Reconstruction of undersampled 3D non‐Cartesian image‐based navigators for coronary MRA using an unrolled deep learning model

Purpose To rapidly reconstruct undersampled 3D non‐Cartesian image‐based navigators (iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid motion correction in coronary magnetic resonance angiography (CMRA). Methods An end‐to‐end unrolled network is trained to reconstruct beat‐to‐beat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Magnetic resonance in medicine Ročník 84; číslo 2; s. 800 - 812
Hlavní autori: Malavé, Mario O., Baron, Corey A., Koundinyan, Srivathsan P., Sandino, Christopher M., Ong, Frank, Cheng, Joseph Y., Nishimura, Dwight G.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Wiley Subscription Services, Inc 01.08.2020
Predmet:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose To rapidly reconstruct undersampled 3D non‐Cartesian image‐based navigators (iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid motion correction in coronary magnetic resonance angiography (CMRA). Methods An end‐to‐end unrolled network is trained to reconstruct beat‐to‐beat 3D iNAVs acquired during a CMRA sequence. The unrolled model incorporates a nonuniform FFT operator in TensorFlow to perform the data‐consistency operation, and the regularization term is learned by a convolutional neural network (CNN) based on the proximal gradient descent algorithm. The training set includes 6,000 3D iNAVs acquired from 7 different subjects and 11 scans using a variable‐density (VD) cones trajectory. For testing, 3D iNAVs from 4 additional subjects are reconstructed using the unrolled model. To validate reconstruction accuracy, global and localized motion estimates from DL model‐based 3D iNAVs are compared with those extracted from 3D iNAVs reconstructed with l1‐ESPIRiT. Then, the high‐resolution coronary MRA images motion corrected with autofocusing using the l1‐ESPIRiT and DL model‐based 3D iNAVs are assessed for differences. Results 3D iNAVs reconstructed using the DL model‐based approach and conventional l1‐ESPIRiT generate similar global and localized motion estimates and provide equivalent coronary image quality. Reconstruction with the unrolled network completes in a fraction of the time compared to CPU and GPU implementations of l1‐ESPIRiT (20× and 3× speed increases, respectively). Conclusions We have developed a deep neural network architecture to reconstruct undersampled 3D non‐Cartesian VD cones iNAVs. Our approach decreases reconstruction time for 3D iNAVs, while preserving the accuracy of nonrigid motion information offered by them for correction.
AbstractList PurposeTo rapidly reconstruct undersampled 3D non‐Cartesian image‐based navigators (iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid motion correction in coronary magnetic resonance angiography (CMRA).MethodsAn end‐to‐end unrolled network is trained to reconstruct beat‐to‐beat 3D iNAVs acquired during a CMRA sequence. The unrolled model incorporates a nonuniform FFT operator in TensorFlow to perform the data‐consistency operation, and the regularization term is learned by a convolutional neural network (CNN) based on the proximal gradient descent algorithm. The training set includes 6,000 3D iNAVs acquired from 7 different subjects and 11 scans using a variable‐density (VD) cones trajectory. For testing, 3D iNAVs from 4 additional subjects are reconstructed using the unrolled model. To validate reconstruction accuracy, global and localized motion estimates from DL model‐based 3D iNAVs are compared with those extracted from 3D iNAVs reconstructed with l1‐ESPIRiT. Then, the high‐resolution coronary MRA images motion corrected with autofocusing using the l1‐ESPIRiT and DL model‐based 3D iNAVs are assessed for differences.Results3D iNAVs reconstructed using the DL model‐based approach and conventional l1‐ESPIRiT generate similar global and localized motion estimates and provide equivalent coronary image quality. Reconstruction with the unrolled network completes in a fraction of the time compared to CPU and GPU implementations of l1‐ESPIRiT (20× and 3× speed increases, respectively).ConclusionsWe have developed a deep neural network architecture to reconstruct undersampled 3D non‐Cartesian VD cones iNAVs. Our approach decreases reconstruction time for 3D iNAVs, while preserving the accuracy of nonrigid motion information offered by them for correction.
Purpose To rapidly reconstruct undersampled 3D non‐Cartesian image‐based navigators (iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid motion correction in coronary magnetic resonance angiography (CMRA). Methods An end‐to‐end unrolled network is trained to reconstruct beat‐to‐beat 3D iNAVs acquired during a CMRA sequence. The unrolled model incorporates a nonuniform FFT operator in TensorFlow to perform the data‐consistency operation, and the regularization term is learned by a convolutional neural network (CNN) based on the proximal gradient descent algorithm. The training set includes 6,000 3D iNAVs acquired from 7 different subjects and 11 scans using a variable‐density (VD) cones trajectory. For testing, 3D iNAVs from 4 additional subjects are reconstructed using the unrolled model. To validate reconstruction accuracy, global and localized motion estimates from DL model‐based 3D iNAVs are compared with those extracted from 3D iNAVs reconstructed with l1‐ESPIRiT. Then, the high‐resolution coronary MRA images motion corrected with autofocusing using the l1‐ESPIRiT and DL model‐based 3D iNAVs are assessed for differences. Results 3D iNAVs reconstructed using the DL model‐based approach and conventional l1‐ESPIRiT generate similar global and localized motion estimates and provide equivalent coronary image quality. Reconstruction with the unrolled network completes in a fraction of the time compared to CPU and GPU implementations of l1‐ESPIRiT (20× and 3× speed increases, respectively). Conclusions We have developed a deep neural network architecture to reconstruct undersampled 3D non‐Cartesian VD cones iNAVs. Our approach decreases reconstruction time for 3D iNAVs, while preserving the accuracy of nonrigid motion information offered by them for correction.
To rapidly reconstruct undersampled 3D non-Cartesian image-based navigators (iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid motion correction in coronary magnetic resonance angiography (CMRA). An end-to-end unrolled network is trained to reconstruct beat-to-beat 3D iNAVs acquired during a CMRA sequence. The unrolled model incorporates a nonuniform FFT operator in TensorFlow to perform the data-consistency operation, and the regularization term is learned by a convolutional neural network (CNN) based on the proximal gradient descent algorithm. The training set includes 6,000 3D iNAVs acquired from 7 different subjects and 11 scans using a variable-density (VD) cones trajectory. For testing, 3D iNAVs from 4 additional subjects are reconstructed using the unrolled model. To validate reconstruction accuracy, global and localized motion estimates from DL model-based 3D iNAVs are compared with those extracted from 3D iNAVs reconstructed with -ESPIRiT. Then, the high-resolution coronary MRA images motion corrected with autofocusing using the -ESPIRiT and DL model-based 3D iNAVs are assessed for differences. 3D iNAVs reconstructed using the DL model-based approach and conventional -ESPIRiT generate similar global and localized motion estimates and provide equivalent coronary image quality. Reconstruction with the unrolled network completes in a fraction of the time compared to CPU and GPU implementations of -ESPIRiT (20× and 3× speed increases, respectively). We have developed a deep neural network architecture to reconstruct undersampled 3D non-Cartesian VD cones iNAVs. Our approach decreases reconstruction time for 3D iNAVs, while preserving the accuracy of nonrigid motion information offered by them for correction.
To rapidly reconstruct undersampled 3D non-Cartesian image-based navigators (iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid motion correction in coronary magnetic resonance angiography (CMRA).PURPOSETo rapidly reconstruct undersampled 3D non-Cartesian image-based navigators (iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid motion correction in coronary magnetic resonance angiography (CMRA).An end-to-end unrolled network is trained to reconstruct beat-to-beat 3D iNAVs acquired during a CMRA sequence. The unrolled model incorporates a nonuniform FFT operator in TensorFlow to perform the data-consistency operation, and the regularization term is learned by a convolutional neural network (CNN) based on the proximal gradient descent algorithm. The training set includes 6,000 3D iNAVs acquired from 7 different subjects and 11 scans using a variable-density (VD) cones trajectory. For testing, 3D iNAVs from 4 additional subjects are reconstructed using the unrolled model. To validate reconstruction accuracy, global and localized motion estimates from DL model-based 3D iNAVs are compared with those extracted from 3D iNAVs reconstructed with l1 -ESPIRiT. Then, the high-resolution coronary MRA images motion corrected with autofocusing using the l1 -ESPIRiT and DL model-based 3D iNAVs are assessed for differences.METHODSAn end-to-end unrolled network is trained to reconstruct beat-to-beat 3D iNAVs acquired during a CMRA sequence. The unrolled model incorporates a nonuniform FFT operator in TensorFlow to perform the data-consistency operation, and the regularization term is learned by a convolutional neural network (CNN) based on the proximal gradient descent algorithm. The training set includes 6,000 3D iNAVs acquired from 7 different subjects and 11 scans using a variable-density (VD) cones trajectory. For testing, 3D iNAVs from 4 additional subjects are reconstructed using the unrolled model. To validate reconstruction accuracy, global and localized motion estimates from DL model-based 3D iNAVs are compared with those extracted from 3D iNAVs reconstructed with l1 -ESPIRiT. Then, the high-resolution coronary MRA images motion corrected with autofocusing using the l1 -ESPIRiT and DL model-based 3D iNAVs are assessed for differences.3D iNAVs reconstructed using the DL model-based approach and conventional l1 -ESPIRiT generate similar global and localized motion estimates and provide equivalent coronary image quality. Reconstruction with the unrolled network completes in a fraction of the time compared to CPU and GPU implementations of l1 -ESPIRiT (20× and 3× speed increases, respectively).RESULTS3D iNAVs reconstructed using the DL model-based approach and conventional l1 -ESPIRiT generate similar global and localized motion estimates and provide equivalent coronary image quality. Reconstruction with the unrolled network completes in a fraction of the time compared to CPU and GPU implementations of l1 -ESPIRiT (20× and 3× speed increases, respectively).We have developed a deep neural network architecture to reconstruct undersampled 3D non-Cartesian VD cones iNAVs. Our approach decreases reconstruction time for 3D iNAVs, while preserving the accuracy of nonrigid motion information offered by them for correction.CONCLUSIONSWe have developed a deep neural network architecture to reconstruct undersampled 3D non-Cartesian VD cones iNAVs. Our approach decreases reconstruction time for 3D iNAVs, while preserving the accuracy of nonrigid motion information offered by them for correction.
Author Ong, Frank
Malavé, Mario O.
Koundinyan, Srivathsan P.
Sandino, Christopher M.
Baron, Corey A.
Cheng, Joseph Y.
Nishimura, Dwight G.
AuthorAffiliation 2 Department of Medical Biophysics, Western University, London, ON, Canada
1 Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, CA
3 Department of Radiology, Stanford University, Stanford, CA
AuthorAffiliation_xml – name: 2 Department of Medical Biophysics, Western University, London, ON, Canada
– name: 1 Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, CA
– name: 3 Department of Radiology, Stanford University, Stanford, CA
Author_xml – sequence: 1
  givenname: Mario O.
  orcidid: 0000-0003-0063-564X
  surname: Malavé
  fullname: Malavé, Mario O.
  email: momalave@gmail.com
  organization: Stanford University
– sequence: 2
  givenname: Corey A.
  orcidid: 0000-0001-7343-5580
  surname: Baron
  fullname: Baron, Corey A.
  organization: Western University
– sequence: 3
  givenname: Srivathsan P.
  orcidid: 0000-0002-2977-6166
  surname: Koundinyan
  fullname: Koundinyan, Srivathsan P.
  organization: Stanford University
– sequence: 4
  givenname: Christopher M.
  orcidid: 0000-0002-8360-0153
  surname: Sandino
  fullname: Sandino, Christopher M.
  organization: Stanford University
– sequence: 5
  givenname: Frank
  surname: Ong
  fullname: Ong, Frank
  organization: Stanford University
– sequence: 6
  givenname: Joseph Y.
  surname: Cheng
  fullname: Cheng, Joseph Y.
  organization: Stanford University
– sequence: 7
  givenname: Dwight G.
  surname: Nishimura
  fullname: Nishimura, Dwight G.
  organization: Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32011021$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URNPCghdAltjAYlr_TWa8QarCr9QIKYK1deOf4MpjB3umKDt4A56RJ8EhpYJKsLJ073eO79E5QUcxRYvQY0rOKCHsfMjDGetp191DM9oy1rBWiiM0I50gDadSHKOTUq4IIVJ24gE65oxQShidoW8rq1MsY5706FPEyeEpGpsLDNtgDeYvcf3sx9fvC8ijLR4i9gNsbJ2soVQgwrXfwJhywS5lrFNOEfIOL1cXeCo-bnCVTDGnsLcz1m5xsJDjfjMkY8NDdN9BKPbRzXuKPr5-9WHxtrl8_-bd4uKy0ULwrgFj5kLOpQHRaqJ7QY3sHTNrANpLDcL1c6cdtE4C9EIIRyiAlsK1wjJu-Cl6cfDdTuvBGm3jmCGoba558k4l8OrvTfSf1CZdq55zSjpSDZ7dGOT0ebJlVIMv2oYA0aapKMZbwrlsCavo0zvoVZpyrPEqJZkUnPKuUk_-vOj2lN_tVOD5AdA5lZKtu0UoUfvmVW1e_Wq-sud3WO1H2Hdaw_jwP8UXH-zu39ZquVoeFD8B-EfESg
CitedBy_id crossref_primary_10_1111_1754_9485_13276
crossref_primary_10_1109_JBHI_2024_3357784
crossref_primary_10_1109_JPROC_2022_3141367
crossref_primary_10_1186_s12968_023_00962_9
crossref_primary_10_1002_mrm_30105
crossref_primary_10_1016_j_compbiomed_2023_107707
crossref_primary_10_1002_jmri_29295
crossref_primary_10_1007_s10334_024_01173_8
crossref_primary_10_1155_2022_5413473
crossref_primary_10_1002_mrm_29357
crossref_primary_10_1088_1361_6560_ad94c7
crossref_primary_10_1109_TBME_2024_3443635
crossref_primary_10_1002_mp_14809
crossref_primary_10_1155_2021_1197728
crossref_primary_10_3233_JCM_226712
crossref_primary_10_1007_s10278_022_00721_9
crossref_primary_10_1016_j_media_2022_102429
crossref_primary_10_1016_j_mri_2022_10_010
crossref_primary_10_3389_fcvm_2021_682924
crossref_primary_10_1007_s10334_024_01157_8
crossref_primary_10_1007_s12194_024_00875_x
crossref_primary_10_1016_j_mri_2020_09_021
crossref_primary_10_1088_1361_6560_acc003
crossref_primary_10_1002_mrm_28659
crossref_primary_10_1002_mrm_28774
crossref_primary_10_1002_mrm_29666
crossref_primary_10_1109_TMI_2022_3144619
crossref_primary_10_1155_2021_5839391
crossref_primary_10_1038_s41598_020_70551_8
crossref_primary_10_1016_j_crad_2022_03_008
Cites_doi 10.1002/mrm.20790
10.1109/TMI.2005.848376
10.1016/j.compmedimag.2019.06.001
10.1109/ICIP.2017.8297024
10.1259/bjr.20170788
10.1109/TMI.2017.2760978
10.1109/TMI.2018.2865356
10.1109/TMI.2018.2858752
10.1109/CVPR.2016.90
10.1109/TMI.2018.2820120
10.1002/mrm.26273
10.1002/jmri.24602
10.1002/mrm.26928
10.1002/mrm.26269
10.1109/TMI.2003.815867
10.1002/jmri.24785
10.1002/mrm.24346
10.1561/2400000003
10.1109/TCI.2016.2644865
10.1002/cpa.20042
10.1002/mrm.25803
10.1109/CVPR.2016.55
10.1109/ISBI.2011.5872579
10.1002/cpa.20124
10.1002/jmri.22569
10.1002/mrm.20796
10.1109/TC.1987.1676943
10.1002/mrm.27480
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.27355
10.1002/mrm.21391
10.1002/mrm.24751
10.1002/mrm.26977
10.1002/mrm.27706
10.1016/S0031-3203(98)00091-0
10.1109/TMI.2018.2863670
10.1002/mrm.24924
10.1002/mrm.27475
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.28177
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 812
ExternalDocumentID PMC8331070
32011021
10_1002_mrm_28177
MRM28177
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NSF Graduate Research Fellowship Program
  funderid: NIH R01 HL127039; T32HL007846
– fundername: GE Healthcare
– fundername: NHLBI NIH HHS
  grantid: R01 HL127039
– fundername: NHLBI NIH HHS
  grantid: T32 HL007846
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4437-add64969da45c0c841d98f2dbaa189ca4f86fcfa5f9aa8444f01aac94f54e23d3
IEDL.DBID DRFUL
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510500200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 14:36:26 EDT 2025
Thu Jul 10 17:57:18 EDT 2025
Sat Nov 29 14:42:51 EST 2025
Mon Jul 21 05:59:28 EDT 2025
Sat Nov 29 02:37:49 EST 2025
Tue Nov 18 22:31:44 EST 2025
Wed Jan 22 16:34:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords non-Cartesian
3D cones trajectory
convolutional neural networks
coronary MRA
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4437-add64969da45c0c841d98f2dbaa189ca4f86fcfa5f9aa8444f01aac94f54e23d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8360-0153
0000-0003-0063-564X
0000-0001-7343-5580
0000-0002-2977-6166
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8331070
PMID 32011021
PQID 2392943137
PQPubID 1016391
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8331070
proquest_miscellaneous_2350339502
proquest_journals_2392943137
pubmed_primary_32011021
crossref_primary_10_1002_mrm_28177
crossref_citationtrail_10_1002_mrm_28177
wiley_primary_10_1002_mrm_28177_MRM28177
PublicationCentury 2000
PublicationDate August 2020
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1987; 36
2013; 69
2017; 25
2006; 55
2019; 76
2015; 74
2006; 59
2011; 33
1999; 42
2018; 26
2007; 58
2005; 24
2014; 1
2011; 2011
2015; 23
2019; 82
2019; 81
2014; 4
2016; 3
2017; 37
2017; 77
2015; 42
2015; 41
2004; 57
2018; 91
1999; 32
2017
2016
2014
2014; 72
2014; 71
2018; 38
2018; 37
2003; 22
2018; 79
e_1_2_6_51_1
Goodfellow I (e_1_2_6_44_1) 2014
e_1_2_6_32_1
Liu J (e_1_2_6_25_1) 2014; 4
e_1_2_6_19_1
He K (e_1_2_6_30_1) 2016
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 69
  start-page: 1083
  year: 2013
  end-page: 1093
  article-title: Free‐breathing multiphase whole‐heart coronary mr angiography using image‐based navigators and three‐dimensional cones imaging
  publication-title: Magn Reson Med
– volume: 2011
  start-page: 1039
  year: 2011
  end-page: 1043
– volume: 77
  start-page: 1884
  year: 2017
  end-page: 1893
  article-title: Nonrigid motion correction with 3D image‐based navigators for coronary MR angiography
  publication-title: Magn Reson Med
– volume: 79
  start-page: 3055
  year: 2018
  end-page: 3071
  article-title: Learning a variational network for reconstruction of accelerated MRI data
  publication-title: Magn Reson Med
– volume: 36
  start-page: 581
  year: 1987
  end-page: 591
  article-title: Parallelization and performance analysis of the Cooley‐Tukey FFT algorithm for shared‐memory architectures
  publication-title: IEEE Trans Comput
– volume: 81
  start-page: 1092
  year: 2019
  end-page: 1103
  article-title: Whole‐heart coronary MR angiography using a 3D cones phyllotaxis trajectory
  publication-title: Magn Reson Med
– volume: 38
  start-page: 394
  year: 2018
  end-page: 405
  article-title: Modl: Model‐based deep learning architecture for inverse problems
  publication-title: IEEE Trans Med Imaging
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: Sense: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 22
  start-page: 986
  year: 2003
  end-page: 1004
  article-title: Mutual‐information‐based registration of medical images: a survey
  publication-title: IEEE Trans Med Imaging
– volume: 72
  start-page: 347
  year: 2014
  end-page: 361
  article-title: Nonrigid autofocus motion correction for coronary mr angiography with a 3D cones trajectory
  publication-title: Magn Reson Med
– start-page: 770
  year: 2016
  end-page: 778
– start-page: 449
  year: 2016
  end-page: 458
– volume: 38
  start-page: 167
  year: 2018
  end-page: 179
  article-title: Deep generative adversarial neural networks for compressive sensing MRI
  publication-title: IEEE Trans Med Imaging
– volume: 4
  start-page: 57
  year: 2014
  end-page: 67
  article-title: Accelerated MRI with circular cartesian undersampling (circus): a variable density cartesian sampling strategy for compressed sensing and parallel imaging
  publication-title: Quant Imaging Med Surgery
– volume: 38
  start-page: 280
  year: 2018
  end-page: 290
  article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans Med Imaging
– volume: 32
  start-page: 71
  year: 1999
  end-page: 86
  article-title: An overlap invariant entropy measure of 3D medical image alignment
  publication-title: Pattern Recognition
– volume: 42
  start-page: 407
  year: 2015
  end-page: 420
  article-title: Free‐breathing pediatric MRI with nonrigid motion correction and acceleration
  publication-title: J Magn Reson Imaging
– volume: 79
  start-page: 2685
  year: 2018
  end-page: 2692
  article-title: Rapid compressed sensing reconstruction of 3D non‐cartesian MRI
  publication-title: Magn Reson Med
– volume: 82
  start-page: 485
  year: 2019
  end-page: 494
  article-title: Dynamic MRI using model‐based deep learning and SToRM priors: MoDL‐SToRM
  publication-title: Magn Reson Med
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  article-title: Sparse MRI: The application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– volume: 55
  start-page: 557
  year: 2006
  end-page: 565
  article-title: Alternating repetition time balanced steady state free precession
  publication-title: Magn Reson Med
– volume: 23
  start-page: 2486
  year: 2015
– volume: 24
  start-page: 799
  year: 2005
  end-page: 808
  article-title: Rapid gridding reconstruction with a minimal oversampling ratio
  publication-title: IEEE Trans Med Imaging
– volume: 81
  start-page: 1143
  year: 2019
  end-page: 1156
  article-title: Real‐time cardiovascular MR with spatio‐temporal artifact suppression using deep learning‐proof of concept in congenital heart disease
  publication-title: Magn Reson Med
– volume: 81
  start-page: 116
  year: 2019
  end-page: 128
  article-title: Assessment of the generalization of learned image reconstruction and the potential for transfer learning
  publication-title: Magn Reson Med
– volume: 25
  start-page: 3807
  year: 2017
– volume: 55
  start-page: 575
  year: 2006
  end-page: 582
  article-title: Design and analysis of a practical 3D cones trajectory
  publication-title: Magn Reson Med
– volume: 74
  start-page: 614
  year: 2015
  end-page: 621
  article-title: High‐resolution variable‐density 3D cones coronary MRA
  publication-title: Magn Reson Med
– volume: 41
  start-page: 738
  year: 2015
  end-page: 746
  article-title: Highly efficient respiratory motion compensated free‐breathing coronary MRA using golden‐step cartesian acquisition
  publication-title: J Magn Reson Imaging
– volume: 77
  start-page: 1874
  year: 2017
  end-page: 1883
  article-title: 3D image‐based navigators for coronary mr angiography
  publication-title: Magn Reson Med
– volume: 26
  start-page: 0920
  year: 2018
– volume: 59
  start-page: 1207
  year: 2006
  end-page: 1223
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Commun Pure Appl Math
– volume: 37
  start-page: 1488
  year: 2018
  end-page: 1497
  article-title: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss
  publication-title: IEEE Trans Med Imaging
– volume: 1
  start-page: 127
  year: 2014
  end-page: 239
  article-title: Proximal algorithms
  publication-title: Foundations Trends® Optim
– volume: 23
  start-page: 3639
  year: 2015
– volume: 3
  start-page: 47
  year: 2016
  end-page: 57
  article-title: Loss functions for image restoration with neural networks
  publication-title: IEEE Trans Comput Imaging
– volume: 57
  start-page: 1413
  year: 2004
  end-page: 1457
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Commun Pure Appl Math
– start-page: 3953
  year: 2017
  end-page: 3957
– volume: 76
  start-page: 101640
  year: 2019
  article-title: Motion estimation and correction in cardiac ct angiography images using convolutional neural networks
  publication-title: Comput Med Imaging Graphics
– volume: 33
  start-page: 1136
  year: 2011
  end-page: 1143
  article-title: Loss of fine structure and edge sharpness in fast‐spin‐echo carotid wall imaging: measurements and comparison with multiple‐spin‐echo in normal and atherosclerotic subjects
  publication-title: J Magn Reson Imaging
– volume: 91
  start-page: 20170788
  year: 2018
  article-title: Respiratory motion correction for free‐breathing 3D abdominal MRI using CNN‐based image registration: a feasibility study
  publication-title: British J Radiol
– start-page: 630
  year: 2016
  end-page: 645
  article-title: Identity mappings in deep residual networks
  publication-title: European Conference on Computer Vision
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  article-title: Espirit—an eigenvalue approach to autocalibrating parallel MRI: where sense meets grappa
  publication-title: Magn Reson Med
– start-page: 2672
  year: 2014
  end-page: 2680
  article-title: Generative adversarial nets
  publication-title: Adv Neural Infor Process Syst
– volume: 37
  start-page: 491
  year: 2017
  end-page: 503
  article-title: A deep cascade of convolutional neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans Med Imaging
– ident: e_1_2_6_4_1
  doi: 10.1002/mrm.20790
– ident: e_1_2_6_34_1
  doi: 10.1109/TMI.2005.848376
– ident: e_1_2_6_51_1
  doi: 10.1016/j.compmedimag.2019.06.001
– ident: e_1_2_6_14_1
– ident: e_1_2_6_43_1
  doi: 10.1109/ICIP.2017.8297024
– ident: e_1_2_6_49_1
  doi: 10.1259/bjr.20170788
– ident: e_1_2_6_12_1
  doi: 10.1109/TMI.2017.2760978
– ident: e_1_2_6_13_1
  doi: 10.1109/TMI.2018.2865356
– ident: e_1_2_6_32_1
  doi: 10.1109/TMI.2018.2858752
– ident: e_1_2_6_29_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_6_47_1
  doi: 10.1109/TMI.2018.2820120
– ident: e_1_2_6_6_1
  doi: 10.1002/mrm.26273
– ident: e_1_2_6_26_1
  doi: 10.1002/jmri.24602
– ident: e_1_2_6_41_1
  doi: 10.1002/mrm.26928
– ident: e_1_2_6_2_1
  doi: 10.1002/mrm.26269
– ident: e_1_2_6_39_1
  doi: 10.1109/TMI.2003.815867
– ident: e_1_2_6_27_1
  doi: 10.1002/jmri.24785
– ident: e_1_2_6_50_1
– ident: e_1_2_6_3_1
  doi: 10.1002/mrm.24346
– ident: e_1_2_6_15_1
– ident: e_1_2_6_16_1
  doi: 10.1561/2400000003
– ident: e_1_2_6_31_1
  doi: 10.1109/TCI.2016.2644865
– ident: e_1_2_6_20_1
– ident: e_1_2_6_22_1
  doi: 10.1002/cpa.20042
– ident: e_1_2_6_42_1
– ident: e_1_2_6_11_1
– ident: e_1_2_6_19_1
  doi: 10.1002/mrm.25803
– ident: e_1_2_6_45_1
  doi: 10.1109/CVPR.2016.55
– ident: e_1_2_6_24_1
  doi: 10.1109/ISBI.2011.5872579
– ident: e_1_2_6_28_1
  doi: 10.1002/cpa.20124
– ident: e_1_2_6_40_1
  doi: 10.1002/jmri.22569
– ident: e_1_2_6_5_1
  doi: 10.1002/mrm.20796
– ident: e_1_2_6_36_1
  doi: 10.1109/TC.1987.1676943
– ident: e_1_2_6_17_1
  doi: 10.1002/mrm.27480
– ident: e_1_2_6_33_1
– ident: e_1_2_6_21_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_6_48_1
  doi: 10.1002/mrm.27355
– ident: e_1_2_6_23_1
  doi: 10.1002/mrm.21391
– ident: e_1_2_6_7_1
  doi: 10.1002/mrm.24751
– ident: e_1_2_6_8_1
  doi: 10.1002/mrm.26977
– ident: e_1_2_6_10_1
  doi: 10.1002/mrm.27706
– ident: e_1_2_6_38_1
  doi: 10.1016/S0031-3203(98)00091-0
– ident: e_1_2_6_9_1
  doi: 10.1109/TMI.2018.2863670
– volume: 4
  start-page: 57
  year: 2014
  ident: e_1_2_6_25_1
  article-title: Accelerated MRI with circular cartesian undersampling (circus): a variable density cartesian sampling strategy for compressed sensing and parallel imaging
  publication-title: Quant Imaging Med Surgery
– start-page: 630
  year: 2016
  ident: e_1_2_6_30_1
  article-title: Identity mappings in deep residual networks
  publication-title: European Conference on Computer Vision
– ident: e_1_2_6_37_1
  doi: 10.1002/mrm.24924
– ident: e_1_2_6_46_1
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.27475
– ident: e_1_2_6_35_1
– start-page: 2672
  year: 2014
  ident: e_1_2_6_44_1
  article-title: Generative adversarial nets
  publication-title: Adv Neural Infor Process Syst
SSID ssj0009974
Score 2.5197353
Snippet Purpose To rapidly reconstruct undersampled 3D non‐Cartesian image‐based navigators (iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid...
To rapidly reconstruct undersampled 3D non-Cartesian image-based navigators (iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid motion...
PurposeTo rapidly reconstruct undersampled 3D non‐Cartesian image‐based navigators (iNAVs) using an unrolled deep learning (DL) model, enabling nonrigid motion...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 800
SubjectTerms 3D cones trajectory
Algorithms
Angiography
Artificial neural networks
Cartesian coordinates
Computer architecture
Cones
convolutional neural networks
Coronary Angiography
coronary MRA
Deep Learning
Heart
Humans
Image processing
Image quality
Image reconstruction
Imaging, Three-Dimensional
Machine learning
Magnetic resonance
Magnetic Resonance Angiography
Model accuracy
Navigators
Neural networks
non‐Cartesian
Regularization
Three dimensional models
Title Reconstruction of undersampled 3D non‐Cartesian image‐based navigators for coronary MRA using an unrolled deep learning model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28177
https://www.ncbi.nlm.nih.gov/pubmed/32011021
https://www.proquest.com/docview/2392943137
https://www.proquest.com/docview/2350339502
https://pubmed.ncbi.nlm.nih.gov/PMC8331070
Volume 84
WOSCitedRecordID wos000510500200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71AYgLjwJloVQGceCSNnHstS1OVcsKJHaFVlTsLXL8KCt1s9Wm7Rn-Ab-RX4LHyWZZFSQkbkk8Thx7xv5sj78BeC2po9bpLJGlzRPGrUmULfuJ0NJpVwagxH0MNiFGIzmZqE8b8HZ5Fqbhh-gW3NAyYn-NBq7L-nBFGjpbzA6ozITYhG08VBVmXtsn48HpxxXnrmpImAXDrkaxJbFQSg-7zOvD0Q2MedNV8ncIG8egwf3_Kv0DuNdCT3LU6MpD2HDVDtwZtpvrO3A7eoOa-hF8x0npilqWzD25iodgNHIJW5KfkGpe_fz24xg9QvEYJpnOQscUnuCoaEmlr5G6Y76oSQDFxCBNQigrGY6PCHran5GQBf0Qz_F11rkL0oavOCMxNs9jOB28-3z8PmljNSSGsVwkoZvsM9VXVjNuUiNZZpX01JZaZ1IZzbzse-M190pryRjzaaa1Ucxz5mhu8yewFUrungKhilPnBPcy02E-xsvcem258NR5rqnpwZtlkxWmJTLHeBrnRUPBTItQuUWs3B686kQvGvaOPwntLdu9aA24LijixgCu8pD8sksOpof7Kbpy8yuUwT1gxVPag91GTbqv5BFY0awHYk2BOgGk9V5PqaZfI723zAPkFmn4zahAfy94MRwP48Wzfxd9DncprhhEF8Y92Aqa5F7ALXN9Oa0X-7ApJnK_taNw9-XD6BeETCf3
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NDgYv_BkDCgMM4oGXsMSxa1viZdqohmgqVG3S3iLXf0alNZ1atmf4BnxGPgk-J02pBhISb1F8SS72nf2zff4dwBtJHbVOZ4kc2zxh3JpE2XEvEVo67cYBKHEfk02I4VCenqrPG_B-eRam5odoF9zQM2J_jQ6OC9J7K9bQ6Xz6jspMiBuwyXq5kB3YPBz1TwYr0l1VszALhn2NYktmoZTutQ-vj0fXQOb1WMnfMWwchPr3_k_9-3C3AZ9kv7aWB7Dhqm3YKprt9W24FeNBzeIhfMdp6Ypclsw8uYzHYDSyCVuSH5JqVv389uMAY0LxICaZTEPXFO7guGhJpa-QvGM2X5AAi4lBooSgLClG-wRj7c9IeAQjEc_xdda5C9IksDgjMTvPDpz0PxwfHCVNtobEMJaLJHSUPaZ6ymrGTWoky6ySntqx1plURjMve954zb3SWjLGfJppbRTznDma2_wRdILm7gkQqjh1TnAvMx1mZHycW68tF546zzU1XXi7bLPSNFTmmFHjvKxJmGkZKreMlduF163oRc3f8Seh3WXDl40LL0qKyDHAqzwUv2qLg_Phjoqu3OwSZXAXWPGUduFxbSftV_IIrWjWBbFmQa0AEnuvl1STL5HgW-YBdIs0_Ga0oL8rXhajIl48_XfRl3D76LgYlIOPw0_P4A7F9YMY0LgLnWBV7jncNFdfJ4v5i8adfgEpbCnw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VAhUXHuW1UMAgDlxCEz_WtsSlallRwa6qCkRvkeNHWambXe3SnuEf8Bv5JXicbJZVQULiFsWTZGLP2J_t8TcALxX11HlTZKpyLOPC2Uy7qp9Jo7zxVQRKIqRkE3I0Uicn-mgD3izPwjT8EN2CG3pG6q_Rwf3Mhd0Va-hkPnlNVSHlFbjKIw7HgK7Ph6MV5a5uOJglx55G8yWvUE53u0fXR6NLEPNypOTvCDYNQYNb_6f8bbjZQk-y19jKHdjw9TZsDdvN9W24nqJB7eIufMdJ6YpalkwDOU-HYAxyCTvCDkg9rX9--7GPEaF4DJOMJ7FjindwVHSkNhdI3TGdL0gExcQiTUJUlgyP9whG2p-S-AjGIZ7h65z3M9KmrzglKTfPPfg0ePtx_13W5mrILOdMZrGb7HPd185wYXOreOG0CtRVxhRKW8OD6gcbjAjaGMU5D3lhjNU8CO4pc-w-bEbN_UMgVAvqvRRBFSbOx0TFXDBOyEB9EIbaHrxatllpWyJzzKdxVjYUzLSMlVumyu3Bi0501rB3_EloZ9nwZevAi5IibozgisXi511xdD3cTzG1n56jDO4Ba5HTHjxo7KT7CkvAihY9kGsW1Akgrfd6ST3-kui9FYuQW-bxN5MF_V3xcng8TBeP_l30GWwdHQzKD4ej94_hBsXFgxTNuAOb0aj8E7hmL76OF_OnyZd-AfjvKEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+undersampled+3D+non-Cartesian+image-based+navigators+for+coronary+MRA+using+an+unrolled+deep+learning+model&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Malav%C3%A9%2C+Mario+O&rft.au=Baron%2C+Corey+A&rft.au=Koundinyan%2C+Srivathsan+P&rft.au=Sandino%2C+Christopher+M&rft.date=2020-08-01&rft.eissn=1522-2594&rft.volume=84&rft.issue=2&rft.spage=800&rft_id=info:doi/10.1002%2Fmrm.28177&rft_id=info%3Apmid%2F32011021&rft.externalDocID=32011021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon