Piecewise-Linear Approximations of Multidimensional Functions
We develop explicit, piecewise-linear formulations of functions f ( x ):ℝ n ↦ ℝ, n ≤3, that are defined on an orthogonal grid of vertex points. If mixed-integer linear optimization problems (MILPs) involving multidimensional piecewise-linear functions can be easily and efficiently solved to global o...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 145; číslo 1; s. 120 - 147 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.04.2010
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We develop explicit, piecewise-linear formulations of functions
f
(
x
):ℝ
n
↦
ℝ,
n
≤3, that are defined on an orthogonal grid of vertex points. If mixed-integer linear optimization problems (MILPs) involving multidimensional piecewise-linear functions can be easily and efficiently solved to global optimality, then non-analytic functions can be used as an objective or constraint function for large optimization problems. Linear interpolation between fixed gridpoints can also be used to approximate generic, nonlinear functions, allowing us to approximately solve problems using mixed-integer linear optimization methods. Toward this end, we develop two different explicit formulations of piecewise-linear functions and discuss the consequences of integrating the formulations into an optimization problem. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-009-9626-0 |