A polynomial oracle-time algorithm for convex integer minimization

In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. W...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 126; no. 1; pp. 97 - 117
Main Authors: Hemmecke, Raymond, Onn, Shmuel, Weismantel, Robert
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01.01.2011
Springer
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. We extend these results to convex N -fold integer minimization problems and to convex 2-stage stochastic integer minimization problems. Finally, we present some applications of convex N -fold integer minimization problems for which our approach provides polynomial time solution algorithms.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-009-0276-7