BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems

Most of the existing multi-objective genetic algorithms were developed for unconstrained problems, even though most real-world problems are constrained. Based on the boundary simulation method and trie-tree data structure, this paper proposes a hybrid genetic algorithm to solve constrained multi-obj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research Jg. 40; H. 1; S. 282 - 302
Hauptverfasser: Li, Xiang, Du, Gang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.01.2013
Elsevier
Pergamon Press Inc
Schlagworte:
ISSN:0305-0548, 1873-765X, 0305-0548
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Most of the existing multi-objective genetic algorithms were developed for unconstrained problems, even though most real-world problems are constrained. Based on the boundary simulation method and trie-tree data structure, this paper proposes a hybrid genetic algorithm to solve constrained multi-objective optimization problems (CMOPs). To validate our approach, a series of constrained multi-objective optimization problems are examined, and we compare the test results with those of the well-known NSGA-II algorithm, which is representative of the state of the art in this area. The numerical experiments indicate that the proposed method can clearly simulate the Pareto front for the problems under consideration.
AbstractList Most of the existing multi-objective genetic algorithms were developed for unconstrained problems, even though most real-world problems are constrained. Based on the boundary simulation method and trie-tree data structure, this paper proposes a hybrid genetic algorithm to solve constrained multi-objective optimization problems (CMOPs). To validate our approach, a series of constrained multi-objective optimization problems are examined, and we compare the test results with those of the well-known NSGA-II algorithm, which is representative of the state of the art in this area. The numerical experiments indicate that the proposed method can clearly simulate the Pareto front for the problems under consideration. [PUBLICATION ABSTRACT]
Most of the existing multi-objective genetic algorithms were developed for unconstrained problems, even though most real-world problems are constrained. Based on the boundary simulation method and trie-tree data structure, this paper proposes a hybrid genetic algorithm to solve constrained multi-objective optimization problems (CMOPs). To validate our approach, a series of constrained multi-objective optimization problems are examined, and we compare the test results with those of the well-known NSGA-II algorithm, which is representative of the state of the art in this area. The numerical experiments indicate that the proposed method can clearly simulate the Pareto front for the problems under consideration.
Author Li, Xiang
Du, Gang
Author_xml – sequence: 1
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  email: tju.som.li.xiang@gmail.com
– sequence: 2
  givenname: Gang
  surname: Du
  fullname: Du, Gang
BackLink http://www.econis.eu/PPNSET?PPN=729517470$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26380545$$DView record in Pascal Francis
BookMark eNp9kUFr3DAQhUVIIZu0PyCnGkqhF7say7Lk9rQJbVoI9NAEchOyPE5kbGkraQPpr6-2u4WSQ-Yyl--9Gd47JcfOOyTkHGgFFNqPU2V8qGoKdUVFRaE5IiuQgpWi5XfHZEUZ5SXljTwhpzFONI-oYUXuLn7eXFytPxXr4uGpD3Yo7tFhsqbQ870PNj0sxehDYbyLKWjrcCiW7Zxs6fsJTbKPWPhNsov9rZP1rtgE38-4xNfk1ajniG8O-4zcfv1yc_mtvP5x9f1yfV2apmGpFJqhGNqxrzuApmvMIAYGQnegkUkQBiQVkrdctmM39i0zwnR9jYIOGugA7Ix82Pvmw7-2GJNabDQ4z9qh30YFwFrO22yR0XfP0Mlvg8vfKaBMyhooZZl6f6B0NHoeg3bGRrUJdtHhSdUtkzlHnrm3ew5zNv8Bou44iEbQTIg9YYKPMeCojE1_U9olOeejatedmlTuTu26U1So3F1WwjPlP_eXNJ8P_-S0Hy0GFY1FZ3CwIRelBm9fUP8BvTKxXg
CODEN CMORAP
CitedBy_id crossref_primary_10_1038_s41598_024_65319_3
crossref_primary_10_1016_j_swevo_2017_10_005
crossref_primary_10_1177_1687814015573785
crossref_primary_10_4028_www_scientific_net_AMR_1055_218
crossref_primary_10_1016_j_asoc_2017_06_053
crossref_primary_10_3390_jmse12081313
crossref_primary_10_1016_j_cor_2016_06_001
crossref_primary_10_1016_j_knosys_2013_06_006
crossref_primary_10_1002_int_21749
crossref_primary_10_1016_j_jocs_2015_02_009
crossref_primary_10_1007_s10489_012_0405_5
crossref_primary_10_1016_j_ins_2022_02_047
crossref_primary_10_1007_s11227_016_1806_8
crossref_primary_10_1016_j_swevo_2015_09_007
crossref_primary_10_1007_s11042_016_3957_2
crossref_primary_10_1016_j_cviu_2014_12_007
crossref_primary_10_1109_TCYB_2015_2461651
crossref_primary_10_1016_j_asoc_2017_10_042
crossref_primary_10_1016_j_swevo_2020_100676
Cites_doi 10.1162/106365600568158
10.1016/j.ress.2005.11.018
10.1109/TEVC.2003.817234
10.1007/3-540-45356-3_82
10.1109/CEC.2002.1007013
10.1162/evco.1995.3.1.1
10.1145/1143997.1144179
10.1109/TEVC.2003.810733
10.1007/978-3-540-70928-2_15
10.1016/j.ejor.2004.08.038
10.1145/1143997.1144117
10.1109/4235.797969
10.1016/j.cosrev.2009.07.001
10.1016/S0377-2217(03)00405-3
10.1007/3-540-45356-3_83
10.1016/j.ins.2009.06.035
10.1016/j.engappai.2006.01.010
10.1109/TEVC.2003.810758
10.1109/CEC.2003.1299759
10.1016/S0045-7825(01)00323-1
10.1007/978-0-85729-345-9_29
10.1007/978-3-662-04448-3_2
10.1007/978-3-642-17144-4_1
10.1109/TEVC.2008.2009032
10.1007/s00158-002-0178-2
10.1109/CEC.2000.870274
10.1109/TEVC.2005.861417
10.1016/j.cor.2011.03.019
10.1016/j.cor.2009.02.006
10.1016/j.ejor.2008.09.022
10.1016/S0377-2217(01)00123-0
10.1007/BF01743536
10.1145/367390.367400
10.1162/evco.2004.12.1.77
10.1162/evco.1999.7.3.205
10.1109/3468.650319
10.1016/j.asoc.2009.08.018
10.1007/978-3-540-31880-4_20
10.1162/evco.1996.4.1.1
10.1109/ICSMC.1995.537993
10.1162/evco.1994.2.3.221
10.7551/mitpress/2887.003.0018
10.1109/TEVC.2008.925798
10.1109/TEVC.2003.810068
10.1109/TEVC.2004.826067
10.1007/3-540-44719-9_20
10.1109/CEC.2002.1004402
10.1109/CIMCA.2005.1631467
10.1162/106365600568167
10.1162/106365600568202
10.1007/1-84628-137-7_6
10.1016/j.advengsoft.2010.03.003
10.1007/978-3-540-30217-9_80
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2015 INIST-CNRS
Copyright Pergamon Press Inc. Jan 2013
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright Pergamon Press Inc. Jan 2013
DBID AAYXX
CITATION
OQ6
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2012.07.014
DatabaseName CrossRef
ECONIS
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1873-765X
0305-0548
EndPage 302
ExternalDocumentID 2756560611
26380545
729517470
10_1016_j_cor_2012_07_014
S0305054812001608
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
OQ6
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c443t-7a3e7d6fb2911494cd7d317a91ae3817c1807856586f9fb63c7c9b2e70da10d13
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309623100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Wed Oct 01 17:25:20 EDT 2025
Fri Jul 25 02:28:37 EDT 2025
Mon Jul 21 09:14:00 EDT 2025
Sat Mar 08 16:24:06 EST 2025
Tue Nov 18 21:37:43 EST 2025
Sat Nov 29 08:01:32 EST 2025
Fri Feb 23 02:33:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Constraint handling
Boundary simulation method
Pareto front
Trie-tree
Pareto optimum
Binary search method
Genetic algorithms
Atrie-tree
Inequality constraint
Constrained multi-objective optimization
Rtrie-tree
Multi-objective optimization
Pareto set
Population diversity
Tree data structures
Multiobjective programming
Constraint satisfaction
Constrained optimization
Binary search tree
Genetic algorithm
Prefix tree
Mathematical programming
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c443t-7a3e7d6fb2911494cd7d317a91ae3817c1807856586f9fb63c7c9b2e70da10d13
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1038821003
PQPubID 45870
PageCount 21
ParticipantIDs proquest_miscellaneous_1136556856
proquest_journals_1038821003
pascalfrancis_primary_26380545
econis_primary_729517470
crossref_citationtrail_10_1016_j_cor_2012_07_014
crossref_primary_10_1016_j_cor_2012_07_014
elsevier_sciencedirect_doi_10_1016_j_cor_2012_07_014
PublicationCentury 2000
PublicationDate January 2013
2013-01-00
2013
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: New York
PublicationTitle Computers & operations research
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Pergamon Press Inc
References Fredkin (bib67) 1960; 3
Young N. Blended ranking to cross infeasible regions in constrained multiobjective problems. In: Proceedings of the international conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce, 2005. p. 191–6.
Shi, Yan, Lu, Shi, Wang (bib46) 2009; 179
Woldesenbet, Yen, Tessema (bib34) 2009; 13
Binh TT, Korn U. MOBES: A multiobjective evolution strategy for constrained optimization problems. In: Proceedings of the third international conference on genetic algorithms, 1997. p. 176–82.
Michalewicz Z. A survey of constrained handling techniques in evolutionary computation methods. In: Proceedings of the fourth annual conference on evolutionary programming, 1995. p. 135–55.
Deb K, Sinha A, Kukkonen S. Multi-objective test problems, linkages, and evolutionary methodologies. In: Proceedings of the conference of genetic and evolutionary computation, 2006. p. 1141–8.
Jensen (bib44) 2003; 7
Fonseca, Fleming (bib18) 1995; 3
Coello CAC. Evolutionary multi-objective optimization: current state and future challenges. In: Proceedings on fifth international conference on hybrid intelligent systems, 2006. p. 1–15.
Harada K, Sakuma J, Ono Isao, Kobayashi S. Constraint-handling method for multi-objective function optimization: pareto descent repair operator. In: Proceedings of the fourth international conference on evolutionary multi-criterion optimization, 2007. p. 156–70.
Lu, Yen (bib52) 2003; 7
Zitzler, Thiele (bib66) 2003; 7
Tan, Goh, Yang, Lee (bib17) 2006; 171
Srinivas, Deb (bib3) 1994; 2
Deb K, Pratap A, Meyarivan T. Constrained test problems for multi-objective evolutionary optimization. In: Proceedings of the first international conference on evolutionary multi-criterion optimization, 2000. p. 284–98.
Knowles J, Corne D. The Pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimization. In: Proceedings of the third Australia-Japan joint workshop on intelligent and evolutionary systems, 1999. p. 209–16.
Michalewicz Z. Genetic algorithms, numerical optimization, and constraints. In: Proceedings of the sixth international conference on genetic algorithms, 1995. p. 151–8.
Tanaka M. GA-based decision support system for multi-criteria optimization. In: Proceedings of the international conference of systems, 1995. p. 1556–61.
Zitzler, Deb, Thiele (bib63) 2000; 8
Jimenez F, Gomez-Skarmeta AF, Sanchez G. An evolutionary algorithm for constrained multiobjective optimization. In: Proceedings of the evolutionary computation conference, 2002. p. 1133–8.
David, Veldhuizen, Lamont (bib19) 2000; 8
Coello, Pulido, Lechuga (bib68) 2004; 8
Corne D, Knowles J, Oates M. The pareto envelope-based selection algorithm for multiobjective optimization. In: Proceedings of the parallel problem solving from nature VI conference, 2000. p. 839–48.
Jimenez F, Verdegay JL. Constrained multiobjective optimization by evolutionary algorithms. In: Proceedings of the international ICSC symposium on engineering of intelligent systems, 1998. p. 266–71.
Deb K, Thiele L, Laumanns M, Zitzler E. Scalable test problems for evolutionary multiobjective optimization. In: Proceedings of the evolutionary multiobjective optimization conference, 2005. p. 105–45.
Osyczka A, Kundu S. A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. 1995;10(2):94–9.
Sarker R, Abbass HA, Karim S. An evolutionary algorithm for constrained multiobjective optimization problems. In: Proceedings of the fifth Australasia-Japan joint workshop on intelligent and evolutionary system, 2001. p. 113–22.
Deb K, Agrawal S, Paratap A, Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Proceedings of the parallel problem solving from nature VI conference, 2000. p. 849–58.
Fieldsend, Everson, Singh (bib50) 2001; 7
Zeng, Kang, Ding (bib38) 2004; 12
Knowles J, Corne D. On metrics for comparing non-dominated sets. In: Proceedings of the congress on evolutionary computation, 2002. p. 711–6.
Li, Zhang (bib60) 2009; 13
Schaffer JD. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the first international conference on genetic algorithms, 1985. p. 93–100.
Augusto, Rabeau, Depince, Bennis (bib16) 2006; 19
Jones, Mirrazavi, Tamiz (bib24) 2002; 137
Mostaghim S, Teich J. Quad-trees: a data structure for storing pareto-sets in multi-objective evolutionary algorithms with elitism. In: Evolutionary multiobjective optimization advanced information and knowledge processing, 2005. p. 81–104.
Santana-Quintero, Hertnandez-Diaz, Coello (bib14) 2009; 37
Huband, Hingston, Barone, While (bib62) 2006; 10
Kurpati, Azarm, Wu (bib33) 2002; 23
Okabe T, Jin Y, Olhofer M, Sendhoff B. On test functions for multi-objective optimization. In: Proceedings of the parallel problem solving from nature conference, 2004. p. 792–802.
Yen, Lu (bib53) 2003; 7
Huband S, Barone L, While L, Hingston P. A scalable multi-objective test problem toolkit. In: Proceedings of the evolutionary multi-criterion optimization: third international conference, 2005. p. 280–94.
Fonseca, Fleming (bib41) 1998; 28
Hertnandez-Diaz AG, Santana-Quintero LV, Coello CAC. A new proposal for multi-objective optimization using differential evolution and rough sets theory. In: Proceedings of the genetic and evolutionary computation conference, 2006. p. 675–82.
Zitzler, Thiele (bib5) 1999; 3
Everson RM, Fieldsend JE, Singh S. Full elite sets for multi-objective optimisation. In: Proceedings of the fifth international conference on adaptive computing in design and manufacture, 2002.
Li, Du (bib69) 2012; 39
Goldberg (bib1) 1989
Hajek, Szollos, Sistek (bib11) 2010; 41
Knowles, Corne (bib10) 2000; 8
Coello (bib29) 2002; 191
Zitzler E, Laumanns M, Bleuler S. A tutorial on evolutionary multiobjective optimization. In: Metaheuristics for multiobjective optimisation. Springer-Verlag; 2003. p. 3–38.
Corne D, Jerram N, Knowles J, Oates M. PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the genetic and evolutionary computation conference, 2001. p. 283–90.
Salcedo-Sanz (bib30) 2009; 3
Deb (bib56) 1999; 7
Laumanns M, Zitzler E, Thiele L. A unified model for multi-objective evolutionary algorithms with elitism. In: Proceedings of the congress on evolutionary computation, 2000. p. 46–53.
Konak, Coit, Smith (bib21) 2006; 91
Mezura-Montes E, Reyes-Sierra M, Coello CAC. Multi-objective optimization using differential evolution: a survey of the state-of-the-art. In: Advanced in differential evolution, 2008. p. 173–96.
Oyama A, Shimoyama K, Kozo F. New constraint-handling method for multi-objective multi-constraint evolutionary optimization and its application to space plane design. In: Proceedings of the evolutionary and deterministic methods for design, optimization and control with applications to industrial and societal problems conference, 2005. p. 416–28.
Fonseca CM, Fleming OJ. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceeding of the fifth international conference on genetic algorithms, 1993. p. 416–23.
Santana-Quintero, Coello (bib12) 2005; 1
Zitzler, Laumanns, Thiele (bib6) 2001
Eiben (bib28) 2001
Michalewicz (bib27) 1996; 4
Okabe T, Jin Y, Sendhoff B. A critical survey of performance indices for multi-objective optimisation. In: Proceedings of the congress on evolutionary computation, 2003. p. 878–85.
Gong, Cai (bib15) 2009; 198
Shi, Yan, Shi, Zhang (bib47) 2010; 10
Alberto, Mateo (bib45) 2004; 159
Fonseca (10.1016/j.cor.2012.07.014_bib41) 1998; 28
Yen (10.1016/j.cor.2012.07.014_bib53) 2003; 7
10.1016/j.cor.2012.07.014_bib59
Lu (10.1016/j.cor.2012.07.014_bib52) 2003; 7
10.1016/j.cor.2012.07.014_bib58
10.1016/j.cor.2012.07.014_bib13
10.1016/j.cor.2012.07.014_bib57
Konak (10.1016/j.cor.2012.07.014_bib21) 2006; 91
Srinivas (10.1016/j.cor.2012.07.014_bib3) 1994; 2
Woldesenbet (10.1016/j.cor.2012.07.014_bib34) 2009; 13
David (10.1016/j.cor.2012.07.014_bib19) 2000; 8
Jensen (10.1016/j.cor.2012.07.014_bib44) 2003; 7
10.1016/j.cor.2012.07.014_bib55
10.1016/j.cor.2012.07.014_bib54
10.1016/j.cor.2012.07.014_bib51
Eiben (10.1016/j.cor.2012.07.014_bib28) 2001
Knowles (10.1016/j.cor.2012.07.014_bib10) 2000; 8
10.1016/j.cor.2012.07.014_bib49
10.1016/j.cor.2012.07.014_bib48
Zitzler (10.1016/j.cor.2012.07.014_bib63) 2000; 8
Santana-Quintero (10.1016/j.cor.2012.07.014_bib14) 2009; 37
Gong (10.1016/j.cor.2012.07.014_bib15) 2009; 198
Fonseca (10.1016/j.cor.2012.07.014_bib18) 1995; 3
Zitzler (10.1016/j.cor.2012.07.014_bib6) 2001
Coello (10.1016/j.cor.2012.07.014_bib29) 2002; 191
Shi (10.1016/j.cor.2012.07.014_bib46) 2009; 179
Jones (10.1016/j.cor.2012.07.014_bib24) 2002; 137
Alberto (10.1016/j.cor.2012.07.014_bib45) 2004; 159
Li (10.1016/j.cor.2012.07.014_bib60) 2009; 13
Li (10.1016/j.cor.2012.07.014_bib69) 2012; 39
Michalewicz (10.1016/j.cor.2012.07.014_bib27) 1996; 4
10.1016/j.cor.2012.07.014_bib43
10.1016/j.cor.2012.07.014_bib42
10.1016/j.cor.2012.07.014_bib40
Zitzler (10.1016/j.cor.2012.07.014_bib5) 1999; 3
Zeng (10.1016/j.cor.2012.07.014_bib38) 2004; 12
10.1016/j.cor.2012.07.014_bib39
10.1016/j.cor.2012.07.014_bib37
10.1016/j.cor.2012.07.014_bib36
Santana-Quintero (10.1016/j.cor.2012.07.014_bib12) 2005; 1
10.1016/j.cor.2012.07.014_bib35
Goldberg (10.1016/j.cor.2012.07.014_bib1) 1989
Deb (10.1016/j.cor.2012.07.014_bib56) 1999; 7
Fieldsend (10.1016/j.cor.2012.07.014_bib50) 2001; 7
Zitzler (10.1016/j.cor.2012.07.014_bib66) 2003; 7
10.1016/j.cor.2012.07.014_bib2
Hajek (10.1016/j.cor.2012.07.014_bib11) 2010; 41
Fredkin (10.1016/j.cor.2012.07.014_bib67) 1960; 3
Kurpati (10.1016/j.cor.2012.07.014_bib33) 2002; 23
10.1016/j.cor.2012.07.014_bib4
Huband (10.1016/j.cor.2012.07.014_bib62) 2006; 10
10.1016/j.cor.2012.07.014_bib9
10.1016/j.cor.2012.07.014_bib32
10.1016/j.cor.2012.07.014_bib7
10.1016/j.cor.2012.07.014_bib31
10.1016/j.cor.2012.07.014_bib8
10.1016/j.cor.2012.07.014_bib26
10.1016/j.cor.2012.07.014_bib25
10.1016/j.cor.2012.07.014_bib23
Shi (10.1016/j.cor.2012.07.014_bib47) 2010; 10
Augusto (10.1016/j.cor.2012.07.014_bib16) 2006; 19
Tan (10.1016/j.cor.2012.07.014_bib17) 2006; 171
10.1016/j.cor.2012.07.014_bib22
10.1016/j.cor.2012.07.014_bib65
10.1016/j.cor.2012.07.014_bib20
10.1016/j.cor.2012.07.014_bib64
Salcedo-Sanz (10.1016/j.cor.2012.07.014_bib30) 2009; 3
10.1016/j.cor.2012.07.014_bib61
Coello (10.1016/j.cor.2012.07.014_bib68) 2004; 8
References_xml – reference: Michalewicz Z. Genetic algorithms, numerical optimization, and constraints. In: Proceedings of the sixth international conference on genetic algorithms, 1995. p. 151–8.
– reference: Deb K, Pratap A, Meyarivan T. Constrained test problems for multi-objective evolutionary optimization. In: Proceedings of the first international conference on evolutionary multi-criterion optimization, 2000. p. 284–98.
– reference: Schaffer JD. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the first international conference on genetic algorithms, 1985. p. 93–100.
– reference: Young N. Blended ranking to cross infeasible regions in constrained multiobjective problems. In: Proceedings of the international conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce, 2005. p. 191–6.
– reference: Mostaghim S, Teich J. Quad-trees: a data structure for storing pareto-sets in multi-objective evolutionary algorithms with elitism. In: Evolutionary multiobjective optimization advanced information and knowledge processing, 2005. p. 81–104.
– volume: 37
  start-page: 470
  year: 2009
  end-page: 480
  ident: bib14
  article-title: DEMORS: a hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems
  publication-title: Computers & Operations Research
– volume: 3
  start-page: 490
  year: 1960
  end-page: 499
  ident: bib67
  article-title: Trie memory
  publication-title: Communications of the ACM
– volume: 12
  start-page: 77
  year: 2004
  end-page: 98
  ident: bib38
  article-title: An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints
  publication-title: Evolutionary Computation
– reference: Okabe T, Jin Y, Sendhoff B. A critical survey of performance indices for multi-objective optimisation. In: Proceedings of the congress on evolutionary computation, 2003. p. 878–85.
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: bib66
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Everson RM, Fieldsend JE, Singh S. Full elite sets for multi-objective optimisation. In: Proceedings of the fifth international conference on adaptive computing in design and manufacture, 2002.
– volume: 10
  start-page: 469
  year: 2010
  end-page: 480
  ident: bib47
  article-title: A fast multiobjective evolutionary algorithm based on a tree structure
  publication-title: Applied Soft Computing
– reference: Fonseca CM, Fleming OJ. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceeding of the fifth international conference on genetic algorithms, 1993. p. 416–23.
– volume: 23
  start-page: 204
  year: 2002
  end-page: 213
  ident: bib33
  article-title: Constraint handling improvements for multiobjective genetic algorithms
  publication-title: Structural and Multidisciplinary Optimization
– reference: Binh TT, Korn U. MOBES: A multiobjective evolution strategy for constrained optimization problems. In: Proceedings of the third international conference on genetic algorithms, 1997. p. 176–82.
– reference: Osyczka A, Kundu S. A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. 1995;10(2):94–9.
– reference: Hertnandez-Diaz AG, Santana-Quintero LV, Coello CAC. A new proposal for multi-objective optimization using differential evolution and rough sets theory. In: Proceedings of the genetic and evolutionary computation conference, 2006. p. 675–82.
– volume: 13
  start-page: 514
  year: 2009
  end-page: 525
  ident: bib34
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: bib63
  article-title: Comparison of multiobjective evolutionary algorithms: empirical results
  publication-title: Evolutionary Computation
– reference: Laumanns M, Zitzler E, Thiele L. A unified model for multi-objective evolutionary algorithms with elitism. In: Proceedings of the congress on evolutionary computation, 2000. p. 46–53.
– reference: Deb K, Sinha A, Kukkonen S. Multi-objective test problems, linkages, and evolutionary methodologies. In: Proceedings of the conference of genetic and evolutionary computation, 2006. p. 1141–8.
– reference: Coello CAC. Evolutionary multi-objective optimization: current state and future challenges. In: Proceedings on fifth international conference on hybrid intelligent systems, 2006. p. 1–15.
– volume: 7
  start-page: 343
  year: 2003
  end-page: 352
  ident: bib52
  article-title: Rank-density based multiobjective genetic algorithm and benchmark test function study
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 1989
  ident: bib1
  article-title: Genetic algorithms in search, optimization, and machine learning
– reference: Mezura-Montes E, Reyes-Sierra M, Coello CAC. Multi-objective optimization using differential evolution: a survey of the state-of-the-art. In: Advanced in differential evolution, 2008. p. 173–96.
– reference: Corne D, Knowles J, Oates M. The pareto envelope-based selection algorithm for multiobjective optimization. In: Proceedings of the parallel problem solving from nature VI conference, 2000. p. 839–48.
– volume: 191
  start-page: 1245
  year: 2002
  end-page: 1287
  ident: bib29
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art
  publication-title: Computer Methods in Applied Mechanics and Engineering
– reference: Jimenez F, Verdegay JL. Constrained multiobjective optimization by evolutionary algorithms. In: Proceedings of the international ICSC symposium on engineering of intelligent systems, 1998. p. 266–71.
– volume: 7
  start-page: 305
  year: 2001
  end-page: 323
  ident: bib50
  article-title: Using unconstrained elite archives for multi-objective optimisation
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 137
  start-page: 1
  year: 2002
  end-page: 9
  ident: bib24
  article-title: Multi-objective meta-heuristics: an overview of the current state-of-the-art
  publication-title: European Journal of Operational Research
– reference: Corne D, Jerram N, Knowles J, Oates M. PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the genetic and evolutionary computation conference, 2001. p. 283–90.
– volume: 7
  start-page: 503
  year: 2003
  end-page: 515
  ident: bib44
  article-title: Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Tanaka M. GA-based decision support system for multi-criteria optimization. In: Proceedings of the international conference of systems, 1995. p. 1556–61.
– volume: 7
  start-page: 205
  year: 1999
  end-page: 230
  ident: bib56
  article-title: Multi-objective genetic algorithm: problem difficulties and construction of test problems
  publication-title: Evolutionary Computation
– volume: 179
  start-page: 3540
  year: 2009
  end-page: 3560
  ident: bib46
  article-title: A dominance tree and its application in evolutionary multi-objective optimization
  publication-title: Information Sciences
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: bib68
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 28
  start-page: 26
  year: 1998
  end-page: 37
  ident: bib41
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms: Part I: a unified formulation
  publication-title: IEEE Transactions on Systems and Cybernetics—Part A: Systems and Humans
– volume: 8
  start-page: 149
  year: 2000
  end-page: 172
  ident: bib10
  article-title: Approximating the nondominated front using the Pareto archived evolution strategy
  publication-title: Evolutionary Computation
– reference: Oyama A, Shimoyama K, Kozo F. New constraint-handling method for multi-objective multi-constraint evolutionary optimization and its application to space plane design. In: Proceedings of the evolutionary and deterministic methods for design, optimization and control with applications to industrial and societal problems conference, 2005. p. 416–28.
– reference: Jimenez F, Gomez-Skarmeta AF, Sanchez G. An evolutionary algorithm for constrained multiobjective optimization. In: Proceedings of the evolutionary computation conference, 2002. p. 1133–8.
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: bib60
  article-title: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Transaction on Evolutionary Computation
– volume: 3
  start-page: 175
  year: 2009
  end-page: 192
  ident: bib30
  article-title: A survey of repair methods used as constraint handling techniques in evolutionary algorithms
  publication-title: Computer Science Review
– volume: 1
  start-page: 151
  year: 2005
  end-page: 169
  ident: bib12
  article-title: An algorithm based on differential evolution for multi-objective problems
  publication-title: International Journal of Computation Intelligence Research
– volume: 198
  start-page: 576
  year: 2009
  end-page: 601
  ident: bib15
  article-title: An improved multiobjective differential evolution based on Pareto-adaptive
  publication-title: European Journal of Operational Research
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: bib62
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: Evolutionary Computation
– reference: Michalewicz Z. A survey of constrained handling techniques in evolutionary computation methods. In: Proceedings of the fourth annual conference on evolutionary programming, 1995. p. 135–55.
– volume: 4
  start-page: 1
  year: 1996
  end-page: 32
  ident: bib27
  article-title: Evolutionary algorithm for constrained parameter optimization problem
  publication-title: Evolutionary Computation
– reference: Huband S, Barone L, While L, Hingston P. A scalable multi-objective test problem toolkit. In: Proceedings of the evolutionary multi-criterion optimization: third international conference, 2005. p. 280–94.
– year: 2001
  ident: bib6
  article-title: SPEA2: improving the strength Pareto evolutionary algorithm
– volume: 41
  start-page: 1031
  year: 2010
  end-page: 1057
  ident: bib11
  article-title: A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization
  publication-title: Advances in Engineering Software
– reference: Zitzler E, Laumanns M, Bleuler S. A tutorial on evolutionary multiobjective optimization. In: Metaheuristics for multiobjective optimisation. Springer-Verlag; 2003. p. 3–38.
– reference: Knowles J, Corne D. On metrics for comparing non-dominated sets. In: Proceedings of the congress on evolutionary computation, 2002. p. 711–6.
– reference: Deb K, Thiele L, Laumanns M, Zitzler E. Scalable test problems for evolutionary multiobjective optimization. In: Proceedings of the evolutionary multiobjective optimization conference, 2005. p. 105–45.
– reference: Deb K, Agrawal S, Paratap A, Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Proceedings of the parallel problem solving from nature VI conference, 2000. p. 849–58.
– reference: Knowles J, Corne D. The Pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimization. In: Proceedings of the third Australia-Japan joint workshop on intelligent and evolutionary systems, 1999. p. 209–16.
– reference: Harada K, Sakuma J, Ono Isao, Kobayashi S. Constraint-handling method for multi-objective function optimization: pareto descent repair operator. In: Proceedings of the fourth international conference on evolutionary multi-criterion optimization, 2007. p. 156–70.
– reference: Okabe T, Jin Y, Olhofer M, Sendhoff B. On test functions for multi-objective optimization. In: Proceedings of the parallel problem solving from nature conference, 2004. p. 792–802.
– volume: 39
  start-page: 521
  year: 2012
  end-page: 540
  ident: bib69
  article-title: Inequality constraint handling in genetic algorithms using a boundary simulation method
  publication-title: Computes & Operations Research
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: bib3
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
– volume: 159
  start-page: 52
  year: 2004
  end-page: 65
  ident: bib45
  article-title: Representation and management of MOEA populations based on graphs
  publication-title: European Journal of Operational Research
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib5
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 3
  start-page: 1
  year: 1995
  end-page: 16
  ident: bib18
  article-title: An overview of evolutionary algorithms in multiobjective optimization
  publication-title: Evolutionary Computation
– volume: 171
  start-page: 463
  year: 2006
  end-page: 495
  ident: bib17
  article-title: Evolving better population distribution and exploration in evolutionary multi-objective optimization
  publication-title: European Journal of Operational Research
– volume: 8
  start-page: 125
  year: 2000
  end-page: 147
  ident: bib19
  article-title: Multiobjective evolutionary algorithms: analyzing the state-of-the-art
  publication-title: Evolutionary Computation
– volume: 19
  start-page: 501
  year: 2006
  end-page: 510
  ident: bib16
  article-title: Multi-objective genetic algorithms: a way to improve the convergence rate
  publication-title: Engineering Application of Artificial Intelligence
– volume: 91
  start-page: 992
  year: 2006
  end-page: 1007
  ident: bib21
  article-title: Multi-objective optimization using genetic algorithm: a tutorial
  publication-title: Reliability Engineering and System Safety
– reference: Sarker R, Abbass HA, Karim S. An evolutionary algorithm for constrained multiobjective optimization problems. In: Proceedings of the fifth Australasia-Japan joint workshop on intelligent and evolutionary system, 2001. p. 113–22.
– volume: 7
  start-page: 253
  year: 2003
  end-page: 274
  ident: bib53
  article-title: Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 13
  year: 2001
  end-page: 58
  ident: bib28
  article-title: Evolutionary algorithms and constraint satisfaction: definitions, survey, methodology, and research directions
  publication-title: Theoretical Aspects of Evolutionary Computing
– volume: 8
  start-page: 125
  issue: 2
  year: 2000
  ident: 10.1016/j.cor.2012.07.014_bib19
  article-title: Multiobjective evolutionary algorithms: analyzing the state-of-the-art
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568158
– volume: 91
  start-page: 992
  issue: 9
  year: 2006
  ident: 10.1016/j.cor.2012.07.014_bib21
  article-title: Multi-objective optimization using genetic algorithm: a tutorial
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2005.11.018
– volume: 7
  start-page: 503
  issue: 5
  year: 2003
  ident: 10.1016/j.cor.2012.07.014_bib44
  article-title: Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.817234
– ident: 10.1016/j.cor.2012.07.014_bib25
– ident: 10.1016/j.cor.2012.07.014_bib31
– ident: 10.1016/j.cor.2012.07.014_bib7
  doi: 10.1007/3-540-45356-3_82
– ident: 10.1016/j.cor.2012.07.014_bib8
– volume: 1
  start-page: 151
  issue: 2
  year: 2005
  ident: 10.1016/j.cor.2012.07.014_bib12
  article-title: An algorithm based on differential evolution for multi-objective problems
  publication-title: International Journal of Computation Intelligence Research
– ident: 10.1016/j.cor.2012.07.014_bib35
– ident: 10.1016/j.cor.2012.07.014_bib64
  doi: 10.1109/CEC.2002.1007013
– volume: 3
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.cor.2012.07.014_bib18
  article-title: An overview of evolutionary algorithms in multiobjective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1995.3.1.1
– ident: 10.1016/j.cor.2012.07.014_bib58
  doi: 10.1145/1143997.1144179
– volume: 7
  start-page: 305
  issue: 3
  year: 2001
  ident: 10.1016/j.cor.2012.07.014_bib50
  article-title: Using unconstrained elite archives for multi-objective optimisation
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810733
– ident: 10.1016/j.cor.2012.07.014_bib42
  doi: 10.1007/978-3-540-70928-2_15
– volume: 171
  start-page: 463
  issue: 2
  year: 2006
  ident: 10.1016/j.cor.2012.07.014_bib17
  article-title: Evolving better population distribution and exploration in evolutionary multi-objective optimization
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.08.038
– ident: 10.1016/j.cor.2012.07.014_bib39
– ident: 10.1016/j.cor.2012.07.014_bib13
  doi: 10.1145/1143997.1144117
– ident: 10.1016/j.cor.2012.07.014_bib22
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.cor.2012.07.014_bib5
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– volume: 3
  start-page: 175
  issue: 3
  year: 2009
  ident: 10.1016/j.cor.2012.07.014_bib30
  article-title: A survey of repair methods used as constraint handling techniques in evolutionary algorithms
  publication-title: Computer Science Review
  doi: 10.1016/j.cosrev.2009.07.001
– volume: 159
  start-page: 52
  issue: 16
  year: 2004
  ident: 10.1016/j.cor.2012.07.014_bib45
  article-title: Representation and management of MOEA populations based on graphs
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(03)00405-3
– ident: 10.1016/j.cor.2012.07.014_bib4
  doi: 10.1007/3-540-45356-3_83
– volume: 179
  start-page: 3540
  issue: 20
  year: 2009
  ident: 10.1016/j.cor.2012.07.014_bib46
  article-title: A dominance tree and its application in evolutionary multi-objective optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.06.035
– volume: 19
  start-page: 501
  issue: 5
  year: 2006
  ident: 10.1016/j.cor.2012.07.014_bib16
  article-title: Multi-objective genetic algorithms: a way to improve the convergence rate
  publication-title: Engineering Application of Artificial Intelligence
  doi: 10.1016/j.engappai.2006.01.010
– ident: 10.1016/j.cor.2012.07.014_bib32
– volume: 7
  start-page: 343
  issue: 4
  year: 2003
  ident: 10.1016/j.cor.2012.07.014_bib52
  article-title: Rank-density based multiobjective genetic algorithm and benchmark test function study
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.cor.2012.07.014_bib66
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810758
– ident: 10.1016/j.cor.2012.07.014_bib65
  doi: 10.1109/CEC.2003.1299759
– volume: 191
  start-page: 1245
  issue: 11
  year: 2002
  ident: 10.1016/j.cor.2012.07.014_bib29
  article-title: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(01)00323-1
– ident: 10.1016/j.cor.2012.07.014_bib49
  doi: 10.1007/978-0-85729-345-9_29
– start-page: 13
  year: 2001
  ident: 10.1016/j.cor.2012.07.014_bib28
  article-title: Evolutionary algorithms and constraint satisfaction: definitions, survey, methodology, and research directions
  publication-title: Theoretical Aspects of Evolutionary Computing
  doi: 10.1007/978-3-662-04448-3_2
– ident: 10.1016/j.cor.2012.07.014_bib20
  doi: 10.1007/978-3-642-17144-4_1
– volume: 13
  start-page: 514
  issue: 3
  year: 2009
  ident: 10.1016/j.cor.2012.07.014_bib34
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.2009032
– volume: 23
  start-page: 204
  issue: 3
  year: 2002
  ident: 10.1016/j.cor.2012.07.014_bib33
  article-title: Constraint handling improvements for multiobjective genetic algorithms
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-002-0178-2
– ident: 10.1016/j.cor.2012.07.014_bib48
  doi: 10.1109/CEC.2000.870274
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.cor.2012.07.014_bib62
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: Evolutionary Computation
  doi: 10.1109/TEVC.2005.861417
– year: 2001
  ident: 10.1016/j.cor.2012.07.014_bib6
– volume: 39
  start-page: 521
  issue: 3
  year: 2012
  ident: 10.1016/j.cor.2012.07.014_bib69
  article-title: Inequality constraint handling in genetic algorithms using a boundary simulation method
  publication-title: Computes & Operations Research
  doi: 10.1016/j.cor.2011.03.019
– volume: 37
  start-page: 470
  issue: 3
  year: 2009
  ident: 10.1016/j.cor.2012.07.014_bib14
  article-title: DEMORS: a hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2009.02.006
– volume: 198
  start-page: 576
  issue: 2
  year: 2009
  ident: 10.1016/j.cor.2012.07.014_bib15
  article-title: An improved multiobjective differential evolution based on Pareto-adaptive ϵ-dominance and orthogonal design
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2008.09.022
– ident: 10.1016/j.cor.2012.07.014_bib2
– year: 1989
  ident: 10.1016/j.cor.2012.07.014_bib1
– volume: 137
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.cor.2012.07.014_bib24
  article-title: Multi-objective meta-heuristics: an overview of the current state-of-the-art
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(01)00123-0
– ident: 10.1016/j.cor.2012.07.014_bib55
  doi: 10.1007/BF01743536
– volume: 3
  start-page: 490
  issue: 9
  year: 1960
  ident: 10.1016/j.cor.2012.07.014_bib67
  article-title: Trie memory
  publication-title: Communications of the ACM
  doi: 10.1145/367390.367400
– volume: 12
  start-page: 77
  issue: 1
  year: 2004
  ident: 10.1016/j.cor.2012.07.014_bib38
  article-title: An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.2004.12.1.77
– volume: 7
  start-page: 205
  issue: 3
  year: 1999
  ident: 10.1016/j.cor.2012.07.014_bib56
  article-title: Multi-objective genetic algorithm: problem difficulties and construction of test problems
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1999.7.3.205
– volume: 28
  start-page: 26
  issue: 1
  year: 1998
  ident: 10.1016/j.cor.2012.07.014_bib41
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms: Part I: a unified formulation
  publication-title: IEEE Transactions on Systems and Cybernetics—Part A: Systems and Humans
  doi: 10.1109/3468.650319
– volume: 10
  start-page: 469
  issue: 2
  year: 2010
  ident: 10.1016/j.cor.2012.07.014_bib47
  article-title: A fast multiobjective evolutionary algorithm based on a tree structure
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.08.018
– ident: 10.1016/j.cor.2012.07.014_bib43
– ident: 10.1016/j.cor.2012.07.014_bib59
  doi: 10.1007/978-3-540-31880-4_20
– volume: 4
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.cor.2012.07.014_bib27
  article-title: Evolutionary algorithm for constrained parameter optimization problem
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1996.4.1.1
– ident: 10.1016/j.cor.2012.07.014_bib54
  doi: 10.1109/ICSMC.1995.537993
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 10.1016/j.cor.2012.07.014_bib3
  article-title: Multiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1994.2.3.221
– ident: 10.1016/j.cor.2012.07.014_bib9
– ident: 10.1016/j.cor.2012.07.014_bib26
  doi: 10.7551/mitpress/2887.003.0018
– volume: 13
  start-page: 284
  issue: 2
  year: 2009
  ident: 10.1016/j.cor.2012.07.014_bib60
  article-title: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Transaction on Evolutionary Computation
  doi: 10.1109/TEVC.2008.925798
– ident: 10.1016/j.cor.2012.07.014_bib51
– volume: 7
  start-page: 253
  issue: 3
  year: 2003
  ident: 10.1016/j.cor.2012.07.014_bib53
  article-title: Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810068
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.cor.2012.07.014_bib68
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826067
– ident: 10.1016/j.cor.2012.07.014_bib36
  doi: 10.1007/3-540-44719-9_20
– ident: 10.1016/j.cor.2012.07.014_bib37
  doi: 10.1109/CEC.2002.1004402
– ident: 10.1016/j.cor.2012.07.014_bib40
  doi: 10.1109/CIMCA.2005.1631467
– volume: 8
  start-page: 149
  issue: 2
  year: 2000
  ident: 10.1016/j.cor.2012.07.014_bib10
  article-title: Approximating the nondominated front using the Pareto archived evolution strategy
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568167
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.cor.2012.07.014_bib63
  article-title: Comparison of multiobjective evolutionary algorithms: empirical results
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568202
– ident: 10.1016/j.cor.2012.07.014_bib23
– ident: 10.1016/j.cor.2012.07.014_bib57
  doi: 10.1007/1-84628-137-7_6
– volume: 41
  start-page: 1031
  issue: 7
  year: 2010
  ident: 10.1016/j.cor.2012.07.014_bib11
  article-title: A new mechanism for maintaining diversity of Pareto archive in multi-objective optimization
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2010.03.003
– ident: 10.1016/j.cor.2012.07.014_bib61
  doi: 10.1007/978-3-540-30217-9_80
SSID ssj0000721
Score 2.1762722
Snippet Most of the existing multi-objective genetic algorithms were developed for unconstrained problems, even though most real-world problems are constrained. Based...
SourceID proquest
pascalfrancis
econis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 282
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Atrie-tree
Binary search method
Boundaries
Boundary simulation method
Computer science; control theory; systems
Computer simulation
Constrained multi-objective optimization
Constraint handling
Constraints
Decision theory. Utility theory
Exact sciences and technology
Genetic algorithms
Inequality constraint
Mathematical models
Mathematical programming
Multi-objective optimization
Multiple criteria decision making
Operational research and scientific management
Operational research. Management science
Operations research
Optimization
Optimization algorithms
Pareto front
Pareto optimality
Pareto optimum
Pareto set
Population diversity
Rtrie-tree
Simulation
Studies
Theoretical computing
Trie-tree
Title BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems
URI https://dx.doi.org/10.1016/j.cor.2012.07.014
http://www.econis.eu/PPNSET?PPN=729517470
https://www.proquest.com/docview/1038821003
https://www.proquest.com/docview/1136556856
Volume 40
WOSCitedRecordID wos000309623100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFD50aRgtpVuzlrg3MthTwUO-RdZjUnobpQyWjbwJWbZHS3FCnJb-_B7d3KRlpX3Yiwmy4pjznUifjnS-A_AtCSljgpY-S9PYjzNcsGYZ-nKG3pJlIctzvV3w55JeXaXjMftpxT5rXU6AVlX68MCm_xVqbEOwVersO-BuHooN-BlBxyvCjtc3AT_8NRqeDRZJp6vcUGucJ9NiZs-_WaWfJiJ8qbf2x-gxf58Iro6cuxYbHzCJnSZcZefWhRElUif1EiNt6YY_o5a0BLMdy0xVIDstRjox-uWIaxb_N2gwpa6qIqv0OzF5oc-ErJHGK1lsSj7AakgTRlqwOrg4Gf94mjmpzpNrXtPtQuvzeM9-YIlHtFXw4LpeIhQbU1Gjm5emPsmLqVbzh9Fn2LTEvzcwgG3BSlF14KPLO-jAJ4dSzw63HVhfEIv8Am0D7Db8Pj0ZHZ_7toqFL-M4mvtURAXN-yU6Pq49WSxzmiNpEywQhZJHlIGS_EdenfZLVmb9SFLJsrCgJBcByYNoB1rVpCq60CN4OwkErtJztf_KRCApQ4paxjIRUZp6QJxNuLQS76rSyC13Z_luOJqRKzNyQjma0YOj5itTo2_yWueuMXTTtcHUg9iZnlvuZjgZR0d57YmHSzA1Dw5xXkAXSDzYd7hx-yeruRL1T9EKJPLga3Mbx0W12SWqYnKHfdT5zaSPht3991vvwVqoy5uokNo-tOazu-IA2vJ-fl3PDq17PgKoL3b2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BSTBGA&rft.jtitle=Computers+%26+operations+research&rft.au=Li%2C+Xiang&rft.au=Du%2C+Gang&rft.date=2013&rft.pub=Elsevier&rft.issn=0305-0548&rft.volume=40&rft.issue=1&rft.spage=282&rft.epage=302&rft_id=info:doi/10.1016%2Fj.cor.2012.07.014&rft.externalDocID=729517470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon