: 757 year: 2013 ident: 10.1016/j.canlet.2019.12.007_bib44 article-title: Comparison between artificial neural network and Cox regression model in predicting the survival rate of gastric cancer patients publication-title: Biomed. Rep. doi: 10.3892/br.2013.140 – volume: 14 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib42 article-title: Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients publication-title: PLoS One doi: 10.1371/journal.pone.0210976 – volume: 48 start-page: 198 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib86 article-title: Characterization of adrenal lesions on unenhanced MRI using texture analysis: a machine-learning approach publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25954 – volume: 53 start-page: 962 year: 2017 ident: 10.1016/j.canlet.2019.12.007_bib15 article-title: Prognostic tools in patients with advanced cancer: a systematic review publication-title: J. Pain Symptom Manag. doi: 10.1016/j.jpainsymman.2016.12.330 – volume: 37 start-page: 2113 year: 2017 ident: 10.1016/j.canlet.2019.12.007_bib105 article-title: Deep learning: a primer for radiologists publication-title: RadioGraphics doi: 10.1148/rg.2017170077 – volume: 2009 start-page: 632786 year: 2009 ident: 10.1016/j.canlet.2019.12.007_bib18 article-title: Developing prognostic systems of cancer patients by ensemble clustering publication-title: J. Biomed. Biotechnol. – volume: 16 start-page: 150 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib118 article-title: From hype to reality: data science enabling personalized medicine publication-title: BMC Med. doi: 10.1186/s12916-018-1122-7 – volume: 350 start-page: 469 year: 1997 ident: 10.1016/j.canlet.2019.12.007_bib45 article-title: Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions publication-title: The Lancet doi: 10.1016/S0140-6736(96)11196-X – volume: 16 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib113 article-title: Individual prognosis at diagnosis in nonmetastatic prostate cancer: development and external validation of the PREDICT Prostate multivariable model publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002758 – volume: 376 start-page: 2507 year: 2017 ident: 10.1016/j.canlet.2019.12.007_bib107 article-title: Machine learning and prediction in medicine—beyond the peak of inflated expectations publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1702071 – volume: 25 start-page: 1153 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib68 article-title: ASO author reflections: use of the survival recurrent network for prediction of overall survival in patients with gastric cancer publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-018-6343-7 – start-page: 11 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib52 article-title: Developing a prognostic gene panel of epithelial ovarian cancer patients by a machine learning model publication-title: Cancers – volume: 42 start-page: 139 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib106 article-title: A survey of data mining and deep learning in bioinformatics publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1003-9 – volume: 378 start-page: 1269 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib120 article-title: Bedside computer vision–moving artificial intelligence from driver assistance to patient safety publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1716891 – volume: 7 start-page: 44709 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib91 article-title: A deep learning approach for breast invasive ductal carcinoma detection and lymphoma multi-classification in histological images publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2908724 – volume: 11 start-page: 1140 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib23 article-title: Mining prognosis index of brain metastases using artificial intelligence publication-title: Cancers doi: 10.3390/cancers11081140 – volume: 42 start-page: 102 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib79 article-title: Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.10.005 – volume: 26 start-page: 2194 year: 2013 ident: 10.1016/j.canlet.2019.12.007_bib33 article-title: Robust predictive model for evaluating breast cancer survivability publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.06.013 – start-page: 559401 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib110 – volume: vol. 15 start-page: 1721 year: 2015 ident: 10.1016/j.canlet.2019.12.007_bib108 article-title: Intelligible models for HealthCare: predicting pneumonia risk and hospital 30-day readmission – volume: 4 start-page: 513 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib96 article-title: From machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.12.033 – volume: 12 start-page: 35 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib114 article-title: Identification of significant genes with poor prognosis in ovarian cancer via bioinformatical analysis publication-title: J. Ovarian Res. doi: 10.1186/s13048-019-0508-2 – volume: 8 start-page: 3395 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib47 article-title: Deep learning based tissue analysis predicts outcome in colorectal cancer publication-title: Sci. Rep. doi: 10.1038/s41598-018-21758-3 – volume: 11 start-page: 328 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib103 article-title: Breast cancer prognosis using a machine learning approach publication-title: Cancers doi: 10.3390/cancers11030328 – volume: 559 start-page: 400 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib111 article-title: Prediction of acute myeloid leukaemia risk in healthy individuals publication-title: Nature doi: 10.1038/s41586-018-0317-6 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.canlet.2019.12.007_bib88 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 22 start-page: e184 year: 2006 ident: 10.1016/j.canlet.2019.12.007_bib36 article-title: Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl230 – volume: 10 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib30 article-title: Paclitaxel response can Be predicted with interpretable multi-variate classifiers exploiting DNA-methylation and miRNA data publication-title: Front. Genet. doi: 10.3389/fgene.2019.01041 – volume: 59 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib50 article-title: Comparison of machine learning algorithms for building prognostic models in non-small cell lung cancer using clinical and radiomics features from 18F-FDG PET/CT images publication-title: J. Nucl. Med. – volume: 15 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib8 article-title: A data-driven interactome of synergistic genes improves network-based cancer outcome prediction publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006657 – volume: 16 start-page: 841 issue: 3 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib31 article-title: A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data publication-title: IEEE ACM Trans. Comput. Biol. Bioinform doi: 10.1109/TCBB.2018.2806438 – volume: 7 start-page: 12474 year: 2016 ident: 10.1016/j.canlet.2019.12.007_bib51 article-title: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features publication-title: Nat. Commun. doi: 10.1038/ncomms12474 – start-page: 1 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib20 article-title: Introduction to artificial intelligence in medicine publication-title: Minim. Invasive Ther. Allied Technol. – volume: 40 year: 2011 ident: 10.1016/j.canlet.2019.12.007_bib43 article-title: Application of artificial neural network in predicting the survival rate of gastric cancer patients publication-title: Iran. J. Public Health – volume: 25 start-page: 44 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib72 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 – volume: 43 start-page: 404 year: 2016 ident: 10.1016/j.canlet.2019.12.007_bib67 article-title: Predictive value of (18)F-FDG PET/CT in restaging patients affected by ovarian carcinoma: a multicentre study publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-015-3184-5 – volume: 74 start-page: 150 year: 2015 ident: 10.1016/j.canlet.2019.12.007_bib17 article-title: Predicting overall survivability in comorbidity of cancers: a data mining approach publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2015.04.003 – volume: 458 start-page: 39 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib22 article-title: Network-based cancer precision medicine: a new emerging paradigm publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.05.015 – volume: 18 start-page: 500 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib10 article-title: Artificial intelligence in radiology publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0016-5 – volume: 9 start-page: 3577 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib85 article-title: Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma publication-title: J. Cancer doi: 10.7150/jca.26356 – volume: 17 start-page: 659 year: 2017 ident: 10.1016/j.canlet.2019.12.007_bib9 article-title: Engineering and physical sciences in oncology: challenges and opportunities publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2017.83 – volume: 318 start-page: 517 year: 2017 ident: 10.1016/j.canlet.2019.12.007_bib116 article-title: Unintended consequences of machine learning in medicine publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2017.7797 – volume: 12 start-page: 2659 year: 2011 ident: 10.1016/j.canlet.2019.12.007_bib48 article-title: Feature selection methods for optimizing clinicopathologic input variables in oral cancer prognosis publication-title: Asian Pac. J. Cancer Prev. APJCP – volume: 143 start-page: 3038 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib109 article-title: Comparison between PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab, and atezolizumab) in pretreated NSCLC patients: evidence from a Bayesian network model publication-title: Int. J. Cancer doi: 10.1002/ijc.31733 – start-page: 541 year: 2007 ident: 10.1016/j.canlet.2019.12.007_bib61 article-title: A clustering-based approach to predict outcome in cancer patients – volume: 17 start-page: 149 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib24 article-title: 18F-FDG-PET/CT-guided intensity-modulated radiotherapy for 42 FIGO III/IV ovarian cancer: a retrospective study publication-title: Oncol. Lett. – volume: 19 start-page: 40 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib19 article-title: Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(17)30904-X – volume: 375 start-page: 1216 year: 2016 ident: 10.1016/j.canlet.2019.12.007_bib6 article-title: Predicting the future - big data, machine learning, and clinical medicine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1606181 – volume: 22 start-page: 3970 year: 2015 ident: 10.1016/j.canlet.2019.12.007_bib26 article-title: Artificial intelligence systems as prognostic and predictive tools in ovarian cancer publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-015-4475-6 – volume: 145 start-page: 2873 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib99 article-title: Relationship of circulating tumor cells and Epstein-Barr virus DNA to progression-free survival and overall survival in metastatic nasopharyngeal carcinoma patients publication-title: Int. J. Cancer doi: 10.1002/ijc.32380 – volume: 12 start-page: 1941002 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib5 article-title: Nano-loaded natural killer cells as carriers of indocyanine green for synergetic cancer immunotherapy and phototherapy publication-title: J. Innov. Opt. Health Sci. doi: 10.1142/S1793545819410025 – volume: 10 start-page: 249 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib98 article-title: Log odds could better predict survival in muscle-invasive bladder cancer patients compared with pN and lymph node ratio publication-title: J. Cancer doi: 10.7150/jca.27399 – volume: 132 start-page: 171 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib95 article-title: Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2018.10.019 – volume: 132 start-page: 1920 year: 2015 ident: 10.1016/j.canlet.2019.12.007_bib11 article-title: Machine learning in medicine publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.001593 – volume: 542 start-page: 115 year: 2017 ident: 10.1016/j.canlet.2019.12.007_bib89 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 98 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib104 article-title: Exploring the survival prognosis of lung adenocarcinoma based on the cancer genome atlas database using artificial neural network publication-title: Medicine – volume: 144 start-page: 1697 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib100 article-title: Prognostic significance of microsatellite-instability in gastric and gastroesophageal junction cancer patients undergoing neoadjuvant chemotherapy publication-title: Int. J. Cancer doi: 10.1002/ijc.32030 – volume: 110 start-page: 458 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib41 article-title: Neural precursor cell expressed, developmentally downregulated 8 promotes tumor progression and predicts poor prognosis of patients with bladder cancer publication-title: Cancer Sci. doi: 10.1111/cas.13865 – volume: 99 start-page: 466 year: 2002 ident: 10.1016/j.canlet.2019.12.007_bib87 article-title: An artificial neural network considerably improves the diagnostic power of percent free prostate-specific antigen in prostate cancer diagnosis: results of a 5-year investigation publication-title: Int. J. Cancer doi: 10.1002/ijc.10370 – volume: 143 start-page: 859 issue: 7 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib92 article-title: Artificial intelligence-based breast cancer nodal metastasis detection publication-title: Arch. Pathol. Lab Med. doi: 10.5858/arpa.2018-0147-OA – volume: 29 start-page: 1836 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib60 article-title: I. Reader study level, I.I.G. level, Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists publication-title: Ann. Oncol. doi: 10.1093/annonc/mdy166 – volume: 8 start-page: 3261 year: 2017 ident: 10.1016/j.canlet.2019.12.007_bib38 article-title: Improvement in prediction of prostate cancer prognosis with somatic mutational signatures publication-title: J. Cancer doi: 10.7150/jca.21261 – volume: 34 start-page: 113 year: 2005 ident: 10.1016/j.canlet.2019.12.007_bib34 article-title: Predicting breast cancer survivability: a comparison of three data mining methods publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2004.07.002 – year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib4 article-title: Nanomedicine-combined immunotherapy for cancer publication-title: Curr. Med. Chem. – start-page: 130 year: 2007 ident: 10.1016/j.canlet.2019.12.007_bib32 article-title: Application of artificial neural network-based survival analysis on two breast cancer datasets – volume: 473 start-page: 3112 year: 2015 ident: 10.1016/j.canlet.2019.12.007_bib58 article-title: Marshall urist young investigator award: prognostication in patients with long bone metastases: does a boosting algorithm improve survival estimates? publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-015-4446-z – volume: 83 start-page: 203 year: 1999 ident: 10.1016/j.canlet.2019.12.007_bib90 article-title: Expression of p34cdc2 and cyclins A and B compared to other proliferative features of non‐Hodgkin's lymphomas A multivariate cluster analysis publication-title: Int. J. Cancer doi: 10.1002/(SICI)1097-0215(19991008)83:2<203::AID-IJC10>3.0.CO;2-0 – volume: 23 start-page: 30 year: 2007 ident: 10.1016/j.canlet.2019.12.007_bib35 article-title: Improved breast cancer prognosis through the combination of clinical and genetic markers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl543 – volume: 97 start-page: 304 year: 2017 ident: 10.1016/j.canlet.2019.12.007_bib63 article-title: Stage-specific predictive models for breast cancer survivability publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2016.11.001 – volume: 284 start-page: 603 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib119 article-title: eDoctor: machine learning and the future of medicine publication-title: J. Intern. Med. doi: 10.1111/joim.12822 – volume: 20 start-page: 1385 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib54 article-title: Use of nonlinear features for automated characterization of suspicious ovarian tumors using ultrasound images in fuzzy forest framework publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-018-0456-9 – volume: 26 start-page: 195 year: 2015 ident: 10.1016/j.canlet.2019.12.007_bib78 article-title: Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.08.001 – volume: 144 start-page: 631 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib102 article-title: CYPOR is a novel and independent prognostic biomarker of recurrence-free survival in triple-negative breast cancer patients publication-title: Int. J. Cancer doi: 10.1002/ijc.31798 – volume: 9 start-page: 3971 issue: 21 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib122 article-title: Multiple machine learnings revealed similar predictive accuracy for prognosis of pnets from the surveillance, epidemiology, and end result database publication-title: J. Canc. – volume: 18 start-page: 529 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib112 article-title: How to predict the future publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0046-z – volume: 17 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib40 article-title: Cancer subtype discovery using prognosis-enhanced neural network classifier in multigenomic data publication-title: Technol. Cancer Res. Treat. doi: 10.1177/1533033818790509 – volume: 143 start-page: 3038 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib84 article-title: Comparison between PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab, and atezolizumab) in pretreated NSCLC patients: evidence from a Bayesian network model publication-title: Int. J. Cancer doi: 10.1002/ijc.31733 – volume: 85 start-page: 109 year: 2019 ident: 10.1016/j.canlet.2019.12.007_bib80 article-title: Automated pulmonary nodule detection in CT images using deep convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.07.031 – volume: 13 start-page: 8 year: 2015 ident: 10.1016/j.canlet.2019.12.007_bib16 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.11.005 – volume: 59 start-page: 892 year: 2018 ident: 10.1016/j.canlet.2019.12.007_bib56 article-title: Glioma survival prediction with combined analysis of in vivo (11)C-met PET features, ex vivo features, and patient features by supervised machine learning publication-title: J. Nucl. Med. doi: 10.2967/jnumed.117.202267 |
| SSID | ssj0005475 |
| Score | 2.706169 |
| SecondaryResourceType | review_article |
| Snippet | Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly due to its high recurrence and... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 61 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Bioinformatics Cancer Cancer diagnosis Cancer therapies Computer applications Deep learning Deep neural network Diagnosis Learning algorithms Machine learning Medical diagnosis Medical prognosis Medical research Medical statistics Metastasis Oncology Prognosis Prognosis prediction Software Statistical analysis Statistics Survival |
| Title | Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0304383519306135 https://dx.doi.org/10.1016/j.canlet.2019.12.007 https://www.ncbi.nlm.nih.gov/pubmed/31830558 https://www.proquest.com/docview/2330761464 https://www.proquest.com/docview/2327931927 |
| Volume | 471 |
| WOSCitedRecordID | wos000509630300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7980 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005475 issn: 0304-3835 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYhqa9IL4pjClIvEZaHbtn81ZNm2CCAWJAxYuVD3vLtKVV06L9-Zy_kqKp2njgJWrs2Gn9-_l8vt75CHlrhMmFHMpU8FGVssoMUwmGp1wy0CgNOXVRaT8-wsmJmEzklxCu2Lp0AtA04vpazv4r1FiGYNvQ2X-Au-sUC_Azgo5XhB2vdwJ-PHfuPy4Zx-p5m9bh3EI8t_ZW615Xt-GUgKm_s8aBzzOrjy8bd86qj3mL2VbaVT32wPd06YKB2p4b0fp8Xp_l006ihNLjumPRUfAE_lZf9X4Av85zZ7j9Wq_aInDj2cd2ay8_BaDCLn1ypihgmU-yEkSkP3v9huT2RoQL3JU3-N2tz510dlqfE3cFt9mVA87Kon3ORb-Odd6FsWqDbFHgEmXd1vjD4eS4d_1BDsYwSufrd_OlO2Q7drNOY1m3I3GayelD8iBsKZKxp8Ijck83j8n2p-A08YT87BmRrDICbxLPiKRjRIKQJx0j3iV_8cFV9nx4Sr4fHZ4evE9DPo20ZCxbpGCGFStMAVRoKc2-0BnACGelpCUb0arIWc6gNKaCgnHU-_KyqjLgmoI2qOdnz8hmM230C5JQWUCZA2haWscqXgBUWvMcaJVJ1IsGJItjpspw2LzNeXKpolfhhfKDruygqyFVOOgDknatZv6wlVue5xEOFQOJcelTyKlb2kHXLiiaXoG8Q8vdiLoKc75VNMusNZCN2IC86apRTNv_3vJGT5f2GYorIW6nsIvnni3dT4xEe7m25hXZ6afbLtlczJf6Nblf_l7U7XyPbMBE7AWS_wGFYLhJ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+cancer+diagnosis+and+prognosis%3A+Opportunities+and+challenges&rft.jtitle=Cancer+letters&rft.au=Huang%2C+Shigao&rft.au=Yang%2C+Jie&rft.au=Fong%2C+Simon&rft.au=Zhao%2C+Qi&rft.date=2020-02-28&rft.eissn=1872-7980&rft.volume=471&rft.spage=61&rft_id=info:doi/10.1016%2Fj.canlet.2019.12.007&rft_id=info%3Apmid%2F31830558&rft.externalDocID=31830558 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3835&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3835&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3835&client=summon |