Piecewise-Linear Approximations of Multidimensional Functions

We develop explicit, piecewise-linear formulations of functions f ( x ):ℝ n ↦ ℝ, n ≤3, that are defined on an orthogonal grid of vertex points. If mixed-integer linear optimization problems (MILPs) involving multidimensional piecewise-linear functions can be easily and efficiently solved to global o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 145; číslo 1; s. 120 - 147
Hlavní autoři: Misener, R., Floudas, C. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.04.2010
Springer
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We develop explicit, piecewise-linear formulations of functions f ( x ):ℝ n ↦ ℝ, n ≤3, that are defined on an orthogonal grid of vertex points. If mixed-integer linear optimization problems (MILPs) involving multidimensional piecewise-linear functions can be easily and efficiently solved to global optimality, then non-analytic functions can be used as an objective or constraint function for large optimization problems. Linear interpolation between fixed gridpoints can also be used to approximate generic, nonlinear functions, allowing us to approximately solve problems using mixed-integer linear optimization methods. Toward this end, we develop two different explicit formulations of piecewise-linear functions and discuss the consequences of integrating the formulations into an optimization problem.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-009-9626-0