Detectability of multi-dimensional movement and behaviour in cattle using sensor data and machine learning algorithms: Study on a Charolais bull

The development of motion sensors for monitoring cattle behaviour has enabled farmers to predict the state of their cattle's welfare more efficiently. While most studies work with one dimensional output with disjunct behaviour categories, more accurate prediction can still be achieved by includ...

Full description

Saved in:
Bibliographic Details
Published in:Artificial intelligence in agriculture Vol. 14; pp. 86 - 98
Main Authors: Biszkup, Miklós, Vásárhelyi, Gábor, Setiawan, Nuri Nurlaila, Márton, Aliz, Szentes, Szilárd, Balogh, Petra, Babay-Török, Barbara, Pajor, Gábor, Drexler, Dóra
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2024
KeAi Communications Co., Ltd
Subjects:
ISSN:2589-7217, 2589-7217
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The development of motion sensors for monitoring cattle behaviour has enabled farmers to predict the state of their cattle's welfare more efficiently. While most studies work with one dimensional output with disjunct behaviour categories, more accurate prediction can still be achieved by including complex movements and enriching the sensor algorithm to detect multi-dimensional movements, i.e., more than one movement occurring simultaneously. This paper presents such a machine-learning method for analysing overlapping independent movements. The output of the method consists of automatically recognized complex behaviour patterns that can be used for measuring animal welfare, predicting calving, or detecting early signs of diseases. This study combines automated motion sensors (i.e., halter and pedometer) for ruminants known as RumiWatch mounted on a Charolais fattening bull and camera observation. Fourteen types of complex movements were identified, i.e., defecating-urinating, eating, drinking, getting up, head movement, licking, lying down, lying, playing-aggression, rubbing, ruminating, sleeping, standing, and stepping. As multiple parallel binary classificators were used, the system was able to recognize parallel behavioural patterns with high fidelity. Two types of machine learning, i.e., Support Vector Classification (SVC) and RandomForest were used to recognize different general and non-general forms of movement. Results from these two supervised learning systems were compared. A continuous forty-eight hours of video were annotated to train the systems and validate their predictions. The success rate of both classifiers in recognizing special movements from both sensors or separately in different settings (i.e., window and padding) was examined. Although the two classifiers produced different results, the ideal settings showed that all forms of movement in the subject animal were successfully recognized with high accuracy. More studies using more individual animals and different ruminants would increase our knowledge on enhancing the system's performance and accuracy. •Motion sensors enables farmers to monitor their cattle's welfare more efficiently.•We enriched the algorithm of motion sensors with complex movements for more accuracy.•We used two machine learning classifications for complex movement recognition.•All forms of movement were successfully recognized with a rate of 90 % and above.
AbstractList The development of motion sensors for monitoring cattle behaviour has enabled farmers to predict the state of their cattle's welfare more efficiently. While most studies work with one dimensional output with disjunct behaviour categories, more accurate prediction can still be achieved by including complex movements and enriching the sensor algorithm to detect multi-dimensional movements, i.e., more than one movement occurring simultaneously. This paper presents such a machine-learning method for analysing overlapping independent movements. The output of the method consists of automatically recognized complex behaviour patterns that can be used for measuring animal welfare, predicting calving, or detecting early signs of diseases. This study combines automated motion sensors (i.e., halter and pedometer) for ruminants known as RumiWatch mounted on a Charolais fattening bull and camera observation. Fourteen types of complex movements were identified, i.e., defecating-urinating, eating, drinking, getting up, head movement, licking, lying down, lying, playing-aggression, rubbing, ruminating, sleeping, standing, and stepping. As multiple parallel binary classificators were used, the system was able to recognize parallel behavioural patterns with high fidelity. Two types of machine learning, i.e., Support Vector Classification (SVC) and RandomForest were used to recognize different general and non-general forms of movement. Results from these two supervised learning systems were compared. A continuous forty-eight hours of video were annotated to train the systems and validate their predictions. The success rate of both classifiers in recognizing special movements from both sensors or separately in different settings (i.e., window and padding) was examined. Although the two classifiers produced different results, the ideal settings showed that all forms of movement in the subject animal were successfully recognized with high accuracy. More studies using more individual animals and different ruminants would increase our knowledge on enhancing the system's performance and accuracy.
The development of motion sensors for monitoring cattle behaviour has enabled farmers to predict the state of their cattle's welfare more efficiently. While most studies work with one dimensional output with disjunct behaviour categories, more accurate prediction can still be achieved by including complex movements and enriching the sensor algorithm to detect multi-dimensional movements, i.e., more than one movement occurring simultaneously. This paper presents such a machine-learning method for analysing overlapping independent movements. The output of the method consists of automatically recognized complex behaviour patterns that can be used for measuring animal welfare, predicting calving, or detecting early signs of diseases. This study combines automated motion sensors (i.e., halter and pedometer) for ruminants known as RumiWatch mounted on a Charolais fattening bull and camera observation. Fourteen types of complex movements were identified, i.e., defecating-urinating, eating, drinking, getting up, head movement, licking, lying down, lying, playing-aggression, rubbing, ruminating, sleeping, standing, and stepping. As multiple parallel binary classificators were used, the system was able to recognize parallel behavioural patterns with high fidelity. Two types of machine learning, i.e., Support Vector Classification (SVC) and RandomForest were used to recognize different general and non-general forms of movement. Results from these two supervised learning systems were compared. A continuous forty-eight hours of video were annotated to train the systems and validate their predictions. The success rate of both classifiers in recognizing special movements from both sensors or separately in different settings (i.e., window and padding) was examined. Although the two classifiers produced different results, the ideal settings showed that all forms of movement in the subject animal were successfully recognized with high accuracy. More studies using more individual animals and different ruminants would increase our knowledge on enhancing the system's performance and accuracy. •Motion sensors enables farmers to monitor their cattle's welfare more efficiently.•We enriched the algorithm of motion sensors with complex movements for more accuracy.•We used two machine learning classifications for complex movement recognition.•All forms of movement were successfully recognized with a rate of 90 % and above.
Author Balogh, Petra
Márton, Aliz
Pajor, Gábor
Biszkup, Miklós
Szentes, Szilárd
Babay-Török, Barbara
Setiawan, Nuri Nurlaila
Drexler, Dóra
Vásárhelyi, Gábor
Author_xml – sequence: 1
  givenname: Miklós
  surname: Biszkup
  fullname: Biszkup, Miklós
  email: miklos.biszkup@biokutatas.hu
  organization: Hungarian Research Institute of Organic Agriculture, Budapest, Hungary
– sequence: 2
  givenname: Gábor
  surname: Vásárhelyi
  fullname: Vásárhelyi, Gábor
  organization: CollMot Robotics Ltd., Budapest, Hungary
– sequence: 3
  givenname: Nuri Nurlaila
  surname: Setiawan
  fullname: Setiawan, Nuri Nurlaila
  organization: Hungarian Research Institute of Organic Agriculture, Budapest, Hungary
– sequence: 4
  givenname: Aliz
  surname: Márton
  fullname: Márton, Aliz
  organization: Hungarian Research Institute of Organic Agriculture, Budapest, Hungary
– sequence: 5
  givenname: Szilárd
  surname: Szentes
  fullname: Szentes, Szilárd
  organization: University of Veterinary Medicine, Animal Breeding, Nutrition and Laboratory Animal Science Department, Budapest, Hungary
– sequence: 6
  givenname: Petra
  surname: Balogh
  fullname: Balogh, Petra
  organization: Hungarian Research Institute of Organic Agriculture, Budapest, Hungary
– sequence: 7
  givenname: Barbara
  surname: Babay-Török
  fullname: Babay-Török, Barbara
  organization: Hungarian Research Institute of Organic Agriculture, Budapest, Hungary
– sequence: 8
  givenname: Gábor
  surname: Pajor
  fullname: Pajor, Gábor
  organization: Hungarian Research Institute of Organic Agriculture, Budapest, Hungary
– sequence: 9
  givenname: Dóra
  surname: Drexler
  fullname: Drexler, Dóra
  organization: Hungarian Research Institute of Organic Agriculture, Budapest, Hungary
BookMark eNp9kc9u1DAQxiNUJErpC3DykUuC7fxHXNBSoFIlDsDZGjuT3Vk5drGdlfoWPDJOFyTEoRfbY32_b-z5XhYXzjssiteCV4KL7u2xAiKoJJdNJUTFuXxWXMp2GMteiv7in_OL4jrGI8-KYSPHy-LXR0xoEmiylB6Yn9my2kTlRAu6SN6BZYs_Ya4SAzcxjQc4kV8DI8cMpGSRrZHcnsUM-MAmSPCoXMAcyCGzCMFtArB7HygdlviOfUvrlNs5Bmx3gOAtUGR6tfZV8XwGG_H6z35V_Ph08333pbz7-vl29-GuNE1Tp7LWYz3oDhuj517PWjbQj5OAuqlHlKjzmmsUY9t3I3SDHgYx8aHTWretAaivituz7-ThqO4DLRAelAdSjxc-7BWERMaiQpRTPw0CZe7XCq3roamzd7Y1hvdN9npz9roP_ueKMamFokFrwaFfo6plI3lT93yTDmepCT7GgLMylCDlQacAZJXgaktGHdWWqdoyVUKonFhG5X_o31c_Cb0_Q5hneSIMKhpCZ3CikHPPn6Wn8N-qf7-u
CitedBy_id crossref_primary_10_1016_j_compag_2025_110464
crossref_primary_10_1016_j_rineng_2025_107391
Cites_doi 10.2527/af.2017.0102
10.1016/j.prevetmed.2010.06.013
10.1016/j.patrec.2020.07.042
10.1016/j.compag.2019.105179
10.1016/j.livsci.2019.02.003
10.1016/j.compag.2018.12.023
10.1016/j.livsci.2021.104488
10.1016/j.applanim.2021.105402
10.1016/j.compag.2024.108894
10.1016/j.sbsr.2020.100367
10.3389/fvets.2021.634338
10.1080/1745039X.2020.1721260
10.1371/journal.pone.0077814
10.3168/jds.2018-15701
10.2527/jas1970.302203x
10.1016/j.jveb.2017.02.002
10.1111/j.1365-2494.1950.tb01285.x
10.1086/402403
10.1017/S0022029917000668
10.1016/j.patrec.2005.10.010
10.3390/dairy2010010
10.3389/fvets.2019.00289
10.1111/2041-210X.12584
10.1016/j.physleta.2007.03.050
10.3389/fanim.2021.737213
10.3168/jds.2018-15711
10.1016/j.compag.2023.107945
10.1016/j.compag.2017.02.021
10.3390/ani11123438
10.3390/ani12091060
10.1016/j.anireprosci.2017.10.003
10.1016/j.vetpar.2012.10.023
10.3390/ani11102779
10.1016/S0376-6357(02)00081-5
10.3168/jds.2009-2326
10.3168/jds.S0022-0302(04)73293-2
10.1016/j.applanim.2018.12.003
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.aiia.2024.11.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2589-7217
EndPage 98
ExternalDocumentID oai_doaj_org_article_ee2d7d81e26e451bb3843de1a68cc074
10_1016_j_aiia_2024_11_002
S2589721724000412
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AAHBH
AALRI
AAXUO
ACLIJ
ADVLN
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
M41
NCXOZ
OK1
ROL
SSZ
AAYWO
AAYXX
CITATION
7S9
L.6
ID FETCH-LOGICAL-c443t-3b938b6e4cbf7bfb24a79d1a3439e2eb39e79de195769a68b881d086bbb55caa3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001415909200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-7217
IngestDate Fri Oct 03 12:48:23 EDT 2025
Fri Aug 22 20:24:10 EDT 2025
Sat Nov 29 02:42:59 EST 2025
Tue Nov 18 22:01:43 EST 2025
Sat Dec 21 16:00:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RumiWatch
Complex behaviour
Multi-dimensional
Cattle
Machine learning
PLF
Parallel
Motion sensors
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c443t-3b938b6e4cbf7bfb24a79d1a3439e2eb39e79de195769a68b881d086bbb55caa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/ee2d7d81e26e451bb3843de1a68cc074
PQID 3242043704
PQPubID 24069
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_ee2d7d81e26e451bb3843de1a68cc074
proquest_miscellaneous_3242043704
crossref_citationtrail_10_1016_j_aiia_2024_11_002
crossref_primary_10_1016_j_aiia_2024_11_002
elsevier_sciencedirect_doi_10_1016_j_aiia_2024_11_002
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Artificial intelligence in agriculture
PublicationYear 2024
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Fraser, Broom (bb0075) 1997
Wang, Pei, Zou, Cheung, He (bb0240) 2007; 368
Gerencsér, Vásárhelyi, Nagy, Vicsek, Miklósi (bb0095) 2013; 8
Barrell (bb0010) 2019; 6
Gary, Stterritt, Hale (bb0085) 1970; 30
Ting (bb0215) 2010
Raynor, Derner, Soder, Augustine (bb0165) 2021; 242
Peng, Kondo, Fujiura, Suzuki, Wulandari, Itoyama (bb0150) 2019; 157
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bb0145) 2011; 12
Jin, Shu, Hu, Jiang, Yan, Qi, Wang, Guo (bb0110) 2024; 220
Zehner, Niederhauser, Nydegger, Grothmann, Keller, Hoch, Haeussermann, Schick (bb0275) 2012
Banhazi, Lehr, Black, Crabtree, Schofield, Tscharke, Berckman (bb0005) 2012
Berckmans (bb0020) 2017; 7
Tribe (bb0225) 1950; 5
von Keyserlingk, Rushen, de Passillé, Weary (bb0235) 2009
D’Andrea, Guccione, Alsaaod, Deiss, Di Loria, Steiner, Ciaramella (bb0035) 2017; 84
DeVries, Von Keyserlingk, Weary (bb0050) 2004; 87
Eibl-Eibesfeldt, Kramer (bb0055) 1958; 33
Désiré, Boissy, Veissier (bb0045) 2002; 60
Lowe, Sutherland, Waas, Schaefer, Cox, Stewart (bb0130) 2019; 102
Bochner, Chandrasekharan (bb0025) 1949
Fan, Liu, Li, Zhao (bb0065) 2023; 211
Li, Shu, Bindelle, Xu, Zhang, Jin, Guo, Wang (bb0125) 2022; 12
Riaboff, Poggi, Madouasse, Couvreur, Aubin, Bédère, Goumand, Chauvin, Plantier (bb0175) 2020; 169
Werner, Schulte, Dickhöfer (bb0260) 2019
(bb0190) 2010
Minegishi, Heins, Pereira (bb0135) 2019; 221
Zehner, Umstätter, Niederhauser, Schick (bb0280) 2017; 136
Ferrari, Piccinini, Silva, Exadaktylos, Berckmans, Guarino (bb0281) 2010; 96
Lee, Seo (bb0115) 2021; 11
(bb0185) 2010
Wottlin, Carstens, Kayser, Pinchak, Pinedo, Richeson (bb0270) 2021; 248
Rau, Chelotti, Vanrell, Giovanini (bb0160) 2020
Werner, Zehner, Umstatter, Nydegger, Schick (bb0255) 2014
Islam, Lomax, Doughty, Islam, Jay, Thomson, Clark (bb0105) 2021; 2
Steinmetz, von Soosten, Hummel, Meyer, Dänicke (bb0195) 2020; 74
Guidotti, Monreale, Ruggieri, Turini, Giannotti, Pedreschi (bb0100) 2018; 51
Reid (bb0170) 2010
Watanabe, Bernardes, Romanzini, Teobaldo, Reis, Munari, Braga, Brito (bb0250) 2021; 11
Gengler (bb0090) 2019; 102
Cerqueira, Araújo, Blanco-Penedo, Cantalapiedra, Sørensen, Niza-Ribeiro (bb0030) 2017; 19
Fawcett (bb0070) 2006; 27
Ting (bb0220) 2010
Benaissa, Tuyttens, Plets, Cattrysse, Martens, Vandaele, Joseph, Sonck (bb0015) 2019; 211
Wang, Fan, Wang (bb0245) 2021; 141
Ting (bb0210) 2010
Neethirajan (bb0140) 2020
de La Torre Capitan, Anglard, Barbet, Le Morvan, Agabriel, Baumont (bb0040) 2016
R Core Team (bb0155) 2023
Stygar, Gómez, Berteselli, Dalla Costa, Canali, Niemi, Llonch, Pastell (bb0200) 2021
Wickham (bb0265) 2009
Tsoumakas, Katakis (bb0230) 2006
(bb0180) 2010
Szyszka, Tolkamp, Edwards, Kyriazakis (bb0205) 2013; 193
Li, Cheng, Cullen (bb0120) 2021; 2
Fadul, Bogdahn, Alsaaod, Hüsler, Starke, Steiner, Hirsbrunner (bb0060) 2017; 187
Friard, Gamba (bb0080) 2016; 7
Cerqueira (10.1016/j.aiia.2024.11.002_bb0030) 2017; 19
Stygar (10.1016/j.aiia.2024.11.002_bb0200) 2021
Reid (10.1016/j.aiia.2024.11.002_bb0170) 2010
Ting (10.1016/j.aiia.2024.11.002_bb0210) 2010
Ting (10.1016/j.aiia.2024.11.002_bb0220) 2010
Fawcett (10.1016/j.aiia.2024.11.002_bb0070) 2006; 27
Islam (10.1016/j.aiia.2024.11.002_bb0105) 2021; 2
Jin (10.1016/j.aiia.2024.11.002_bb0110) 2024; 220
D’Andrea (10.1016/j.aiia.2024.11.002_bb0035) 2017; 84
Fraser (10.1016/j.aiia.2024.11.002_bb0075) 1997
Gerencsér (10.1016/j.aiia.2024.11.002_bb0095) 2013; 8
Benaissa (10.1016/j.aiia.2024.11.002_bb0015) 2019; 211
(10.1016/j.aiia.2024.11.002_bb0180) 2010
Gengler (10.1016/j.aiia.2024.11.002_bb0090) 2019; 102
Watanabe (10.1016/j.aiia.2024.11.002_bb0250) 2021; 11
Fan (10.1016/j.aiia.2024.11.002_bb0065) 2023; 211
Szyszka (10.1016/j.aiia.2024.11.002_bb0205) 2013; 193
Peng (10.1016/j.aiia.2024.11.002_bb0150) 2019; 157
Wang (10.1016/j.aiia.2024.11.002_bb0245) 2021; 141
Désiré (10.1016/j.aiia.2024.11.002_bb0045) 2002; 60
Zehner (10.1016/j.aiia.2024.11.002_bb0275) 2012
Bochner (10.1016/j.aiia.2024.11.002_bb0025) 1949
Tribe (10.1016/j.aiia.2024.11.002_bb0225) 1950; 5
Lee (10.1016/j.aiia.2024.11.002_bb0115) 2021; 11
Tsoumakas (10.1016/j.aiia.2024.11.002_bb0230) 2006
Friard (10.1016/j.aiia.2024.11.002_bb0080) 2016; 7
Fadul (10.1016/j.aiia.2024.11.002_bb0060) 2017; 187
Ferrari (10.1016/j.aiia.2024.11.002_bb0281) 2010; 96
Wang (10.1016/j.aiia.2024.11.002_bb0240) 2007; 368
Lowe (10.1016/j.aiia.2024.11.002_bb0130) 2019; 102
Gary (10.1016/j.aiia.2024.11.002_bb0085) 1970; 30
R Core Team (10.1016/j.aiia.2024.11.002_bb0155) 2023
Li (10.1016/j.aiia.2024.11.002_bb0120) 2021; 2
Ting (10.1016/j.aiia.2024.11.002_bb0215) 2010
de La Torre Capitan (10.1016/j.aiia.2024.11.002_bb0040) 2016
Zehner (10.1016/j.aiia.2024.11.002_bb0280) 2017; 136
Steinmetz (10.1016/j.aiia.2024.11.002_bb0195) 2020; 74
Riaboff (10.1016/j.aiia.2024.11.002_bb0175) 2020; 169
(10.1016/j.aiia.2024.11.002_bb0185) 2010
Banhazi (10.1016/j.aiia.2024.11.002_bb0005) 2012
Berckmans (10.1016/j.aiia.2024.11.002_bb0020) 2017; 7
Guidotti (10.1016/j.aiia.2024.11.002_bb0100) 2018; 51
Raynor (10.1016/j.aiia.2024.11.002_bb0165) 2021; 242
Li (10.1016/j.aiia.2024.11.002_bb0125) 2022; 12
Rau (10.1016/j.aiia.2024.11.002_bb0160) 2020
Minegishi (10.1016/j.aiia.2024.11.002_bb0135) 2019; 221
Pedregosa (10.1016/j.aiia.2024.11.002_bb0145) 2011; 12
Neethirajan (10.1016/j.aiia.2024.11.002_bb0140) 2020
(10.1016/j.aiia.2024.11.002_bb0190) 2010
Werner (10.1016/j.aiia.2024.11.002_bb0255) 2014
Wickham (10.1016/j.aiia.2024.11.002_bb0265) 2009
Werner (10.1016/j.aiia.2024.11.002_bb0260) 2019
Wottlin (10.1016/j.aiia.2024.11.002_bb0270) 2021; 248
Barrell (10.1016/j.aiia.2024.11.002_bb0010) 2019; 6
DeVries (10.1016/j.aiia.2024.11.002_bb0050) 2004; 87
Eibl-Eibesfeldt (10.1016/j.aiia.2024.11.002_bb0055) 1958; 33
von Keyserlingk (10.1016/j.aiia.2024.11.002_bb0235) 2009
References_xml – volume: 2
  start-page: 104
  year: 2021
  end-page: 111
  ident: bb0120
  article-title: Validation and use of the RumiWatch noseband sensor for monitoring grazing Behaviours of lactating dairy cows
  publication-title: Dairy
– start-page: 781
  year: 2010
  ident: bb0210
  article-title: Precision and recall
  publication-title: Encyclopedia of Machine Learning
– volume: 211
  start-page: 9
  year: 2019
  end-page: 16
  ident: bb0015
  article-title: Classification of ingestive-related cow behaviours using RumiWatch halter and neck-mounted accelerometers
  publication-title: Appl. Anim. Behav. Sci.
– volume: 11
  year: 2021
  ident: bb0250
  article-title: Strategy to predict high and low frequency behaviors using triaxial accelerometers in grazing of beef cattle
  publication-title: Animals
– volume: 7
  start-page: 6
  year: 2017
  end-page: 11
  ident: bb0020
  article-title: General introduction to precision livestock farming
  publication-title: Anim. Front.
– year: 2012
  ident: bb0275
  article-title: Validation of a new health monitoring system (RumiWatch) for combined automatic measurement of rumination, feed intake, water intake and locomotion in dairy cows
  publication-title: Proceedings of International Conference of Agricultural Engineering CIGR-Ageng
– volume: 60
  start-page: 165
  year: 2002
  end-page: 180
  ident: bb0045
  article-title: Emotions in farm animals: a new approach to animal welfare in applied ethology
  publication-title: Behav. Process.
– volume: 221
  start-page: 144
  year: 2019
  end-page: 154
  ident: bb0135
  article-title: Peri-estrus activity and rumination time and its application to estrus prediction: evidence from dairy herds under organic grazing and low-input conventional production
  publication-title: Livest. Sci.
– volume: 141
  start-page: 61
  year: 2021
  end-page: 67
  ident: bb0245
  article-title: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning
  publication-title: Pattern Recogn. Lett.
– start-page: 1
  year: 2016
  end-page: 15
  ident: bb0040
  article-title: Are physical and feeding activities at pasture impacted by cattle breed and previous feeding restriction?
  publication-title: In: 67. Annual Meeting of the European Association for Animal Production (EAAP)
– volume: 368
  start-page: 38
  year: 2007
  end-page: 47
  ident: bb0240
  article-title: The asymptotic deterministic randomness
  publication-title: Phys. Lett. A
– volume: 136
  start-page: 31
  year: 2017
  end-page: 41
  ident: bb0280
  article-title: System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows
  publication-title: Comput. Electron. Agric.
– year: 2020
  ident: bb0140
  article-title: The role of sensors, big data and machine learning in modern animal farming
  publication-title: Sens. Biosensing Res.
– volume: 187
  start-page: 37
  year: 2017
  end-page: 46
  ident: bb0060
  article-title: Prediction of calving time in dairy cattle
  publication-title: Anim. Reprod. Sci.
– volume: 248
  year: 2021
  ident: bb0270
  article-title: Efficacy of statistical process control procedures to monitor deviations in physical behavior for preclinical detection of bovine respiratory disease in feedlot cattle
  publication-title: Livest. Sci.
– year: 2010
  ident: bb0190
  publication-title: F1-Measure. Encyclopedia of Machine Learning
– volume: 211
  year: 2023
  ident: bb0065
  article-title: Bottom-up cattle pose estimation via concise multi-branch network
  publication-title: Comput. Electron. Agric.
– year: 2014
  ident: bb0255
  article-title: Application of a noseband pressure sensor for automatic measurement of horses’ chewing activity: A pilot study
  publication-title: International Conference of Agricultural Engineering
– year: 2021
  ident: bb0200
  article-title: A systematic review on commercially available and validated sensor Technologies for Welfare Assessment of dairy cattle
  publication-title: Front. Vet. Sci.
– volume: 19
  start-page: 72
  year: 2017
  end-page: 77
  ident: bb0030
  article-title: Relationship between stepping and kicking behavior and milking management in dairy cattle herds
  publication-title: J. Vet. Behav.
– volume: 193
  start-page: 214
  year: 2013
  end-page: 222
  ident: bb0205
  article-title: Do the changes in the behaviours of cattle during parasitism with Ostertagia ostertagi have a potential diagnostic value?
  publication-title: Vet. Parasitol.
– volume: 51
  year: 2018
  ident: bb0100
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Comput. Surv.
– year: 2009
  ident: bb0235
  article-title: Invited review: the welfare of dairy cattle-key concepts and the role of science
  publication-title: J. Dairy Sci.
– volume: 87
  start-page: 1432
  year: 2004
  end-page: 1438
  ident: bb0050
  article-title: Effect of feeding space on the inter-cow distance, aggression, and feeding behavior of free-stall housed lactating dairy cows
  publication-title: J. Dairy Sci.
– volume: 242
  year: 2021
  ident: bb0165
  article-title: Noseband sensor validation and behavioural indicators for assessing beef cattle grazing on extensive pastures
  publication-title: Appl. Anim. Behav. Sci.
– volume: 102
  start-page: 5389
  year: 2019
  end-page: 5402
  ident: bb0130
  article-title: Physiological and behavioral responses as indicators for early disease detection in dairy calves
  publication-title: J. Dairy Sci.
– volume: 11
  start-page: 2779
  year: 2021
  ident: bb0115
  article-title: Wearable wireless biosensor technology for monitoring cattle: a review
  publication-title: Animals
– year: 2010
  ident: bb0185
  publication-title: Noise. Encyclopedia of Machine Learning
– start-page: 209
  year: 2010
  ident: bb0220
  article-title: Confusion matrix
  publication-title: Encyclopedia of Machine Learning
– start-page: 780
  year: 2010
  ident: bb0215
  article-title: Precision
  publication-title: Encyclopedia of Machine Learning
– year: 2006
  ident: bb0230
  article-title: Multi-Label Classification: An Overview International Journal of Data Warehousing and Mining. The Label Powerset Algorithm is called PT3 3
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bb0145
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 84
  start-page: 391
  year: 2017
  end-page: 394
  ident: bb0035
  article-title: Validation of a pedometer algorithm as a tool for evaluation of locomotor behaviour in dairy Mediterranean buffalo
  publication-title: J. Dairy Res.
– volume: 169
  year: 2020
  ident: bb0175
  article-title: Development of a methodological framework for a robust prediction of the main behaviours of dairy cows using a combination of machine learning algorithms on accelerometer data
  publication-title: Comput. Electron. Agric.
– year: 2009
  ident: bb0265
  article-title: ggplot2: Elegant Graphics for Data Analysis
– volume: 30
  start-page: 203
  year: 1970
  end-page: 206
  ident: bb0085
  article-title: Behaviour of Charolais cattle on pasture
  publication-title: J. Anim. Sci.
– volume: 6
  year: 2019
  ident: bb0010
  article-title: An appraisal of methods for measuring welfare of grazing ruminants
  publication-title: Front. Vet. Sci.
– volume: 5
  start-page: 209
  year: 1950
  end-page: 224
  ident: bb0225
  article-title: The behaviour of the grazing animal: a critical reiew of present knowledge
  publication-title: Grass Forage Sci.
– year: 2023
  ident: bb0155
  article-title: R: A language and environment for statistical computing
  publication-title: R: A Language and Environment for Statistical Computing
– start-page: 447
  year: 2010
  end-page: 454
  ident: bb0170
  article-title: Generalization bounds
  publication-title: Encyclopedia of Machine Learning
– volume: 74
  start-page: 164
  year: 2020
  end-page: 172
  ident: bb0195
  article-title: Validation of the RumiWatch converter V0.7.4.5 classification accuracy for the automatic monitoring of behavioural characteristics in dairy cows
  publication-title: Arch. Anim. Nutr.
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bb0070
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn. Lett.
– start-page: 78
  year: 2019
  ident: bb0260
  article-title: Pilot study to assess the accuracy of the RumiWatch noseband sensor for detecting grazing behaviour of sheep
  publication-title: Precision Livestock Farming. Cork, Ireland
– year: 1949
  ident: bb0025
  article-title: Fourier transforms
– year: 2010
  ident: bb0180
  publication-title: Supervised Learning. Encyclopedia of Machine Learning
– volume: 12
  start-page: 1060
  year: 2022
  ident: bb0125
  article-title: Classification and analysis of multiple cattle unitary behaviors and movements based on machine learning methods
  publication-title: Animals
– start-page: 771
  year: 2020
  end-page: 776
  ident: bb0160
  article-title: Developments on real-time monitoring of grazing cattle feeding behavior using sound
  publication-title: 2020 IEEE International Conference on Industrial Technology (ICIT)
– volume: 102
  start-page: 5756
  year: 2019
  end-page: 5763
  ident: bb0090
  article-title: Symposium review: challenges and opportunities for evaluating and using the genetic potential of dairy cattle in the new era of sensor data from automation
  publication-title: J. Dairy Sci.
– volume: 157
  start-page: 247
  year: 2019
  end-page: 253
  ident: bb0150
  article-title: Classification of multiple cattle behavior patterns using a recurrent neural network with long short-term memory and inertial measurement units
  publication-title: Comput. Electron. Agric.
– year: 1997
  ident: bb0075
  article-title: Farm Animal Behaviour and Welfa3re
– volume: 2
  year: 2021
  ident: bb0105
  article-title: Automated monitoring of cattle heat stress and its mitigation
  publication-title: Front. Anim. Sci.
– volume: 7
  start-page: 1325
  year: 2016
  end-page: 1330
  ident: bb0080
  article-title: BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations
  publication-title: Methods Ecol. Evol.
– year: 2012
  ident: bb0005
  article-title: Precision Livestock Farming: An International Review of Scientific and Commercial Aspects 5
– volume: 8
  year: 2013
  ident: bb0095
  article-title: Identification of behaviour in freely moving dogs (Canis familiaris) using inertial sensors
  publication-title: PLoS One
– volume: 220
  year: 2024
  ident: bb0110
  article-title: Behavior classification and spatiotemporal analysis of grazing sheep using deep learning
  publication-title: Comput. Electron. Agric.
– volume: 96
  start-page: 276
  year: 2010
  end-page: 280
  ident: bb0281
  article-title: Cough sound description in relation to respiratory diseases in dairy calves
  publication-title: Prev. Vet. Med.
– volume: 33
  year: 1958
  ident: bb0055
  article-title: Ethology, the comparative study of animal behaviour
  publication-title: Q. Rev. Biol.
– volume: 7
  start-page: 6
  year: 2017
  ident: 10.1016/j.aiia.2024.11.002_bb0020
  article-title: General introduction to precision livestock farming
  publication-title: Anim. Front.
  doi: 10.2527/af.2017.0102
– volume: 96
  start-page: 276
  issue: 3–4
  year: 2010
  ident: 10.1016/j.aiia.2024.11.002_bb0281
  article-title: Cough sound description in relation to respiratory diseases in dairy calves
  publication-title: Prev. Vet. Med.
  doi: 10.1016/j.prevetmed.2010.06.013
– volume: 141
  start-page: 61
  year: 2021
  ident: 10.1016/j.aiia.2024.11.002_bb0245
  article-title: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2020.07.042
– volume: 169
  year: 2020
  ident: 10.1016/j.aiia.2024.11.002_bb0175
  article-title: Development of a methodological framework for a robust prediction of the main behaviours of dairy cows using a combination of machine learning algorithms on accelerometer data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105179
– volume: 221
  start-page: 144
  year: 2019
  ident: 10.1016/j.aiia.2024.11.002_bb0135
  article-title: Peri-estrus activity and rumination time and its application to estrus prediction: evidence from dairy herds under organic grazing and low-input conventional production
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2019.02.003
– year: 2010
  ident: 10.1016/j.aiia.2024.11.002_bb0190
– volume: 157
  start-page: 247
  year: 2019
  ident: 10.1016/j.aiia.2024.11.002_bb0150
  article-title: Classification of multiple cattle behavior patterns using a recurrent neural network with long short-term memory and inertial measurement units
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.12.023
– year: 2006
  ident: 10.1016/j.aiia.2024.11.002_bb0230
– volume: 248
  year: 2021
  ident: 10.1016/j.aiia.2024.11.002_bb0270
  article-title: Efficacy of statistical process control procedures to monitor deviations in physical behavior for preclinical detection of bovine respiratory disease in feedlot cattle
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2021.104488
– volume: 242
  year: 2021
  ident: 10.1016/j.aiia.2024.11.002_bb0165
  article-title: Noseband sensor validation and behavioural indicators for assessing beef cattle grazing on extensive pastures
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2021.105402
– start-page: 771
  year: 2020
  ident: 10.1016/j.aiia.2024.11.002_bb0160
  article-title: Developments on real-time monitoring of grazing cattle feeding behavior using sound
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.aiia.2024.11.002_bb0145
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 220
  year: 2024
  ident: 10.1016/j.aiia.2024.11.002_bb0110
  article-title: Behavior classification and spatiotemporal analysis of grazing sheep using deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108894
– year: 2020
  ident: 10.1016/j.aiia.2024.11.002_bb0140
  article-title: The role of sensors, big data and machine learning in modern animal farming
  publication-title: Sens. Biosensing Res.
  doi: 10.1016/j.sbsr.2020.100367
– year: 2021
  ident: 10.1016/j.aiia.2024.11.002_bb0200
  article-title: A systematic review on commercially available and validated sensor Technologies for Welfare Assessment of dairy cattle
  publication-title: Front. Vet. Sci.
  doi: 10.3389/fvets.2021.634338
– year: 2010
  ident: 10.1016/j.aiia.2024.11.002_bb0180
– year: 2010
  ident: 10.1016/j.aiia.2024.11.002_bb0185
– volume: 74
  start-page: 164
  year: 2020
  ident: 10.1016/j.aiia.2024.11.002_bb0195
  article-title: Validation of the RumiWatch converter V0.7.4.5 classification accuracy for the automatic monitoring of behavioural characteristics in dairy cows
  publication-title: Arch. Anim. Nutr.
  doi: 10.1080/1745039X.2020.1721260
– volume: 8
  year: 2013
  ident: 10.1016/j.aiia.2024.11.002_bb0095
  article-title: Identification of behaviour in freely moving dogs (Canis familiaris) using inertial sensors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0077814
– volume: 102
  start-page: 5389
  issue: 6
  year: 2019
  ident: 10.1016/j.aiia.2024.11.002_bb0130
  article-title: Physiological and behavioral responses as indicators for early disease detection in dairy calves
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2018-15701
– year: 1997
  ident: 10.1016/j.aiia.2024.11.002_bb0075
– volume: 30
  start-page: 203
  year: 1970
  ident: 10.1016/j.aiia.2024.11.002_bb0085
  article-title: Behaviour of Charolais cattle on pasture
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas1970.302203x
– volume: 19
  start-page: 72
  year: 2017
  ident: 10.1016/j.aiia.2024.11.002_bb0030
  article-title: Relationship between stepping and kicking behavior and milking management in dairy cattle herds
  publication-title: J. Vet. Behav.
  doi: 10.1016/j.jveb.2017.02.002
– volume: 5
  start-page: 209
  year: 1950
  ident: 10.1016/j.aiia.2024.11.002_bb0225
  article-title: The behaviour of the grazing animal: a critical reiew of present knowledge
  publication-title: Grass Forage Sci.
  doi: 10.1111/j.1365-2494.1950.tb01285.x
– year: 2023
  ident: 10.1016/j.aiia.2024.11.002_bb0155
  article-title: R: A language and environment for statistical computing
– start-page: 78
  year: 2019
  ident: 10.1016/j.aiia.2024.11.002_bb0260
  article-title: Pilot study to assess the accuracy of the RumiWatch noseband sensor for detecting grazing behaviour of sheep
– volume: 33
  year: 1958
  ident: 10.1016/j.aiia.2024.11.002_bb0055
  article-title: Ethology, the comparative study of animal behaviour
  publication-title: Q. Rev. Biol.
  doi: 10.1086/402403
– volume: 84
  start-page: 391
  year: 2017
  ident: 10.1016/j.aiia.2024.11.002_bb0035
  article-title: Validation of a pedometer algorithm as a tool for evaluation of locomotor behaviour in dairy Mediterranean buffalo
  publication-title: J. Dairy Res.
  doi: 10.1017/S0022029917000668
– volume: 27
  start-page: 861
  year: 2006
  ident: 10.1016/j.aiia.2024.11.002_bb0070
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 2
  start-page: 104
  year: 2021
  ident: 10.1016/j.aiia.2024.11.002_bb0120
  article-title: Validation and use of the RumiWatch noseband sensor for monitoring grazing Behaviours of lactating dairy cows
  publication-title: Dairy
  doi: 10.3390/dairy2010010
– volume: 6
  year: 2019
  ident: 10.1016/j.aiia.2024.11.002_bb0010
  article-title: An appraisal of methods for measuring welfare of grazing ruminants
  publication-title: Front. Vet. Sci.
  doi: 10.3389/fvets.2019.00289
– volume: 7
  start-page: 1325
  year: 2016
  ident: 10.1016/j.aiia.2024.11.002_bb0080
  article-title: BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12584
– volume: 368
  start-page: 38
  issue: 1–2
  year: 2007
  ident: 10.1016/j.aiia.2024.11.002_bb0240
  article-title: The asymptotic deterministic randomness
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.03.050
– year: 2012
  ident: 10.1016/j.aiia.2024.11.002_bb0275
  article-title: Validation of a new health monitoring system (RumiWatch) for combined automatic measurement of rumination, feed intake, water intake and locomotion in dairy cows
– volume: 2
  year: 2021
  ident: 10.1016/j.aiia.2024.11.002_bb0105
  article-title: Automated monitoring of cattle heat stress and its mitigation
  publication-title: Front. Anim. Sci.
  doi: 10.3389/fanim.2021.737213
– volume: 102
  start-page: 5756
  year: 2019
  ident: 10.1016/j.aiia.2024.11.002_bb0090
  article-title: Symposium review: challenges and opportunities for evaluating and using the genetic potential of dairy cattle in the new era of sensor data from automation
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2018-15711
– start-page: 781
  year: 2010
  ident: 10.1016/j.aiia.2024.11.002_bb0210
  article-title: Precision and recall
– volume: 211
  year: 2023
  ident: 10.1016/j.aiia.2024.11.002_bb0065
  article-title: Bottom-up cattle pose estimation via concise multi-branch network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107945
– volume: 136
  start-page: 31
  year: 2017
  ident: 10.1016/j.aiia.2024.11.002_bb0280
  article-title: System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.02.021
– volume: 11
  year: 2021
  ident: 10.1016/j.aiia.2024.11.002_bb0250
  article-title: Strategy to predict high and low frequency behaviors using triaxial accelerometers in grazing of beef cattle
  publication-title: Animals
  doi: 10.3390/ani11123438
– start-page: 447
  year: 2010
  ident: 10.1016/j.aiia.2024.11.002_bb0170
  article-title: Generalization bounds
– start-page: 1
  year: 2016
  ident: 10.1016/j.aiia.2024.11.002_bb0040
  article-title: Are physical and feeding activities at pasture impacted by cattle breed and previous feeding restriction?
– volume: 12
  start-page: 1060
  issue: 9
  year: 2022
  ident: 10.1016/j.aiia.2024.11.002_bb0125
  article-title: Classification and analysis of multiple cattle unitary behaviors and movements based on machine learning methods
  publication-title: Animals
  doi: 10.3390/ani12091060
– year: 2014
  ident: 10.1016/j.aiia.2024.11.002_bb0255
  article-title: Application of a noseband pressure sensor for automatic measurement of horses’ chewing activity: A pilot study
– volume: 187
  start-page: 37
  year: 2017
  ident: 10.1016/j.aiia.2024.11.002_bb0060
  article-title: Prediction of calving time in dairy cattle
  publication-title: Anim. Reprod. Sci.
  doi: 10.1016/j.anireprosci.2017.10.003
– volume: 51
  year: 2018
  ident: 10.1016/j.aiia.2024.11.002_bb0100
  article-title: A survey of methods for explaining black box models
  publication-title: ACM Comput. Surv.
– volume: 193
  start-page: 214
  issue: 1–3
  year: 2013
  ident: 10.1016/j.aiia.2024.11.002_bb0205
  article-title: Do the changes in the behaviours of cattle during parasitism with Ostertagia ostertagi have a potential diagnostic value?
  publication-title: Vet. Parasitol.
  doi: 10.1016/j.vetpar.2012.10.023
– volume: 11
  start-page: 2779
  issue: 10
  year: 2021
  ident: 10.1016/j.aiia.2024.11.002_bb0115
  article-title: Wearable wireless biosensor technology for monitoring cattle: a review
  publication-title: Animals
  doi: 10.3390/ani11102779
– year: 1949
  ident: 10.1016/j.aiia.2024.11.002_bb0025
– start-page: 209
  year: 2010
  ident: 10.1016/j.aiia.2024.11.002_bb0220
  article-title: Confusion matrix
– year: 2009
  ident: 10.1016/j.aiia.2024.11.002_bb0265
– volume: 60
  start-page: 165
  year: 2002
  ident: 10.1016/j.aiia.2024.11.002_bb0045
  article-title: Emotions in farm animals: a new approach to animal welfare in applied ethology
  publication-title: Behav. Process.
  doi: 10.1016/S0376-6357(02)00081-5
– year: 2009
  ident: 10.1016/j.aiia.2024.11.002_bb0235
  article-title: Invited review: the welfare of dairy cattle-key concepts and the role of science
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2009-2326
– year: 2012
  ident: 10.1016/j.aiia.2024.11.002_bb0005
– volume: 87
  start-page: 1432
  issue: 5
  year: 2004
  ident: 10.1016/j.aiia.2024.11.002_bb0050
  article-title: Effect of feeding space on the inter-cow distance, aggression, and feeding behavior of free-stall housed lactating dairy cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(04)73293-2
– start-page: 780
  year: 2010
  ident: 10.1016/j.aiia.2024.11.002_bb0215
  article-title: Precision
– volume: 211
  start-page: 9
  year: 2019
  ident: 10.1016/j.aiia.2024.11.002_bb0015
  article-title: Classification of ingestive-related cow behaviours using RumiWatch halter and neck-mounted accelerometers
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2018.12.003
SSID ssj0002810169
Score 2.309131
Snippet The development of motion sensors for monitoring cattle behaviour has enabled farmers to predict the state of their cattle's welfare more efficiently. While...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 86
SubjectTerms agriculture
algorithms
artificial intelligence
bulls
cameras
Cattle
Charolais
Complex behaviour
head
Machine learning
Motion sensors
Multi-dimensional
Parallel
pedometer
PLF
prediction
RumiWatch
Title Detectability of multi-dimensional movement and behaviour in cattle using sensor data and machine learning algorithms: Study on a Charolais bull
URI https://dx.doi.org/10.1016/j.aiia.2024.11.002
https://www.proquest.com/docview/3242043704
https://doaj.org/article/ee2d7d81e26e451bb3843de1a68cc074
Volume 14
WOSCitedRecordID wos001415909200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-7217
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810169
  issn: 2589-7217
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9UgFCVm4kIXxs_4xtFg4s5UH4VOwd34MXFhJi7UzI5wKX12Mq81bZ-J_2J-svcCnYwuxo1LGigELtx74HBg7AUiBKFrCUXb-rJQGkRhAHyhQNTtGqTw8Xr0t0_1yYk-PTWfrzz1RZywJA-cOu51CGVTN1qE8jCoSgBIrWQThDvU3qP_o9V3XZsrYOosbhkRKjX5lkwidLmuI6GhUr0i2c68j7J4oijY_4dD-mtpjv7m-C67kwNFfpQaeI_dCP19dvtoM2axjPCAXbwPdASQlLZ_8aHlkR5YNKTYn9Q2-HaIguAzd33D85383ci7nvsoX8yJ-L7hExYYRk580ZhzGzmWgedHJTbcnW-GsZu_b6c3nLiHWF3PHafTegTH3cQBsexD9vX4w5d3H4v8wkLhlZJzIcFIDdixHtoaWiiVq00jnMQwJZSIs03AdBAGUYnBHgeN4S2CIACoKu-cfMT2-qEPjxmvMI4ECCZoxDgewEnwGLpguvYaPfGKiaW3rc_y4_QKxrldeGZnlkbI0gghLrE4Qiv28rLMjyS-cW3utzSIlzlJODt-QHOy2Zzsv8xpxarFBGyOQVJsgb_qrq38-WIvFiconbq4Pgy7yVLESgJSa7X_Pxr4hN2iahOj5oDtzeMuPGU3_c-5m8ZncRb8BsWCEHE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detectability+of+multi-dimensional+movement+and+behaviour+in+cattle+using+sensor+data+and+machine+learning+algorithms%3A+Study+on+a+Charolais+bull&rft.jtitle=Artificial+intelligence+in+agriculture&rft.au=Biszkup%2C+Mikl%C3%B3s&rft.au=V%C3%A1s%C3%A1rhelyi%2C+G%C3%A1bor&rft.au=Setiawan%2C+Nuri+Nurlaila&rft.au=M%C3%A1rton%2C+Aliz&rft.date=2024-12-01&rft.issn=2589-7217&rft.eissn=2589-7217&rft.volume=14&rft.spage=86&rft.epage=98&rft_id=info:doi/10.1016%2Fj.aiia.2024.11.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aiia_2024_11_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-7217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-7217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-7217&client=summon