Hybrid data fidelity term approach for quantitative susceptibility mapping

Purpose Susceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a regularization term. The data‐consistency term measures the difference between the desired solution and the measured data using typically the L2‐...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance in medicine Ročník 88; číslo 2; s. 962 - 972
Hlavní autoři: Lambert, Mathias, Tejos, Cristian, Langkammer, Christian, Milovic, Carlos
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.08.2022
John Wiley and Sons Inc
Témata:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose Susceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a regularization term. The data‐consistency term measures the difference between the desired solution and the measured data using typically the L2‐norm. It has been proposed to replace this L2‐norm with the L1‐norm, due to its robustness to outliers and reduction of streaking artifacts arising from highly noisy or strongly perturbed regions. However, in regions with high SNR, the L1‐norm yields a suboptimal denoising performance. In this work, we present a hybrid data fidelity approach that uses the L1‐norm and subsequently the L2‐norm to exploit the strengths of both norms. Methods We developed a hybrid data fidelity term approach for QSM (HD‐QSM) based on linear susceptibility inversion methods, with total variation regularization. Each functional is solved with ADMM. The HD‐QSM approach is a two‐stage method that first finds a fast solution of the L1‐norm functional and then uses this solution to initialize the L2‐norm functional. In both norms we included spatially variable weights that improve the quality of the reconstructions. Results The HD‐QSM approach produced good quantitative reconstructions in terms of structural definition, noise reduction, and avoiding streaking artifacts comparable with nonlinear methods, but with higher computational efficiency. Reconstructions performed with this method achieved first place at the lowest RMS error category in stage 1 of the 2019 QSM Reconstruction Challenge. Conclusions The proposed method allows robust and accurate QSM reconstructions, obtaining superior performance to state‐of‐the‐art methods.
AbstractList Susceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a regularization term. The data-consistency term measures the difference between the desired solution and the measured data using typically the L2-norm. It has been proposed to replace this L2-norm with the L1-norm, due to its robustness to outliers and reduction of streaking artifacts arising from highly noisy or strongly perturbed regions. However, in regions with high SNR, the L1-norm yields a suboptimal denoising performance. In this work, we present a hybrid data fidelity approach that uses the L1-norm and subsequently the L2-norm to exploit the strengths of both norms. We developed a hybrid data fidelity term approach for QSM (HD-QSM) based on linear susceptibility inversion methods, with total variation regularization. Each functional is solved with ADMM. The HD-QSM approach is a two-stage method that first finds a fast solution of the L1-norm functional and then uses this solution to initialize the L2-norm functional. In both norms we included spatially variable weights that improve the quality of the reconstructions. The HD-QSM approach produced good quantitative reconstructions in terms of structural definition, noise reduction, and avoiding streaking artifacts comparable with nonlinear methods, but with higher computational efficiency. Reconstructions performed with this method achieved first place at the lowest RMS error category in stage 1 of the 2019 QSM Reconstruction Challenge. The proposed method allows robust and accurate QSM reconstructions, obtaining superior performance to state-of-the-art methods.
PurposeSusceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a regularization term. The data‐consistency term measures the difference between the desired solution and the measured data using typically the L2‐norm. It has been proposed to replace this L2‐norm with the L1‐norm, due to its robustness to outliers and reduction of streaking artifacts arising from highly noisy or strongly perturbed regions. However, in regions with high SNR, the L1‐norm yields a suboptimal denoising performance. In this work, we present a hybrid data fidelity approach that uses the L1‐norm and subsequently the L2‐norm to exploit the strengths of both norms.MethodsWe developed a hybrid data fidelity term approach for QSM (HD‐QSM) based on linear susceptibility inversion methods, with total variation regularization. Each functional is solved with ADMM. The HD‐QSM approach is a two‐stage method that first finds a fast solution of the L1‐norm functional and then uses this solution to initialize the L2‐norm functional. In both norms we included spatially variable weights that improve the quality of the reconstructions.ResultsThe HD‐QSM approach produced good quantitative reconstructions in terms of structural definition, noise reduction, and avoiding streaking artifacts comparable with nonlinear methods, but with higher computational efficiency. Reconstructions performed with this method achieved first place at the lowest RMS error category in stage 1 of the 2019 QSM Reconstruction Challenge.ConclusionsThe proposed method allows robust and accurate QSM reconstructions, obtaining superior performance to state‐of‐the‐art methods.
Susceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a regularization term. The data-consistency term measures the difference between the desired solution and the measured data using typically the L2-norm. It has been proposed to replace this L2-norm with the L1-norm, due to its robustness to outliers and reduction of streaking artifacts arising from highly noisy or strongly perturbed regions. However, in regions with high SNR, the L1-norm yields a suboptimal denoising performance. In this work, we present a hybrid data fidelity approach that uses the L1-norm and subsequently the L2-norm to exploit the strengths of both norms.PURPOSESusceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a regularization term. The data-consistency term measures the difference between the desired solution and the measured data using typically the L2-norm. It has been proposed to replace this L2-norm with the L1-norm, due to its robustness to outliers and reduction of streaking artifacts arising from highly noisy or strongly perturbed regions. However, in regions with high SNR, the L1-norm yields a suboptimal denoising performance. In this work, we present a hybrid data fidelity approach that uses the L1-norm and subsequently the L2-norm to exploit the strengths of both norms.We developed a hybrid data fidelity term approach for QSM (HD-QSM) based on linear susceptibility inversion methods, with total variation regularization. Each functional is solved with ADMM. The HD-QSM approach is a two-stage method that first finds a fast solution of the L1-norm functional and then uses this solution to initialize the L2-norm functional. In both norms we included spatially variable weights that improve the quality of the reconstructions.METHODSWe developed a hybrid data fidelity term approach for QSM (HD-QSM) based on linear susceptibility inversion methods, with total variation regularization. Each functional is solved with ADMM. The HD-QSM approach is a two-stage method that first finds a fast solution of the L1-norm functional and then uses this solution to initialize the L2-norm functional. In both norms we included spatially variable weights that improve the quality of the reconstructions.The HD-QSM approach produced good quantitative reconstructions in terms of structural definition, noise reduction, and avoiding streaking artifacts comparable with nonlinear methods, but with higher computational efficiency. Reconstructions performed with this method achieved first place at the lowest RMS error category in stage 1 of the 2019 QSM Reconstruction Challenge.RESULTSThe HD-QSM approach produced good quantitative reconstructions in terms of structural definition, noise reduction, and avoiding streaking artifacts comparable with nonlinear methods, but with higher computational efficiency. Reconstructions performed with this method achieved first place at the lowest RMS error category in stage 1 of the 2019 QSM Reconstruction Challenge.The proposed method allows robust and accurate QSM reconstructions, obtaining superior performance to state-of-the-art methods.CONCLUSIONSThe proposed method allows robust and accurate QSM reconstructions, obtaining superior performance to state-of-the-art methods.
Purpose Susceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a regularization term. The data‐consistency term measures the difference between the desired solution and the measured data using typically the L2‐norm. It has been proposed to replace this L2‐norm with the L1‐norm, due to its robustness to outliers and reduction of streaking artifacts arising from highly noisy or strongly perturbed regions. However, in regions with high SNR, the L1‐norm yields a suboptimal denoising performance. In this work, we present a hybrid data fidelity approach that uses the L1‐norm and subsequently the L2‐norm to exploit the strengths of both norms. Methods We developed a hybrid data fidelity term approach for QSM (HD‐QSM) based on linear susceptibility inversion methods, with total variation regularization. Each functional is solved with ADMM. The HD‐QSM approach is a two‐stage method that first finds a fast solution of the L1‐norm functional and then uses this solution to initialize the L2‐norm functional. In both norms we included spatially variable weights that improve the quality of the reconstructions. Results The HD‐QSM approach produced good quantitative reconstructions in terms of structural definition, noise reduction, and avoiding streaking artifacts comparable with nonlinear methods, but with higher computational efficiency. Reconstructions performed with this method achieved first place at the lowest RMS error category in stage 1 of the 2019 QSM Reconstruction Challenge. Conclusions The proposed method allows robust and accurate QSM reconstructions, obtaining superior performance to state‐of‐the‐art methods.
Author Milovic, Carlos
Tejos, Cristian
Langkammer, Christian
Lambert, Mathias
AuthorAffiliation 4 Department of Neurology Medical University of Graz Graz Austria
6 Department of Medical Physics and Biomedical Engineering University College London London UK
3 Millennium Institute for Intelligent Healthcare Engineering (iHEALTH) Santiago Chile
5 BioTechMed Graz Graz Austria
2 Biomedical Imaging Center Pontificia Universidad Catolica de Chile Santiago Chile
1 Department of Electrical Engineering Pontificia Universidad Catolica de Chile Santiago Chile
AuthorAffiliation_xml – name: 1 Department of Electrical Engineering Pontificia Universidad Catolica de Chile Santiago Chile
– name: 4 Department of Neurology Medical University of Graz Graz Austria
– name: 5 BioTechMed Graz Graz Austria
– name: 6 Department of Medical Physics and Biomedical Engineering University College London London UK
– name: 2 Biomedical Imaging Center Pontificia Universidad Catolica de Chile Santiago Chile
– name: 3 Millennium Institute for Intelligent Healthcare Engineering (iHEALTH) Santiago Chile
Author_xml – sequence: 1
  givenname: Mathias
  orcidid: 0000-0002-2996-8141
  surname: Lambert
  fullname: Lambert, Mathias
  email: mglambert@uc.cl
  organization: Millennium Institute for Intelligent Healthcare Engineering (iHEALTH)
– sequence: 2
  givenname: Cristian
  surname: Tejos
  fullname: Tejos, Cristian
  organization: Millennium Institute for Intelligent Healthcare Engineering (iHEALTH)
– sequence: 3
  givenname: Christian
  orcidid: 0000-0002-7097-9707
  surname: Langkammer
  fullname: Langkammer, Christian
  organization: BioTechMed Graz
– sequence: 4
  givenname: Carlos
  orcidid: 0000-0002-1196-6703
  surname: Milovic
  fullname: Milovic, Carlos
  organization: University College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35435267$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1PFTEUxRsDkQe68B8wk7jRxUA_p9ONiSEqGAiJ0XVzX9uBkpnp0HYw77-37wODBFZ3cX_n5Nx7DtHeGEaH0DuCjwnG9GSIwzFVlLSv0IIISmsqFN9DCyw5rhlR_AAdpnSLMVZK8tfogAnOBG3kAv04Wy2jt5WFDFXnret9XlXZxaGCaYoBzE3VhVjdzTBmnyH7e1elORk3Zb_0G3oopB-v36D9Dvrk3u7mEfr97euv07P64ur7-emXi9pwztraCCutoKYFMAQa2ZrWmqajpJMAJZYBTghpsOCYO447JhsulVWuXQpjmWBH6PPWd5qXg7PGjTlCr6foB4grHcDr_zejv9HX4V4rRnnL1wYfdwYx3M0uZT34clDfw-jCnDRtBMWMMIIL-uEJehvmOJbzCiUVVkQRXqj3jxP9i_Lw5gKcbAETQ0rRddpsfhnWAX2vCdbrInUpUm-KLIpPTxQPps-xO_c_vnerl0F9-fNyq_gLyZOttg
CitedBy_id crossref_primary_10_1002_nbm_5163
crossref_primary_10_1002_mrm_29597
crossref_primary_10_1002_hbm_70187
Cites_doi 10.1002/mrm.22135
10.1148/radiol.12120707
10.1109/TMI.2009.2023787
10.1002/cmr.b.10083
10.1016/j.neuroimage.2012.05.049
10.1109/TMI.2010.2090538
10.1016/j.mri.2019.08.028
10.1002/mrm.21710
10.1016/j.mri.2014.09.004
10.1561/2200000016
10.1371/journal.pone.0162460
10.1002/jmri.22276
10.1002/mrm.28716
10.1002/mrm.21828
10.1002/mrm.28754
10.3174/ajnr.A4617
10.1002/jmri.24644
10.1093/brain/aww278
10.1002/mrm.28957
10.1002/cmr.a.20124
10.1109/TMI.2018.2884093
10.1002/nbm.3604
10.1002/mrm.22187
10.1038/jcbfm.2011.118
10.1371/journal.pone.0081093
10.1002/mrm.24272
10.1117/12.2188535
10.1109/TIP.2011.2172801
10.1002/mrm.27483
10.1002/mrm.1910340618
10.1002/nbm.3601
10.1002/cmr.b.20034
10.1002/mrm.28435
10.1002/mrm.26830
10.1002/mrm.27073
10.1002/nbm.1670
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.29218
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Biochemistry Abstracts 1
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Lambert et al
EISSN 1522-2594
EndPage 972
ExternalDocumentID PMC9324845
35435267
10_1002_mrm_29218
MRM29218
Genre technicalNote
Journal Article
GrantInformation_xml – fundername: Austrian Science Fund
  funderid: P30134
– fundername: National Agency for Research and De
– fundername: Austrian Science Fund
  grantid: P30134
– fundername: ;
  grantid: P30134
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4438-c5d7d52c8aac1a678c8dc6f21f7aa435ca4111605404e40f376479d9e8b5cd353
IEDL.DBID 24P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000783191500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Nov 04 01:54:13 EST 2025
Sun Nov 09 13:38:26 EST 2025
Sat Nov 29 14:27:57 EST 2025
Mon Jul 21 05:15:39 EDT 2025
Tue Nov 18 21:52:32 EST 2025
Sat Nov 29 06:34:34 EST 2025
Wed Jan 22 16:22:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords L1-norm
L2-norm
QSM
QSM challenge
Augmented Lagrangian
Language English
License Attribution
2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4438-c5d7d52c8aac1a678c8dc6f21f7aa435ca4111605404e40f376479d9e8b5cd353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Austrian Science Fund, Grant/Award Number: P30134; National Agency for Research and De
ORCID 0000-0002-7097-9707
0000-0002-2996-8141
0000-0002-1196-6703
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29218
PMID 35435267
PQID 2679091914
PQPubID 1016391
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9324845
proquest_miscellaneous_2652031310
proquest_journals_2679091914
pubmed_primary_35435267
crossref_citationtrail_10_1002_mrm_29218
crossref_primary_10_1002_mrm_29218
wiley_primary_10_1002_mrm_29218_MRM29218
PublicationCentury 2000
PublicationDate August 2022
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2010; 32
2003; 19B
2009; 62
2013; 69
2021; 86
2008; 32A
2009; 61
1995; 34
2015; 33
2011; 31
2018; 80
2011; 30
2019; 38
2013; 267
2022; 87
2013; 8
2016; 37
2010; 63
2016; 11
2005; 25
2017; 30
2019; 81
2019; 63
2000
2010; 29
2020
2015; 41
2017; 140
2011; 24
2015
2010; 3
2021; 85
2008; 60
2012; 21
2012; 62
2018; 79
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
Hansen PC (e_1_2_9_33_1) 2000
Lambert M (e_1_2_9_31_1) 2020
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 19B
  start-page: 26
  year: 2003
  end-page: 34
  article-title: A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility
  publication-title: Concepts Magn Reson
– volume: 63
  start-page: 250
  year: 2019
  end-page: 257
  article-title: Noise estimation for the velocity in MRI phase‐contrast
  publication-title: Magn Reson Imaging
– volume: 3
  start-page: 1
  year: 2010
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found Trends Mach Learn
– start-page: 3205
  year: 2020
  article-title: Hybrid data fidelity term approach for quantitative susceptibility mapping
  publication-title: In: Proceedings of the 29th Annual Meeting of ISMRM [Virtual Meeting]
– volume: 21
  start-page: 1650
  year: 2012
  end-page: 1662
  article-title: Spatially adapted total variation model to remove multiplicative noise
  publication-title: IEEE Trans Image Process
– volume: 30
  start-page: 1028
  year: 2011
  end-page: 1041
  article-title: MR image reconstruction from highly undersampled k‐space data by dictionary learning
  publication-title: IEEE Trans Med Imaging
– volume: 32
  start-page: 663
  year: 2010
  end-page: 676
  article-title: Susceptibility mapping as a means to visualize veins and quantify oxygen saturation
  publication-title: J Magn Reson Imaging
– volume: 79
  start-page: 1661
  year: 2018
  end-page: 1673
  article-title: Quantitative susceptibility mapping: report from the 2016 reconstruction challenge
  publication-title: Magn Reson Med
– start-page: 119
  year: 2000
  end-page: 142
– volume: 267
  start-page: 551
  year: 2013
  end-page: 559
  article-title: Quantitative susceptibility mapping in multiple sclerosis
  publication-title: Radiology
– volume: 33
  start-page: 1
  year: 2015
  end-page: 25
  article-title: Quantitative susceptibility mapping: current status and future directions
  publication-title: Magn Reson Imaging
– volume: 34
  start-page: 910
  year: 1995
  end-page: 914
  article-title: The Rician distribution of noisy MRI data [published correction appears in Magn Reson Med 1996;36:332]
  publication-title: Magn Reson Med
– volume: 63
  start-page: 194
  year: 2010
  end-page: 206
  article-title: Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging
  publication-title: Magn Reson Med
– volume: 37
  start-page: 789
  year: 2016
  end-page: 796
  article-title: Quantitative susceptibility mapping suggests altered brain iron in Premanifest Huntington disease
  publication-title: AJNR Am J Neuroradiol
– volume: 25
  start-page: 65
  year: 2005
  end-page: 78
  article-title: Application of a Fourier‐based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility
  publication-title: Concepts Magn Reson Part B Magn Reson Eng
– volume: 86
  start-page: 1241
  year: 2021
  end-page: 1255
  article-title: QSM reconstruction challenge 2.0: design and report of results
  publication-title: Magn Reson Med
– volume: 60
  start-page: 1003
  year: 2008
  end-page: 1009
  article-title: Quantitative MR susceptibility mapping using piece‐wise constant regularized inversion of the magnetic field
  publication-title: Magn Reson Med
– volume: 61
  start-page: 196
  year: 2009
  end-page: 204
  article-title: Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI
  publication-title: Magn Reson Med
– volume: 38
  start-page: 1347
  year: 2019
  end-page: 1357
  article-title: SEGUE: a speedy region‐growing algorithm for unwrapping estimated phase
  publication-title: IEEE Trans Med Imaging
– volume: 41
  start-page: 1065
  year: 2015
  end-page: 1070
  article-title: Increase in the iron content of the substantia nigra and red nucleus in multiple sclerosis and clinically isolated syndrome: a 7 Tesla MRI study
  publication-title: J Magn Reson Imaging
– volume: 32A
  start-page: 409
  year: 2008
  end-page: 416
  article-title: Noise in magnitude magnetic resonance
  publication-title: Concepts Magn Reson Part A
– volume: 11
  year: 2016
  article-title: Quantitative susceptibility mapping in Parkinson's disease
  publication-title: PLoS One
– volume: 85
  start-page: 480
  year: 2021
  end-page: 494
  article-title: Comparison of parameter optimization methods for quantitative susceptibility mapping
  publication-title: Magn Reson Med
– volume: 29
  start-page: 273
  year: 2010
  end-page: 281
  article-title: Nonlinear regularization for per voxel estimation of magnetic susceptibility distributions from MRI field maps
  publication-title: IEEE Trans Med Imaging
– volume: 31
  start-page: 2282
  year: 2011
  end-page: 2292
  article-title: Detection of cerebral microbleeds with quantitative susceptibility mapping in the ArcAbeta mouse model of cerebral amyloidosis
  publication-title: J Cereb Blood Flow Metab
– volume: 8
  year: 2013
  article-title: In vivo quantitative susceptibility mapping (QSM) in Alzheimer's disease
  publication-title: PLoS One
– volume: 62
  start-page: 1510
  year: 2009
  end-page: 1522
  article-title: Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data
  publication-title: Magn Reson Med
– volume: 24
  start-page: 1129
  year: 2011
  end-page: 1136
  article-title: A novel background field removal method for MRI using projection onto dipole fields (PDF)
  publication-title: NMR Biomed
– volume: 69
  start-page: 467
  year: 2013
  end-page: 476
  article-title: Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping
  publication-title: Magn Reson Med
– volume: 30
  year: 2017
  article-title: An illustrated comparison of processing methods for phase MRI and QSM: removal of background field contributions from sources outside the region of interest
  publication-title: NMR Biomed
– volume: 140
  start-page: 118
  year: 2017
  end-page: 131
  article-title: The whole‐brain pattern of magnetic susceptibility perturbations in Parkinson's disease
  publication-title: Brain
– volume: 81
  start-page: 1399
  year: 2019
  end-page: 1411
  article-title: Weak‐harmonic regularization for quantitative susceptibility mapping
  publication-title: Magn Reson Med
– volume: 80
  start-page: 814
  year: 2018
  end-page: 821
  article-title: Fast nonlinear susceptibility inversion with variational regularization
  publication-title: Magn Reson Med
– volume: 87
  start-page: 457
  year: 2022
  end-page: 473
  article-title: Streaking artifact suppression of quantitative susceptibility mapping reconstructions via L1‐norm data fidelity optimization (L1‐QSM)
  publication-title: Magn Reson Med
– volume: 30
  year: 2017
  article-title: An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping
  publication-title: NMR Biomed
– volume: 62
  start-page: 1593
  year: 2012
  end-page: 1599
  article-title: Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study
  publication-title: Neuroimage
– year: 2015
– volume: 86
  start-page: 526
  year: 2021
  end-page: 542
  article-title: QSM reconstruction challenge 2.0: a realistic in silico head phantom for MRI data simulation and evaluation of susceptibility mapping procedures
  publication-title: Magn Reson Med
– ident: e_1_2_9_15_1
  doi: 10.1002/mrm.22135
– ident: e_1_2_9_11_1
  doi: 10.1148/radiol.12120707
– ident: e_1_2_9_16_1
  doi: 10.1109/TMI.2009.2023787
– ident: e_1_2_9_22_1
  doi: 10.1002/cmr.b.10083
– ident: e_1_2_9_3_1
  doi: 10.1016/j.neuroimage.2012.05.049
– ident: e_1_2_9_37_1
  doi: 10.1109/TMI.2010.2090538
– ident: e_1_2_9_25_1
  doi: 10.1016/j.mri.2019.08.028
– ident: e_1_2_9_14_1
  doi: 10.1002/mrm.21710
– ident: e_1_2_9_2_1
  doi: 10.1016/j.mri.2014.09.004
– ident: e_1_2_9_28_1
  doi: 10.1561/2200000016
– ident: e_1_2_9_36_1
– ident: e_1_2_9_8_1
  doi: 10.1371/journal.pone.0162460
– start-page: 119
  volume-title: Computational Inverse Problems in Electrocardiography. (Series 5: Advances in Computational Bioengineering)
  year: 2000
  ident: e_1_2_9_33_1
– ident: e_1_2_9_4_1
  doi: 10.1002/jmri.22276
– ident: e_1_2_9_30_1
  doi: 10.1002/mrm.28716
– ident: e_1_2_9_34_1
  doi: 10.1002/mrm.21828
– ident: e_1_2_9_29_1
  doi: 10.1002/mrm.28754
– ident: e_1_2_9_9_1
  doi: 10.3174/ajnr.A4617
– ident: e_1_2_9_10_1
  doi: 10.1002/jmri.24644
– ident: e_1_2_9_7_1
  doi: 10.1093/brain/aww278
– ident: e_1_2_9_21_1
  doi: 10.1002/mrm.28957
– ident: e_1_2_9_27_1
  doi: 10.1002/cmr.a.20124
– ident: e_1_2_9_38_1
  doi: 10.1109/TMI.2018.2884093
– ident: e_1_2_9_13_1
  doi: 10.1002/nbm.3604
– ident: e_1_2_9_17_1
  doi: 10.1002/mrm.22187
– ident: e_1_2_9_5_1
  doi: 10.1038/jcbfm.2011.118
– ident: e_1_2_9_6_1
  doi: 10.1371/journal.pone.0081093
– ident: e_1_2_9_18_1
  doi: 10.1002/mrm.24272
– ident: e_1_2_9_20_1
  doi: 10.1117/12.2188535
– ident: e_1_2_9_24_1
  doi: 10.1109/TIP.2011.2172801
– ident: e_1_2_9_40_1
  doi: 10.1002/mrm.27483
– ident: e_1_2_9_26_1
  doi: 10.1002/mrm.1910340618
– ident: e_1_2_9_12_1
  doi: 10.1002/nbm.3601
– ident: e_1_2_9_23_1
  doi: 10.1002/cmr.b.20034
– start-page: 3205
  year: 2020
  ident: e_1_2_9_31_1
  article-title: Hybrid data fidelity term approach for quantitative susceptibility mapping
  publication-title: In: Proceedings of the 29th Annual Meeting of ISMRM [Virtual Meeting]
– ident: e_1_2_9_32_1
  doi: 10.1002/mrm.28435
– ident: e_1_2_9_35_1
  doi: 10.1002/mrm.26830
– ident: e_1_2_9_19_1
  doi: 10.1002/mrm.27073
– ident: e_1_2_9_39_1
  doi: 10.1002/nbm.1670
SSID ssj0009974
Score 2.417026
Snippet Purpose Susceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a...
Susceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a...
PurposeSusceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 962
SubjectTerms Accuracy
Augmented Lagrangian
Computer applications
Consistency
L1‐norm
L2‐norm
Magnetic resonance imaging
Noise reduction
Norms
Outliers (statistics)
QSM
QSM challenge
Regularization
Technical Note
Technical Note–Computer Processing and Modeling
Title Hybrid data fidelity term approach for quantitative susceptibility mapping
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29218
https://www.ncbi.nlm.nih.gov/pubmed/35435267
https://www.proquest.com/docview/2679091914
https://www.proquest.com/docview/2652031310
https://pubmed.ncbi.nlm.nih.gov/PMC9324845
Volume 88
WOSCitedRecordID wos000783191500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFhAXHuUVKJVBHLik3TiTOBYnBKwK6q6qioq9RV7HhkpsCpsuUv89M86jrAoSEpcokSeK48zjczzzGeAloW7jde5iQm9pjKHOx-c-duhshQnN5XygzD9U02kxm-mjDXjd18K0_BDDDze2jOCv2cDNvNm_JA1dLBd7UlOEugZbSZIqVmmJR5eMu7qlYFbIjkZjTys0kvvDrevB6ArCvJoo-TuADRFofOe_-n4XbnfAU7xpNeUebLh6G25OuqX1bbgRckFtcx8-HlxwGZfg5FHhmQaLkLpgFy56BnJBUFf8WJk6lKiRwxTNqgkJMiHX9kIsDPM-fHkAJ-P3n94exN2WC7FFJNdns0pVmbSFMTYxFMhsUdncy8QrYwhZWYPkHHPGeehw5Mk9odKVdsU8s1WapQ9hsz6r3WMQEgunK6NlZUY4z2li5JDJzVAXVunER_CqH_vSdnzkvC3Gt7JlUpYljVIZRimCF4Po95aE409CO_0HLDs7bEqZK02ISCcYwfOhmSyIl0VM7c5WLJNJZrBMRhE8ar_38JQ0Q95AQEWg1jRhEGB27vWW-vRrYOkmYIwFZvSaQRP-3vFycjwJJ0_-XfQp3JJchxEyEXdg83y5cs_guv15ftosd4Mh0FHNil3Yenc8Pjmkq88fpr8AKRYPxQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRQuPEqBQAGDOHAJ3XgncSxxQcBqgd0Vqlqpt8h1bKjEprDpIvXfM-M8yqogIXGL5Ini2PP4bM98BnhBqNt4nbmY0NsoxlDn4zMfO3S2xITWcj5Q5k_VfJ4fHenPG_C6q4Vp-CH6DTe2jOCv2cB5Q3rvgjV0sVy8kppC1BXYRFKjdACb7_bHh9ML0l3dsDArZF-jsWMWGsq9_uX1eHQJZF7Olfwdw4YgNL71f92_DTdb8CneNNpyBzZctQ1bs_Z4fRuuhXxQW9-Fj5NzLuUSnEAqPFNhEVoX7MZFx0IuCO6KHytThTI1cpqiXtUhSSbk256LhWHuhy87cDh-f_B2ErfXLsQWkdyfTUtVptLmxtjEUDCzeWkzLxOvjCF0ZQ2Sg8wY66HDoScXhUqX2uXHqS1H6egeDKrTyj0AITF3ujRalmaIxxktjhwywRnq3Cqd-AhedoNf2JaTnK_G-FY0bMqyoFEqwihF8LwX_d4QcfxJaLebwaK1xbqQmdKEinSCETzrm8mK-GjEVO50xTKpZBbLZBjB_WbC-6-MUuRLBFQEak0VegFm6F5vqU6-BqZuAseYY0q_GVTh7x0vZvuz8PDw30WfwvXJwWxaTD_MPz2CG5LrMkJm4i4MzpYr9xiu2p9nJ_XySWsXvwDhWBGr
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Lb9QwEIdHpUDFhUd5BQoYxIFL6MY7iWOJCwJWBbqrFQKpt8j1Ayqxadl0kfrfM-M8yqogIXGLlImS2J7xL_HMZ4DnpLpN0IVPSb2NU4x1PqEIqUdvHWb0LRciMn9fzWblwYGeb8Crvham5UMMP9zYM2K8Zgf3Jy7snlNDF8vFS6lpiroElzGnGMtcZ5yfI3d1y2BWyJFGY88VGsnd4dL12eiCxLyYKfm7go1T0OTG_z38TbjeSU_xuh0rt2DD19uwNe0W17fhaswGtc1t-LB3xoVcgtNHRWAQFml1wUFc9AxyQWJX_FiZOhapUcgUzaqJKTIx2_ZMLAyTH77egS-Td5_f7KXdpgupRaTgZ3OnXC5taYzNDE1ltnS2CDILyhjSVtYghceClR56HAUKUKi00748zK0b5-O7sFkf1_4-CIml185o6cwIDwv6NPLIeDPUpVU6Cwm86Bu_sh2RnDfG-F61LGVZUStVsZUSeDaYnrQYjj8Z7fQ9WHWe2FSyUJo0kc4wgafDafIhXhgxtT9esU0umWGZjRK413b4cJdxjryFgEpArQ2FwYD53Otn6qNvkdNN0hhLzOk141D4-4NX00_TePDg302fwNb87aTafz_7-BCuSS7KiGmJO7B5ulz5R3DF_jw9apaPo1P8An9ZD5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+data+fidelity+term+approach+for+quantitative+susceptibility+mapping&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Lambert%2C+Mathias&rft.au=Tejos%2C+Cristian&rft.au=Langkammer%2C+Christian&rft.au=Milovic%2C+Carlos&rft.date=2022-08-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=88&rft.issue=2&rft.spage=962&rft.epage=972&rft_id=info:doi/10.1002%2Fmrm.29218&rft.externalDBID=10.1002%252Fmrm.29218&rft.externalDocID=MRM29218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon