A polynomial oracle-time algorithm for convex integer minimization

In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 126; H. 1; S. 97 - 117
Hauptverfasser: Hemmecke, Raymond, Onn, Shmuel, Weismantel, Robert
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer-Verlag 01.01.2011
Springer
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. We extend these results to convex N -fold integer minimization problems and to convex 2-stage stochastic integer minimization problems. Finally, we present some applications of convex N -fold integer minimization problems for which our approach provides polynomial time solution algorithms.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-009-0276-7