Spaceborne SAR image formation enhancement using MOCO techniques
Synthetic aperture radar (SAR) is considered a prevailing tool for remote sensing. It benefits working with high efficiency in all weather and all-day circumstances, making SAR is very confident compared to other types of remote sensing. The SAR platform moves with constant velocity and height, with...
Uloženo v:
| Vydáno v: | The Egyptian journal of remote sensing and space sciences Ročník 25; číslo 3; s. 659 - 671 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.12.2022
Elsevier |
| Témata: | |
| ISSN: | 1110-9823 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Synthetic aperture radar (SAR) is considered a prevailing tool for remote sensing. It benefits working with high efficiency in all weather and all-day circumstances, making SAR is very confident compared to other types of remote sensing. The SAR platform moves with constant velocity and height, with a linear path for ideal situations. However, this assumption is not realized in satellite movement, which is an elliptical orbiting that worsens the quality of the focused image. This paper introduces a methodology of motion compensation for motion errors due to satellite elliptical orbiting and perturbations in an orbital path. It represents two major contributions applied on a low earth orbit (LEO) spaceborne SAR. First, motion errors analysis in the range and azimuth directions. Second, an algorithm for motion error compensation (MOCO) combined with a chirp scaling algorithm (CSA) is performed. Moreover, a validation for the formulated algorithm is executed using sentinel-1 level-0 real raw data input, and the result is compared with the sentinel-1 level-1 single look complex (SLC) SAR image. The validation is performed using two different metrics. First, image quality measurement by sharpness, contrast, and entropy. Second, measuring the peak-sidelobe-ratio (PSLR), impulse-response-width (IRW), and integrated-sidelobe-ratio (ISLR) for five high power reflecting points in the scene area. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1110-9823 |
| DOI: | 10.1016/j.ejrs.2022.06.001 |