Intra‐session and inter‐subject variability of 3D‐FID‐MRSI using single‐echo volumetric EPI navigators at 3T

Purpose In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI has many benefits including high detection sensitivity, in particular for J‐coupled metabolites (e.g., glutamate/glutamine). This makes it hi...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 83; no. 6; pp. 1920 - 1929
Main Authors: Moser, Philipp, Eckstein, Korbinian, Hingerl, Lukas, Weber, Michael, Motyka, Stanislav, Strasser, Bernhard, Kouwe, Andre, Robinson, Simon, Trattnig, Siegfried, Bogner, Wolfgang
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.06.2020
John Wiley and Sons Inc
Subjects:
ISSN:0740-3194, 1522-2594, 1522-2594
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI has many benefits including high detection sensitivity, in particular for J‐coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D‐FID‐MRSI sequence with single‐echo, imaging‐based volumetric navigators (se‐vNavs) for real‐time motion/shim‐correction (SHMOCO), which is 2× quicker than the original double‐echo navigators (de‐vNavs), hence allowing more efficient integration also in short‐TR sequences. Methods The tracking accuracy (position and B0‐field) of our proposed se‐vNavs was compared to the original de‐vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra‐session stability of a 5:40 min 3D‐FID‐MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter‐subject coefficients of variation (CV) and intra‐class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed. Results Phantom and in vivo scans showed highly consistent tracking performance for se‐vNavs compared to the original de‐vNavs, but lower frequency drift. Up to ~30% better intra‐subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m‐Ins ratios to tCr. ICCs were good‐to‐high (91% for Glx/tCr in motor cortex), whereas the inter‐subject variability was ~11–19%. Conclusion Real‐time motion/shim corrected 3D‐FID‐MRSI with time‐efficient CRT‐sampling at 3T allows reliable, high‐resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI.
AbstractList In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric-ring trajectories (CRTs) at 3T. FID-MRSI has many benefits including high detection sensitivity, in particular for J-coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D-FID-MRSI sequence with single-echo, imaging-based volumetric navigators (se-vNavs) for real-time motion/shim-correction (SHMOCO), which is 2× quicker than the original double-echo navigators (de-vNavs), hence allowing more efficient integration also in short-TR sequences. The tracking accuracy (position and B -field) of our proposed se-vNavs was compared to the original de-vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra-session stability of a 5:40 min 3D-FID-MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter-subject coefficients of variation (CV) and intra-class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed. Phantom and in vivo scans showed highly consistent tracking performance for se-vNavs compared to the original de-vNavs, but lower frequency drift. Up to ~30% better intra-subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m-Ins ratios to tCr. ICCs were good-to-high (91% for Glx/tCr in motor cortex), whereas the inter-subject variability was ~11-19%. Real-time motion/shim corrected 3D-FID-MRSI with time-efficient CRT-sampling at 3T allows reliable, high-resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI.
PurposeIn this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI has many benefits including high detection sensitivity, in particular for J‐coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D‐FID‐MRSI sequence with single‐echo, imaging‐based volumetric navigators (se‐vNavs) for real‐time motion/shim‐correction (SHMOCO), which is 2× quicker than the original double‐echo navigators (de‐vNavs), hence allowing more efficient integration also in short‐TR sequences.MethodsThe tracking accuracy (position and B0‐field) of our proposed se‐vNavs was compared to the original de‐vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra‐session stability of a 5:40 min 3D‐FID‐MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter‐subject coefficients of variation (CV) and intra‐class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed.ResultsPhantom and in vivo scans showed highly consistent tracking performance for se‐vNavs compared to the original de‐vNavs, but lower frequency drift. Up to ~30% better intra‐subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m‐Ins ratios to tCr. ICCs were good‐to‐high (91% for Glx/tCr in motor cortex), whereas the inter‐subject variability was ~11–19%.ConclusionReal‐time motion/shim corrected 3D‐FID‐MRSI with time‐efficient CRT‐sampling at 3T allows reliable, high‐resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI.
In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric-ring trajectories (CRTs) at 3T. FID-MRSI has many benefits including high detection sensitivity, in particular for J-coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D-FID-MRSI sequence with single-echo, imaging-based volumetric navigators (se-vNavs) for real-time motion/shim-correction (SHMOCO), which is 2× quicker than the original double-echo navigators (de-vNavs), hence allowing more efficient integration also in short-TR sequences.PURPOSEIn this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric-ring trajectories (CRTs) at 3T. FID-MRSI has many benefits including high detection sensitivity, in particular for J-coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D-FID-MRSI sequence with single-echo, imaging-based volumetric navigators (se-vNavs) for real-time motion/shim-correction (SHMOCO), which is 2× quicker than the original double-echo navigators (de-vNavs), hence allowing more efficient integration also in short-TR sequences.The tracking accuracy (position and B0 -field) of our proposed se-vNavs was compared to the original de-vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra-session stability of a 5:40 min 3D-FID-MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter-subject coefficients of variation (CV) and intra-class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed.METHODSThe tracking accuracy (position and B0 -field) of our proposed se-vNavs was compared to the original de-vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra-session stability of a 5:40 min 3D-FID-MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter-subject coefficients of variation (CV) and intra-class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed.Phantom and in vivo scans showed highly consistent tracking performance for se-vNavs compared to the original de-vNavs, but lower frequency drift. Up to ~30% better intra-subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m-Ins ratios to tCr. ICCs were good-to-high (91% for Glx/tCr in motor cortex), whereas the inter-subject variability was ~11-19%.RESULTSPhantom and in vivo scans showed highly consistent tracking performance for se-vNavs compared to the original de-vNavs, but lower frequency drift. Up to ~30% better intra-subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m-Ins ratios to tCr. ICCs were good-to-high (91% for Glx/tCr in motor cortex), whereas the inter-subject variability was ~11-19%.Real-time motion/shim corrected 3D-FID-MRSI with time-efficient CRT-sampling at 3T allows reliable, high-resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI.CONCLUSIONReal-time motion/shim corrected 3D-FID-MRSI with time-efficient CRT-sampling at 3T allows reliable, high-resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI.
Purpose In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI has many benefits including high detection sensitivity, in particular for J‐coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D‐FID‐MRSI sequence with single‐echo, imaging‐based volumetric navigators (se‐vNavs) for real‐time motion/shim‐correction (SHMOCO), which is 2× quicker than the original double‐echo navigators (de‐vNavs), hence allowing more efficient integration also in short‐TR sequences. Methods The tracking accuracy (position and B0‐field) of our proposed se‐vNavs was compared to the original de‐vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra‐session stability of a 5:40 min 3D‐FID‐MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter‐subject coefficients of variation (CV) and intra‐class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed. Results Phantom and in vivo scans showed highly consistent tracking performance for se‐vNavs compared to the original de‐vNavs, but lower frequency drift. Up to ~30% better intra‐subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m‐Ins ratios to tCr. ICCs were good‐to‐high (91% for Glx/tCr in motor cortex), whereas the inter‐subject variability was ~11–19%. Conclusion Real‐time motion/shim corrected 3D‐FID‐MRSI with time‐efficient CRT‐sampling at 3T allows reliable, high‐resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI.
Author Trattnig, Siegfried
Robinson, Simon
Moser, Philipp
Strasser, Bernhard
Hingerl, Lukas
Motyka, Stanislav
Kouwe, Andre
Eckstein, Korbinian
Weber, Michael
Bogner, Wolfgang
AuthorAffiliation 3 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital Harvard Medical School Boston Massachusetts
1 High‐Field MR Center Department of Biomedical Imaging and Image‐guided Therapy Medical University of Vienna Vienna Austria
2 Department of Biomedical Imaging and Image‐guided Therapy Medical University of Vienna Vienna Austria
4 Christian Doppler Laboratory for Clinical Molecular MR Imaging Vienna Austria
AuthorAffiliation_xml – name: 4 Christian Doppler Laboratory for Clinical Molecular MR Imaging Vienna Austria
– name: 3 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital Harvard Medical School Boston Massachusetts
– name: 2 Department of Biomedical Imaging and Image‐guided Therapy Medical University of Vienna Vienna Austria
– name: 1 High‐Field MR Center Department of Biomedical Imaging and Image‐guided Therapy Medical University of Vienna Vienna Austria
Author_xml – sequence: 1
  givenname: Philipp
  orcidid: 0000-0002-9717-6197
  surname: Moser
  fullname: Moser, Philipp
  organization: Medical University of Vienna
– sequence: 2
  givenname: Korbinian
  surname: Eckstein
  fullname: Eckstein, Korbinian
  organization: Medical University of Vienna
– sequence: 3
  givenname: Lukas
  surname: Hingerl
  fullname: Hingerl, Lukas
  organization: Medical University of Vienna
– sequence: 4
  givenname: Michael
  surname: Weber
  fullname: Weber, Michael
  organization: Medical University of Vienna
– sequence: 5
  givenname: Stanislav
  surname: Motyka
  fullname: Motyka, Stanislav
  organization: Medical University of Vienna
– sequence: 6
  givenname: Bernhard
  orcidid: 0000-0001-9542-3855
  surname: Strasser
  fullname: Strasser, Bernhard
  organization: Harvard Medical School
– sequence: 7
  givenname: Andre
  surname: Kouwe
  fullname: Kouwe, Andre
  organization: Harvard Medical School
– sequence: 8
  givenname: Simon
  orcidid: 0000-0001-7463-5162
  surname: Robinson
  fullname: Robinson, Simon
  organization: Medical University of Vienna
– sequence: 9
  givenname: Siegfried
  surname: Trattnig
  fullname: Trattnig, Siegfried
  organization: Christian Doppler Laboratory for Clinical Molecular MR Imaging
– sequence: 10
  givenname: Wolfgang
  surname: Bogner
  fullname: Bogner, Wolfgang
  email: wolfgang.bogner@meduniwien.ac.at
  organization: Medical University of Vienna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31721294$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9u1DAQxi1URLcLB14AWeJCD2n9N4kvSKi0EKkrUClny4mdrVeJ3dpJ0N76CDwjT4LDbhFUcJmRZn7z6Rt9R-DAeWcAeInRCUaInPahPyElKvInYIE5IRnhgh2ABSoYyigW7BAcxbhBCAlRsGfgkOKCYCLYAkyVG4L6cf89mhitd1A5Da0bTJhnY70xzQAnFayqbWeHLfQtpO_T7qKa6-rqSwXHaN0azqUzaWaaGw8n3429GYJt4PnnCjo12bUafIhQDZBePwdPW9VF82Lfl-Drxfn12cfs8tOH6uzdZdYwRvOsFaRmLdaiQUa0tea5EtQgjbQgeW00T43zpiwQy7VAWGtctGXOFSsVLklJl-DtTvd2rHujGzN_28nbYHsVttIrK__eOHsj136SBco5Th6W4M1eIPi70cRB9jY2puuUM36MklDMCM8Fogl9_Qjd-DG49F6iciYwp7RI1Ks_Hf228hBJAk53QBN8jMG0srGDGlI2yaDtJEZyDl2m0OWv0NPF8aOLB9F_sXv1b7Yz2_-DcnW12l38BD5LwJw
CitedBy_id crossref_primary_10_1002_mrm_30151
crossref_primary_10_1016_j_neuroimage_2023_120250
crossref_primary_10_1016_j_neuroimage_2023_120235
crossref_primary_10_1002_mrm_30550
crossref_primary_10_1002_mrm_30200
crossref_primary_10_1002_mrm_29950
crossref_primary_10_1016_j_neuroimage_2025_121043
crossref_primary_10_1002_mrm_29980
crossref_primary_10_1016_j_ab_2021_114479
crossref_primary_10_1002_nbm_4364
crossref_primary_10_1002_nbm_4596
crossref_primary_10_1002_mrm_28614
crossref_primary_10_1002_mrm_28555
crossref_primary_10_1002_nbm_4615
crossref_primary_10_1002_nbm_70126
crossref_primary_10_1002_mrm_28876
crossref_primary_10_1002_mrm_29423
crossref_primary_10_1002_nbm_4415
crossref_primary_10_1002_hbm_70176
crossref_primary_10_1038_s41551_023_01035_z
crossref_primary_10_1097_RLI_0000000000000953
Cites_doi 10.1002/(SICI)1522-2594(199901)41:1<179::AID-MRM25>3.0.CO;2-V
10.1097/RLI.0000000000000379
10.1002/mrm.26718
10.1109/42.97598
10.1002/mrm.25208
10.1002/mrm.27597
10.1002/nbm.1366
10.3389/fpsyt.2018.00076
10.1016/j.neuroimage.2015.11.022
10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
10.1002/mrm.25670
10.1002/mrm.24399
10.1002/jmri.24130
10.1002/mrm.26987
10.1002/nbm.1445
10.1002/mrm.27922
10.1002/mrm.27623
10.3390/s19153297
10.1002/nbm.1805
10.1002/mrm.22805
10.1148/radiol.13130531
10.1002/nbm.698
10.1101/628594
10.1002/mrm.27049
10.1016/j.neuroimage.2015.11.054
10.1002/mrm.26963
10.1002/mrm.21025
10.1002/nbm.1756
10.1148/radiol.2017170744
10.1002/mrm.27750
10.1002/jmri.22471
10.1002/mrm.23228
10.1002/mrm.23184
10.1002/mrm.27822
10.1371/journal.pone.0115304
10.1016/j.neuroimage.2013.09.034
10.1016/j.neuroimage.2016.10.043
10.1007/s00062-018-00757-x
10.1038/s41598-018-26096-y
10.1002/nbm.891
10.1002/mrm.23136
10.1016/j.neuroimage.2016.07.009
10.1016/j.neuroimage.2016.12.065
10.1016/j.neuroimage.2014.09.032
10.1002/nbm.3898
10.1016/j.neuroimage.2018.09.039
ContentType Journal Article
Copyright 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.28076
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Biochemistry Abstracts 1
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate MOSER et al
EISSN 1522-2594
EndPage 1929
ExternalDocumentID PMC7065144
31721294
10_1002_mrm_28076
MRM28076
Genre technicalNote
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Christian Doppler Laboratory for Clinical Molecular MR Imaging
– fundername: Austrian Science Fund
  funderid: J 4124; KLI 718 ; P 30701; P 31452
– fundername: Austrian Science Fund
  funderid: J4124
– fundername: Austrian Science Fund FWF
  grantid: KLI 718
– fundername: Austrian Science Fund FWF
  grantid: P 30701
– fundername: ;
  grantid: J 4124; KLI 718 ; P 30701; P 31452
– fundername: ;
  grantid: J4124
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4436-f92b4f1d9c0e9fbd56a93e0d0d926bed592655c87046d901dd17f865a48a18283
IEDL.DBID 24P
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495998200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:34:19 EDT 2025
Thu Oct 02 05:05:53 EDT 2025
Sat Nov 29 14:24:20 EST 2025
Mon Jul 21 05:43:16 EDT 2025
Sat Nov 29 02:37:48 EST 2025
Tue Nov 18 22:25:44 EST 2025
Sun Jul 06 04:45:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords intra-subject reproducibility
real time motion correction
concentric rings
dynamic functional magnetic resonance spectroscopic imaging
reliability
Language English
License Attribution
2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4436-f92b4f1d9c0e9fbd56a93e0d0d926bed592655c87046d901dd17f865a48a18283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9542-3855
0000-0001-7463-5162
0000-0002-9717-6197
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28076
PMID 31721294
PQID 2364915337
PQPubID 1016391
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7065144
proquest_miscellaneous_2314256903
proquest_journals_2364915337
pubmed_primary_31721294
crossref_citationtrail_10_1002_mrm_28076
crossref_primary_10_1002_mrm_28076
wiley_primary_10_1002_mrm_28076_MRM28076
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2009; 22
2018; 286
2013; 69
2006; 56
1991; 10
2015; 73
2020; 83
2018; 168
2000; 44
2018; 80
2016; 75
2011; 33
2019; 19
1999; 41
2016; 127
2016; 126
2014; 270
2019; 184
2014; 88
2010; 23
2018; 9
2018; 8
2017; 52
2019; 82
2019; 81
2004; 17
2019
2018
2011; 66
2014
2014; 39
2012; 25
2014; 9
2012; 68
2012; 67
2001; 14
2018; 31
2014; 103
2018; 79
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – year: 2019
  article-title: Regional metabolite concentrations in aging human brain: comparison of short‐TE whole brain MR spectroscopic imaging and single voxel spectroscopy at 3T
  publication-title: Clin Neuroradiol
– volume: 168
  start-page: 321
  year: 2018
  end-page: 331
  article-title: A method for the dynamic correction of B0‐related distortions in single‐echo EPI at 7 T
  publication-title: NeuroImage
– volume: 79
  start-page: 636
  year: 2018
  end-page: 642
  article-title: Fully automated atlas‐based method for prescribing 3D PRESS MR spectroscopic imaging: toward robust and reproducible metabolite measurements in human brain
  publication-title: Magn Reson Med
– volume: 80
  start-page: 442
  year: 2018
  end-page: 451
  article-title: Non‐water‐suppressed 1H FID‐MRSI at 3T and 9.4T
  publication-title: Magn Reson Med
– volume: 75
  start-page: 1030
  year: 2016
  end-page: 1039
  article-title: Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T
  publication-title: Magn Reson Med
– volume: 14
  start-page: 260
  year: 2001
  end-page: 264
  article-title: Automatic quantitation of localized in vivo 1H spectra with LCModel
  publication-title: NMR Biomed
– volume: 81
  start-page: 2600
  year: 2019
  end-page: 2613
  article-title: Real‐time simultaneous shim and motion measurement and correction in glycoCEST MRI using double volumetric navigators (DvNavs)
  publication-title: Magn Reson Med
– volume: 23
  start-page: 251
  year: 2010
  end-page: 256
  article-title: Reproducibility of serial whole‐brain MR spectroscopic imaging
  publication-title: NMR Biomed
– volume: 184
  start-page: 475
  year: 2019
  end-page: 489
  article-title: Whole‐slice mapping of GABA and GABA+ at 7T via adiabatic MEGA‐editing, real‐time instability correction, and concentric circle readout
  publication-title: NeuroImage
– volume: 83
  start-page: 12
  year: 2020
  end-page: 21
  article-title: Effects of different macromolecular models on reproducibility of FID‐MRSI at 7T
  publication-title: Magn Reson Med
– volume: 79
  start-page: 2996
  year: 2018
  end-page: 3006
  article-title: Computationally efficient combination of multi‐channel phase data from multi‐echo acquisitions (ASPIRE)
  publication-title: Magn Reson Med
– volume: 56
  start-page: 932
  year: 2006
  end-page: 937
  article-title: Fast metabolic imaging of systems with sparse spectra: application for hyperpolarized13C imaging
  publication-title: Magn Reson Med
– volume: 33
  start-page: 748
  year: 2011
  end-page: 754
  article-title: Correction of frequency drifts induced by gradient heating in 1H spectra using interleaved reference spectroscopy
  publication-title: J Magn Reson Imaging
– volume: 168
  start-page: 211
  year: 2018
  end-page: 221
  article-title: High and ultra‐high resolution metabolite mapping of the human brain using 1 H FID MRSI at 9.4T
  publication-title: NeuroImage
– volume: 44
  start-page: 457
  year: 2000
  end-page: 465
  article-title: Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI
  publication-title: Magn Reson Med
– volume: 68
  start-page: 389
  year: 2012
  end-page: 399
  article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI
  publication-title: Magn Reson Med
– volume: 168
  start-page: 199
  year: 2018
  end-page: 210
  article-title: Ultra‐high resolution brain metabolite mapping at 7 T by short‐TR Hadamard‐encoded FID‐MRSI
  publication-title: NeuroImage
– volume: 9
  start-page: 76
  year: 2018
  article-title: Functional magnetic resonance spectroscopy: the “New” MRS for cognitive neuroscience and psychiatry research
  publication-title: Front Psychiatry
– volume: 25
  start-page: 873
  year: 2012
  end-page: 882
  article-title: High‐resolution mapping of human brain metabolites by free induction decay 1H MRSI at 7 T
  publication-title: NMR Biomed
– year: 2018
– year: 2014
– volume: 126
  start-page: 60
  year: 2016
  end-page: 71
  article-title: Real‐time measurement and correction of both B0 changes and subject motion in diffusion tensor imaging using a double volumetric navigated (DvNav) sequence
  publication-title: NeuroImage
– volume: 82
  start-page: 1587
  year: 2019
  end-page: 1603
  article-title: Non‐Cartesian GRAPPA and coil combination using interleaved calibration data ‐ application to concentric‐ring MRSI of the human brain at 7T
  publication-title: Magn Reson Med
– volume: 31
  year: 2018
  article-title: Comparison of reproducibility of single voxel spectroscopy and whole‐brain magnetic resonance spectroscopy imaging at 3T
  publication-title: NMR Biomed
– volume: 17
  start-page: 361
  year: 2004
  end-page: 381
  article-title: Issues of spectral quality in clinical 1H‐magnetic resonance spectroscopy and a gallery of artifacts
  publication-title: NMR Biomed
– volume: 52
  start-page: 631
  year: 2017
  end-page: 639
  article-title: Mapping an extended neurochemical profile at 3 and 7 T using accelerated high‐resolution proton magnetic resonance spectroscopic imaging
  publication-title: Invest Radiol
– volume: 286
  start-page: 666
  year: 2018
  end-page: 675
  article-title: Real‐time correction of motion and imager instability artifacts during 3D γ‐aminobutyric acid‐edited MR spectroscopic imaging
  publication-title: Radiology
– volume: 79
  start-page: 2874
  year: 2018
  end-page: 2885
  article-title: Density‐weighted concentric circle trajectories for high resolution brain magnetic resonance spectroscopic imaging at 7T
  publication-title: Magn Reson Med
– volume: 69
  start-page: 1501
  year: 2013
  end-page: 1511
  article-title: Lipid suppression in CSI with spatial priors and highly undersampled peripheral k‐space
  publication-title: Magn Reson Med
– volume: 8
  start-page: 7792
  year: 2018
  article-title: Metabolite‐cycled density‐weighted concentric rings k‐space trajectory (DW‐CRT) enables high‐resolution 1H magnetic resonance spectroscopic imaging at 3‐Tesla
  publication-title: Sci Rep
– volume: 67
  start-page: 1515
  year: 2012
  end-page: 1522
  article-title: Spectroscopic imaging using concentrically circular echo‐planar trajectories in vivo
  publication-title: Magn Reson Med
– volume: 66
  start-page: 314
  year: 2011
  end-page: 323
  article-title: Real‐time motion and B0 corrected single voxel spectroscopy using volumetric navigators
  publication-title: Magn Reson Med
– volume: 88
  start-page: 22
  year: 2014
  end-page: 31
  article-title: Real‐time motion‐ and B0‐correction for LASER‐localized spiral‐accelerated 3D‐MRSI of the brain at 3T
  publication-title: NeuroImage
– volume: 19
  start-page: 3297
  year: 2019
  article-title: implementation, and evaluation of a head and neck MRI RF array integrated with a 511 keV transmission source for attenuation correction in PET/MR
  publication-title: Sensors (Basel)
– volume: 73
  start-page: 921
  year: 2015
  end-page: 928
  article-title: Reproducibility and reliability of short‐TE whole‐brain MR spectroscopic imaging of human brain at 3T
  publication-title: Magn Reson Med
– volume: 10
  start-page: 473
  year: 1991
  end-page: 478
  article-title: Selection of a convolution function for Fourier inversion using gridding (computerised tomography application)
  publication-title: IEEE Trans Med Imaging
– volume: 39
  start-page: 224
  year: 2014
  end-page: 234
  article-title: Impact of reduced k‐space acquisition on pathologic detectability for volumetric MR spectroscopic imaging
  publication-title: J Magn Reson Imaging
– volume: 22
  start-page: 683
  year: 2009
  end-page: 696
  article-title: Slice‐selective FID acquisition, localized by outer volume suppression (FIDLOVS) for 1H‐MRSI of the human brain at 7 T with minimal signal loss
  publication-title: NMR Biomed
– volume: 67
  start-page: 1506
  year: 2012
  end-page: 1514
  article-title: Spectroscopic imaging with prospective motion correction and retrospective phase correction
  publication-title: Magn Reson Med
– volume: 9
  year: 2014
  article-title: Comparison of inter subject variability and reproducibility of whole brain proton spectroscopy
  publication-title: PLoS ONE
– volume: 81
  start-page: 2841
  year: 2019
  end-page: 2857
  article-title: Fast high‐resolution brain metabolite mapping on a clinical 3T MRI by accelerated 1H‐FID‐MRSI and low‐rank constrained reconstruction
  publication-title: Magn Reson Med
– volume: 270
  start-page: 658
  year: 2014
  end-page: 679
  article-title: Clinical proton MR spectroscopy in central nervous system disorders
  publication-title: Radiology
– volume: 127
  start-page: 11
  year: 2016
  end-page: 22
  article-title: Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion
  publication-title: NeuroImage
– volume: 103
  start-page: 290
  year: 2014
  end-page: 302
  article-title: 3D GABA imaging with real‐time motion correction, shim update and reacquisition of adiabatic spiral MRSI
  publication-title: NeuroImage
– volume: 25
  start-page: 347
  year: 2012
  end-page: 358
  article-title: Real‐time motion and B0 correction for localized adiabatic selective refocusing (LASER) MRSI using echo planar imaging volumetric navigators
  publication-title: NMR Biomed
– volume: 41
  start-page: 179
  year: 1999
  end-page: 186
  article-title: Sampling density compensation in MRI: rationale and an iterative numerical solution
  publication-title: Magn Reson Med
– volume: 82
  start-page: 633
  year: 2019
  end-page: 646
  article-title: A comparison of static and dynamic ΔB0 mapping methods for correction of CEST MRI in the presence of temporal B0 field variations
  publication-title: Magn Reson Med
– ident: e_1_2_7_27_1
  doi: 10.1002/(SICI)1522-2594(199901)41:1<179::AID-MRM25>3.0.CO;2-V
– ident: e_1_2_7_10_1
  doi: 10.1097/RLI.0000000000000379
– ident: e_1_2_7_46_1
  doi: 10.1002/mrm.26718
– ident: e_1_2_7_29_1
  doi: 10.1109/42.97598
– ident: e_1_2_7_45_1
  doi: 10.1002/mrm.25208
– ident: e_1_2_7_41_1
  doi: 10.1002/mrm.27597
– ident: e_1_2_7_5_1
  doi: 10.1002/nbm.1366
– ident: e_1_2_7_43_1
  doi: 10.3389/fpsyt.2018.00076
– ident: e_1_2_7_40_1
  doi: 10.1016/j.neuroimage.2015.11.022
– ident: e_1_2_7_22_1
  doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
– ident: e_1_2_7_49_1
  doi: 10.1002/mrm.25670
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.24399
– ident: e_1_2_7_35_1
  doi: 10.1002/jmri.24130
– ident: e_1_2_7_7_1
  doi: 10.1002/mrm.26987
– ident: e_1_2_7_44_1
  doi: 10.1002/nbm.1445
– ident: e_1_2_7_38_1
  doi: 10.1002/mrm.27922
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.27623
– ident: e_1_2_7_33_1
  doi: 10.3390/s19153297
– ident: e_1_2_7_4_1
  doi: 10.1002/nbm.1805
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.22805
– ident: e_1_2_7_2_1
  doi: 10.1148/radiol.13130531
– ident: e_1_2_7_32_1
  doi: 10.1002/nbm.698
– ident: e_1_2_7_37_1
  doi: 10.1101/628594
– ident: e_1_2_7_47_1
  doi: 10.1002/mrm.27049
– ident: e_1_2_7_39_1
  doi: 10.1016/j.neuroimage.2015.11.054
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.26963
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.21025
– ident: e_1_2_7_18_1
  doi: 10.1002/nbm.1756
– ident: e_1_2_7_14_1
  doi: 10.1148/radiol.2017170744
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.27750
– ident: e_1_2_7_16_1
  doi: 10.1002/jmri.22471
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.23228
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.23184
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.27822
– ident: e_1_2_7_48_1
  doi: 10.1371/journal.pone.0115304
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2013.09.034
– ident: e_1_2_7_34_1
  doi: 10.1016/j.neuroimage.2016.10.043
– ident: e_1_2_7_3_1
  doi: 10.1007/s00062-018-00757-x
– ident: e_1_2_7_9_1
  doi: 10.1038/s41598-018-26096-y
– ident: e_1_2_7_13_1
  doi: 10.1002/nbm.891
– ident: e_1_2_7_26_1
– ident: e_1_2_7_12_1
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.23136
– ident: e_1_2_7_23_1
  doi: 10.1016/j.neuroimage.2016.07.009
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neuroimage.2016.12.065
– ident: e_1_2_7_21_1
  doi: 10.1016/j.neuroimage.2014.09.032
– ident: e_1_2_7_36_1
  doi: 10.1002/nbm.3898
– ident: e_1_2_7_42_1
  doi: 10.1016/j.neuroimage.2018.09.039
SSID ssj0009974
Score 2.4566195
Snippet Purpose In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI...
In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric-ring trajectories (CRTs) at 3T. FID-MRSI has many...
PurposeIn this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1920
SubjectTerms Brain - diagnostic imaging
Coefficient of variation
concentric rings
Cortex (motor)
dynamic functional magnetic resonance spectroscopic imaging
Frequency drift
Glutamine
Head
Head movement
Humans
intra‐subject reproducibility
Metabolites
Navigators
Neuroimaging
Note—Spectroscopic Methodology
Phantoms, Imaging
real time motion correction
reliability
Reproducibility
Reproducibility of Results
Stability analysis
Stability augmentation
Temporal lobe
Three dimensional motion
Tracking
Variability
Title Intra‐session and inter‐subject variability of 3D‐FID‐MRSI using single‐echo volumetric EPI navigators at 3T
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28076
https://www.ncbi.nlm.nih.gov/pubmed/31721294
https://www.proquest.com/docview/2364915337
https://www.proquest.com/docview/2314256903
https://pubmed.ncbi.nlm.nih.gov/PMC7065144
Volume 83
WOSCitedRecordID wos000495998200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NDSZe-DMYBMZkEA-8hCWO49jiCbFVVKJVVTbRtyixHZi0pShpK_HGR-Az8km4S9KMaiAh8eIk9kVxnLvz3dn5HcBL1HjaWCV9mxjpi5w7H60Q7RtrIu5wQgysapJNJOOxms30ZAverP-FafEh-oAbSUajr0nAs7w-ugINvawuXxOUi7wBO2EYKcrbwMXkCnFXtxDMiSBFo8UaVijgR_2tm5PRNQvz-kbJ3w3YZgYa3P2vvt-DO53hyd62nHIftly5B7ujbml9D241e0FN_QBWQ-rGz-8_6hazg2WlZQQrUVHdMqfIDVuhj91CfH9j84JFx9g2GFI5mn4cMtpO_5lRceGwzqGSZa0ipIwA7GQyZGW2IniPeVWzbMGi04dwNjg5fffe79Iz-EaISPqF5rkoQqtN4HSR21hmOnKBDazmMnc2xkMcG1QIQlo0O6wNk0LJOBMqQ69GRfuwXc5L9xiYcBH6yjIQBh0kp1TGjbCxkdw4W6CL58Gr9XdKTYddTik0LtIWdZmnOKJpM6IevOhJv7aAHX8iOlh_7LST2TolKH1N5m_iwfO-GaWNllCy0s2XRBOikpM6iDx41PJG_5SIvGmuhQfJBtf0BITkvdlSnn9pEL1prRk9W3zNhmv-3vF0NB01J0_-nfQp3OYUJGhCRwewvaiW7hncNKvFeV0dNkKDZTJTh7BzPB2cfcCrT8PxLwKuIo4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V8rzwKK9AAYM49BKadRwnlrgg6KoRzaoqi-gtSmwHKrVZlOyuxI2fwG_klzDjZFNWBQmJixPZE8WxZ8YzY-cbgJeo8ZQ2ifRNrKUvSm59tEKUr40OucUFMTCJSzYRTybJ8bE63IDXq39hOnyIIeBGkuH0NQk4BaR3z1FDz5qzV4TlIi_BZYGGBiVu-JROziF3VYfBHAvSNEqscIUCvjs8ur4aXTAxL56U_N2CdUvQ-Nb_df423OxNT_am45U7sGHrLbiW9ZvrW3DVnQbV7V1YptSPn99_tB1qBytqwwhYoqG6RUmxG7ZEL7sD-f7GZhUL32HbOKUyO_qQMjpQ_5lRcWqxzqKaZZ0qpJwAbO8wZXWxJICPWdOyYs7C6T34ON6bvt33-wQNvhYilH6leCmqkVE6sKoqTSQLFdrABEZxWVoT4SWKNKoEIQ0aHsaM4iqRUSGSAv2aJLwPm_Wstg-BCRuitywDodFFsklScC1MpCXX1lTo5Hmws5qoXPfo5ZRE4zTvcJd5jiOauxH14MVA-rWD7PgT0fZqtvNeatucwPQVGcCxB8-HZpQ32kQpajtbEM0I1ZxUQejBg445hreE5E9zJTyI19hmICAs7_WW-uSLw_Sm3Wb0bfEzHdv8veN5dpS5m0f_TvoMru9Ps4P8IJ28fww3OIUMXCBpGzbnzcI-gSt6OT9pm6dOgn4BJuQjTw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLVRc-Cl_gQIGceCSNus4TixxQWwjIrqr1dJKvUWJ7UClNlsluytx4xF4Rp6EmSSbsipISFycyJ4ojj0znhk73wC8QY2ntImka0ItXZFz66IVolxttM8tLoieiZpkE-FkEp2equkWvFv_C9PiQ_QBN5KMRl-TgNtLUxxcoYZeVBf7hOUib8C2oCQyA9gezeKToyvQXdWiMIeCdI0Sa2Qhjx_0D2-uR9eMzOtnJX-3YZtFKL77f92_B3c645O9b7nlPmzZchd2xt32-i7cas6D6voBrBLqx8_vP-oWt4NlpWEELVFR3TKn6A1boZ_dwnx_Y_OC-SNsixMqx7PPCaMj9V8YFecW6ywqWtYqQ8oKwA6nCSuzFUF8zKuaZQvmHz-Ek_jw-MNHt0vR4GohfOkWiueiGBqlPauK3AQyU771jGcUl7k1AV6CQKNSENKg6WHMMCwiGWQiytCzifxHMCjnpX0CTFgf_WXpCY1Oko2ijGthAi25tqZAN8-Bt-uJSnWHX05pNM7TFnmZpziiaTOiDrzuSS9b0I4_Ee2tZzvt5LZOCU5fkQkcOvCqb0aJo22UrLTzJdEMUdFJ5fkOPG6Zo3-LTx41V8KBcINtegJC895sKc--NqjetN-M3i1-ZsM2f-94Op6Nm5un_076Enamozg9SiafnsFtTjGDJpK0B4NFtbTP4aZeLc7q6kUnQr8ADtwj-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intra%E2%80%90session+and+inter%E2%80%90subject+variability+of+3D%E2%80%90FID%E2%80%90MRSI+using+single%E2%80%90echo+volumetric+EPI+navigators+at+3T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Moser%2C+Philipp&rft.au=Eckstein%2C+Korbinian&rft.au=Hingerl%2C+Lukas&rft.au=Weber%2C+Michael&rft.date=2020-06-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=83&rft.issue=6&rft.spage=1920&rft.epage=1929&rft_id=info:doi/10.1002%2Fmrm.28076&rft_id=info%3Apmid%2F31721294&rft.externalDocID=PMC7065144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon