Intra‐session and inter‐subject variability of 3D‐FID‐MRSI using single‐echo volumetric EPI navigators at 3T
Purpose In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI has many benefits including high detection sensitivity, in particular for J‐coupled metabolites (e.g., glutamate/glutamine). This makes it hi...
Saved in:
| Published in: | Magnetic resonance in medicine Vol. 83; no. 6; pp. 1920 - 1929 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.06.2020
John Wiley and Sons Inc |
| Subjects: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Purpose
In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI has many benefits including high detection sensitivity, in particular for J‐coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D‐FID‐MRSI sequence with single‐echo, imaging‐based volumetric navigators (se‐vNavs) for real‐time motion/shim‐correction (SHMOCO), which is 2× quicker than the original double‐echo navigators (de‐vNavs), hence allowing more efficient integration also in short‐TR sequences.
Methods
The tracking accuracy (position and B0‐field) of our proposed se‐vNavs was compared to the original de‐vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra‐session stability of a 5:40 min 3D‐FID‐MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter‐subject coefficients of variation (CV) and intra‐class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed.
Results
Phantom and in vivo scans showed highly consistent tracking performance for se‐vNavs compared to the original de‐vNavs, but lower frequency drift. Up to ~30% better intra‐subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m‐Ins ratios to tCr. ICCs were good‐to‐high (91% for Glx/tCr in motor cortex), whereas the inter‐subject variability was ~11–19%.
Conclusion
Real‐time motion/shim corrected 3D‐FID‐MRSI with time‐efficient CRT‐sampling at 3T allows reliable, high‐resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI. |
|---|---|
| AbstractList | In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric-ring trajectories (CRTs) at 3T. FID-MRSI has many benefits including high detection sensitivity, in particular for J-coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D-FID-MRSI sequence with single-echo, imaging-based volumetric navigators (se-vNavs) for real-time motion/shim-correction (SHMOCO), which is 2× quicker than the original double-echo navigators (de-vNavs), hence allowing more efficient integration also in short-TR sequences.
The tracking accuracy (position and B
-field) of our proposed se-vNavs was compared to the original de-vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra-session stability of a 5:40 min 3D-FID-MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter-subject coefficients of variation (CV) and intra-class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed.
Phantom and in vivo scans showed highly consistent tracking performance for se-vNavs compared to the original de-vNavs, but lower frequency drift. Up to ~30% better intra-subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m-Ins ratios to tCr. ICCs were good-to-high (91% for Glx/tCr in motor cortex), whereas the inter-subject variability was ~11-19%.
Real-time motion/shim corrected 3D-FID-MRSI with time-efficient CRT-sampling at 3T allows reliable, high-resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI. PurposeIn this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI has many benefits including high detection sensitivity, in particular for J‐coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D‐FID‐MRSI sequence with single‐echo, imaging‐based volumetric navigators (se‐vNavs) for real‐time motion/shim‐correction (SHMOCO), which is 2× quicker than the original double‐echo navigators (de‐vNavs), hence allowing more efficient integration also in short‐TR sequences.MethodsThe tracking accuracy (position and B0‐field) of our proposed se‐vNavs was compared to the original de‐vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra‐session stability of a 5:40 min 3D‐FID‐MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter‐subject coefficients of variation (CV) and intra‐class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed.ResultsPhantom and in vivo scans showed highly consistent tracking performance for se‐vNavs compared to the original de‐vNavs, but lower frequency drift. Up to ~30% better intra‐subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m‐Ins ratios to tCr. ICCs were good‐to‐high (91% for Glx/tCr in motor cortex), whereas the inter‐subject variability was ~11–19%.ConclusionReal‐time motion/shim corrected 3D‐FID‐MRSI with time‐efficient CRT‐sampling at 3T allows reliable, high‐resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI. In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric-ring trajectories (CRTs) at 3T. FID-MRSI has many benefits including high detection sensitivity, in particular for J-coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D-FID-MRSI sequence with single-echo, imaging-based volumetric navigators (se-vNavs) for real-time motion/shim-correction (SHMOCO), which is 2× quicker than the original double-echo navigators (de-vNavs), hence allowing more efficient integration also in short-TR sequences.PURPOSEIn this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric-ring trajectories (CRTs) at 3T. FID-MRSI has many benefits including high detection sensitivity, in particular for J-coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D-FID-MRSI sequence with single-echo, imaging-based volumetric navigators (se-vNavs) for real-time motion/shim-correction (SHMOCO), which is 2× quicker than the original double-echo navigators (de-vNavs), hence allowing more efficient integration also in short-TR sequences.The tracking accuracy (position and B0 -field) of our proposed se-vNavs was compared to the original de-vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra-session stability of a 5:40 min 3D-FID-MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter-subject coefficients of variation (CV) and intra-class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed.METHODSThe tracking accuracy (position and B0 -field) of our proposed se-vNavs was compared to the original de-vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra-session stability of a 5:40 min 3D-FID-MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter-subject coefficients of variation (CV) and intra-class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed.Phantom and in vivo scans showed highly consistent tracking performance for se-vNavs compared to the original de-vNavs, but lower frequency drift. Up to ~30% better intra-subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m-Ins ratios to tCr. ICCs were good-to-high (91% for Glx/tCr in motor cortex), whereas the inter-subject variability was ~11-19%.RESULTSPhantom and in vivo scans showed highly consistent tracking performance for se-vNavs compared to the original de-vNavs, but lower frequency drift. Up to ~30% better intra-subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m-Ins ratios to tCr. ICCs were good-to-high (91% for Glx/tCr in motor cortex), whereas the inter-subject variability was ~11-19%.Real-time motion/shim corrected 3D-FID-MRSI with time-efficient CRT-sampling at 3T allows reliable, high-resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI.CONCLUSIONReal-time motion/shim corrected 3D-FID-MRSI with time-efficient CRT-sampling at 3T allows reliable, high-resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI. Purpose In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI has many benefits including high detection sensitivity, in particular for J‐coupled metabolites (e.g., glutamate/glutamine). This makes it highly attractive, not only for clinical, but also for, potentially, functional MRSI. However, this requires excellent reliability and temporal stability. We have, therefore, augmented this 3D‐FID‐MRSI sequence with single‐echo, imaging‐based volumetric navigators (se‐vNavs) for real‐time motion/shim‐correction (SHMOCO), which is 2× quicker than the original double‐echo navigators (de‐vNavs), hence allowing more efficient integration also in short‐TR sequences. Methods The tracking accuracy (position and B0‐field) of our proposed se‐vNavs was compared to the original de‐vNavs in phantoms (rest and translation) and in vivo (voluntary head rotation). Finally, the intra‐session stability of a 5:40 min 3D‐FID‐MRSI scan was evaluated with SHMOCO and no correction (NOCO) in 5 resting subjects. Intra/inter‐subject coefficients of variation (CV) and intra‐class correlations (ICC) over the whole 3D volume and in selected regions of interest ROI were assessed. Results Phantom and in vivo scans showed highly consistent tracking performance for se‐vNavs compared to the original de‐vNavs, but lower frequency drift. Up to ~30% better intra‐subject CVs were obtained for SHMOCO (P < 0.05), with values of 9.3/6.9/6.5/7.8% over the full VOI for Glx/tNAA/tCho/m‐Ins ratios to tCr. ICCs were good‐to‐high (91% for Glx/tCr in motor cortex), whereas the inter‐subject variability was ~11–19%. Conclusion Real‐time motion/shim corrected 3D‐FID‐MRSI with time‐efficient CRT‐sampling at 3T allows reliable, high‐resolution metabolic imaging that is fast enough for clinical use and even, potentially, for functional MRSI. |
| Author | Trattnig, Siegfried Robinson, Simon Moser, Philipp Strasser, Bernhard Hingerl, Lukas Motyka, Stanislav Kouwe, Andre Eckstein, Korbinian Weber, Michael Bogner, Wolfgang |
| AuthorAffiliation | 3 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital Harvard Medical School Boston Massachusetts 1 High‐Field MR Center Department of Biomedical Imaging and Image‐guided Therapy Medical University of Vienna Vienna Austria 2 Department of Biomedical Imaging and Image‐guided Therapy Medical University of Vienna Vienna Austria 4 Christian Doppler Laboratory for Clinical Molecular MR Imaging Vienna Austria |
| AuthorAffiliation_xml | – name: 4 Christian Doppler Laboratory for Clinical Molecular MR Imaging Vienna Austria – name: 3 Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital Harvard Medical School Boston Massachusetts – name: 2 Department of Biomedical Imaging and Image‐guided Therapy Medical University of Vienna Vienna Austria – name: 1 High‐Field MR Center Department of Biomedical Imaging and Image‐guided Therapy Medical University of Vienna Vienna Austria |
| Author_xml | – sequence: 1 givenname: Philipp orcidid: 0000-0002-9717-6197 surname: Moser fullname: Moser, Philipp organization: Medical University of Vienna – sequence: 2 givenname: Korbinian surname: Eckstein fullname: Eckstein, Korbinian organization: Medical University of Vienna – sequence: 3 givenname: Lukas surname: Hingerl fullname: Hingerl, Lukas organization: Medical University of Vienna – sequence: 4 givenname: Michael surname: Weber fullname: Weber, Michael organization: Medical University of Vienna – sequence: 5 givenname: Stanislav surname: Motyka fullname: Motyka, Stanislav organization: Medical University of Vienna – sequence: 6 givenname: Bernhard orcidid: 0000-0001-9542-3855 surname: Strasser fullname: Strasser, Bernhard organization: Harvard Medical School – sequence: 7 givenname: Andre surname: Kouwe fullname: Kouwe, Andre organization: Harvard Medical School – sequence: 8 givenname: Simon orcidid: 0000-0001-7463-5162 surname: Robinson fullname: Robinson, Simon organization: Medical University of Vienna – sequence: 9 givenname: Siegfried surname: Trattnig fullname: Trattnig, Siegfried organization: Christian Doppler Laboratory for Clinical Molecular MR Imaging – sequence: 10 givenname: Wolfgang surname: Bogner fullname: Bogner, Wolfgang email: wolfgang.bogner@meduniwien.ac.at organization: Medical University of Vienna |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31721294$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc9u1DAQxi1URLcLB14AWeJCD2n9N4kvSKi0EKkrUClny4mdrVeJ3dpJ0N76CDwjT4LDbhFUcJmRZn7z6Rt9R-DAeWcAeInRCUaInPahPyElKvInYIE5IRnhgh2ABSoYyigW7BAcxbhBCAlRsGfgkOKCYCLYAkyVG4L6cf89mhitd1A5Da0bTJhnY70xzQAnFayqbWeHLfQtpO_T7qKa6-rqSwXHaN0azqUzaWaaGw8n3429GYJt4PnnCjo12bUafIhQDZBePwdPW9VF82Lfl-Drxfn12cfs8tOH6uzdZdYwRvOsFaRmLdaiQUa0tea5EtQgjbQgeW00T43zpiwQy7VAWGtctGXOFSsVLklJl-DtTvd2rHujGzN_28nbYHsVttIrK__eOHsj136SBco5Th6W4M1eIPi70cRB9jY2puuUM36MklDMCM8Fogl9_Qjd-DG49F6iciYwp7RI1Ks_Hf228hBJAk53QBN8jMG0srGDGlI2yaDtJEZyDl2m0OWv0NPF8aOLB9F_sXv1b7Yz2_-DcnW12l38BD5LwJw |
| CitedBy_id | crossref_primary_10_1002_mrm_30151 crossref_primary_10_1016_j_neuroimage_2023_120250 crossref_primary_10_1016_j_neuroimage_2023_120235 crossref_primary_10_1002_mrm_30550 crossref_primary_10_1002_mrm_30200 crossref_primary_10_1002_mrm_29950 crossref_primary_10_1016_j_neuroimage_2025_121043 crossref_primary_10_1002_mrm_29980 crossref_primary_10_1016_j_ab_2021_114479 crossref_primary_10_1002_nbm_4364 crossref_primary_10_1002_nbm_4596 crossref_primary_10_1002_mrm_28614 crossref_primary_10_1002_mrm_28555 crossref_primary_10_1002_nbm_4615 crossref_primary_10_1002_nbm_70126 crossref_primary_10_1002_mrm_28876 crossref_primary_10_1002_mrm_29423 crossref_primary_10_1002_nbm_4415 crossref_primary_10_1002_hbm_70176 crossref_primary_10_1038_s41551_023_01035_z crossref_primary_10_1097_RLI_0000000000000953 |
| Cites_doi | 10.1002/(SICI)1522-2594(199901)41:1<179::AID-MRM25>3.0.CO;2-V 10.1097/RLI.0000000000000379 10.1002/mrm.26718 10.1109/42.97598 10.1002/mrm.25208 10.1002/mrm.27597 10.1002/nbm.1366 10.3389/fpsyt.2018.00076 10.1016/j.neuroimage.2015.11.022 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R 10.1002/mrm.25670 10.1002/mrm.24399 10.1002/jmri.24130 10.1002/mrm.26987 10.1002/nbm.1445 10.1002/mrm.27922 10.1002/mrm.27623 10.3390/s19153297 10.1002/nbm.1805 10.1002/mrm.22805 10.1148/radiol.13130531 10.1002/nbm.698 10.1101/628594 10.1002/mrm.27049 10.1016/j.neuroimage.2015.11.054 10.1002/mrm.26963 10.1002/mrm.21025 10.1002/nbm.1756 10.1148/radiol.2017170744 10.1002/mrm.27750 10.1002/jmri.22471 10.1002/mrm.23228 10.1002/mrm.23184 10.1002/mrm.27822 10.1371/journal.pone.0115304 10.1016/j.neuroimage.2013.09.034 10.1016/j.neuroimage.2016.10.043 10.1007/s00062-018-00757-x 10.1038/s41598-018-26096-y 10.1002/nbm.891 10.1002/mrm.23136 10.1016/j.neuroimage.2016.07.009 10.1016/j.neuroimage.2016.12.065 10.1016/j.neuroimage.2014.09.032 10.1002/nbm.3898 10.1016/j.neuroimage.2018.09.039 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine – notice: 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| DOI | 10.1002/mrm.28076 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Biochemistry Abstracts 1 MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | MOSER et al |
| EISSN | 1522-2594 |
| EndPage | 1929 |
| ExternalDocumentID | PMC7065144 31721294 10_1002_mrm_28076 MRM28076 |
| Genre | technicalNote Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Christian Doppler Laboratory for Clinical Molecular MR Imaging – fundername: Austrian Science Fund funderid: J 4124; KLI 718 ; P 30701; P 31452 – fundername: Austrian Science Fund funderid: J4124 – fundername: Austrian Science Fund FWF grantid: KLI 718 – fundername: Austrian Science Fund FWF grantid: P 30701 – fundername: ; grantid: J 4124; KLI 718 ; P 30701; P 31452 – fundername: ; grantid: J4124 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4436-f92b4f1d9c0e9fbd56a93e0d0d926bed592655c87046d901dd17f865a48a18283 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495998200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Thu Aug 21 18:34:19 EDT 2025 Thu Oct 02 05:05:53 EDT 2025 Sat Nov 29 14:24:20 EST 2025 Mon Jul 21 05:43:16 EDT 2025 Sat Nov 29 02:37:48 EST 2025 Tue Nov 18 22:25:44 EST 2025 Sun Jul 06 04:45:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | intra-subject reproducibility real time motion correction concentric rings dynamic functional magnetic resonance spectroscopic imaging reliability |
| Language | English |
| License | Attribution 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4436-f92b4f1d9c0e9fbd56a93e0d0d926bed592655c87046d901dd17f865a48a18283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9542-3855 0000-0001-7463-5162 0000-0002-9717-6197 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28076 |
| PMID | 31721294 |
| PQID | 2364915337 |
| PQPubID | 1016391 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7065144 proquest_miscellaneous_2314256903 proquest_journals_2364915337 pubmed_primary_31721294 crossref_citationtrail_10_1002_mrm_28076 crossref_primary_10_1002_mrm_28076 wiley_primary_10_1002_mrm_28076_MRM28076 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2009; 22 2018; 286 2013; 69 2006; 56 1991; 10 2015; 73 2020; 83 2018; 168 2000; 44 2018; 80 2016; 75 2011; 33 2019; 19 1999; 41 2016; 127 2016; 126 2014; 270 2019; 184 2014; 88 2010; 23 2018; 9 2018; 8 2017; 52 2019; 82 2019; 81 2004; 17 2019 2018 2011; 66 2014 2014; 39 2012; 25 2014; 9 2012; 68 2012; 67 2001; 14 2018; 31 2014; 103 2018; 79 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – year: 2019 article-title: Regional metabolite concentrations in aging human brain: comparison of short‐TE whole brain MR spectroscopic imaging and single voxel spectroscopy at 3T publication-title: Clin Neuroradiol – volume: 168 start-page: 321 year: 2018 end-page: 331 article-title: A method for the dynamic correction of B0‐related distortions in single‐echo EPI at 7 T publication-title: NeuroImage – volume: 79 start-page: 636 year: 2018 end-page: 642 article-title: Fully automated atlas‐based method for prescribing 3D PRESS MR spectroscopic imaging: toward robust and reproducible metabolite measurements in human brain publication-title: Magn Reson Med – volume: 80 start-page: 442 year: 2018 end-page: 451 article-title: Non‐water‐suppressed 1H FID‐MRSI at 3T and 9.4T publication-title: Magn Reson Med – volume: 75 start-page: 1030 year: 2016 end-page: 1039 article-title: Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T publication-title: Magn Reson Med – volume: 14 start-page: 260 year: 2001 end-page: 264 article-title: Automatic quantitation of localized in vivo 1H spectra with LCModel publication-title: NMR Biomed – volume: 81 start-page: 2600 year: 2019 end-page: 2613 article-title: Real‐time simultaneous shim and motion measurement and correction in glycoCEST MRI using double volumetric navigators (DvNavs) publication-title: Magn Reson Med – volume: 23 start-page: 251 year: 2010 end-page: 256 article-title: Reproducibility of serial whole‐brain MR spectroscopic imaging publication-title: NMR Biomed – volume: 184 start-page: 475 year: 2019 end-page: 489 article-title: Whole‐slice mapping of GABA and GABA+ at 7T via adiabatic MEGA‐editing, real‐time instability correction, and concentric circle readout publication-title: NeuroImage – volume: 83 start-page: 12 year: 2020 end-page: 21 article-title: Effects of different macromolecular models on reproducibility of FID‐MRSI at 7T publication-title: Magn Reson Med – volume: 79 start-page: 2996 year: 2018 end-page: 3006 article-title: Computationally efficient combination of multi‐channel phase data from multi‐echo acquisitions (ASPIRE) publication-title: Magn Reson Med – volume: 56 start-page: 932 year: 2006 end-page: 937 article-title: Fast metabolic imaging of systems with sparse spectra: application for hyperpolarized13C imaging publication-title: Magn Reson Med – volume: 33 start-page: 748 year: 2011 end-page: 754 article-title: Correction of frequency drifts induced by gradient heating in 1H spectra using interleaved reference spectroscopy publication-title: J Magn Reson Imaging – volume: 168 start-page: 211 year: 2018 end-page: 221 article-title: High and ultra‐high resolution metabolite mapping of the human brain using 1 H FID MRSI at 9.4T publication-title: NeuroImage – volume: 44 start-page: 457 year: 2000 end-page: 465 article-title: Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI publication-title: Magn Reson Med – volume: 68 start-page: 389 year: 2012 end-page: 399 article-title: Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI publication-title: Magn Reson Med – volume: 168 start-page: 199 year: 2018 end-page: 210 article-title: Ultra‐high resolution brain metabolite mapping at 7 T by short‐TR Hadamard‐encoded FID‐MRSI publication-title: NeuroImage – volume: 9 start-page: 76 year: 2018 article-title: Functional magnetic resonance spectroscopy: the “New” MRS for cognitive neuroscience and psychiatry research publication-title: Front Psychiatry – volume: 25 start-page: 873 year: 2012 end-page: 882 article-title: High‐resolution mapping of human brain metabolites by free induction decay 1H MRSI at 7 T publication-title: NMR Biomed – year: 2018 – year: 2014 – volume: 126 start-page: 60 year: 2016 end-page: 71 article-title: Real‐time measurement and correction of both B0 changes and subject motion in diffusion tensor imaging using a double volumetric navigated (DvNav) sequence publication-title: NeuroImage – volume: 82 start-page: 1587 year: 2019 end-page: 1603 article-title: Non‐Cartesian GRAPPA and coil combination using interleaved calibration data ‐ application to concentric‐ring MRSI of the human brain at 7T publication-title: Magn Reson Med – volume: 31 year: 2018 article-title: Comparison of reproducibility of single voxel spectroscopy and whole‐brain magnetic resonance spectroscopy imaging at 3T publication-title: NMR Biomed – volume: 17 start-page: 361 year: 2004 end-page: 381 article-title: Issues of spectral quality in clinical 1H‐magnetic resonance spectroscopy and a gallery of artifacts publication-title: NMR Biomed – volume: 52 start-page: 631 year: 2017 end-page: 639 article-title: Mapping an extended neurochemical profile at 3 and 7 T using accelerated high‐resolution proton magnetic resonance spectroscopic imaging publication-title: Invest Radiol – volume: 286 start-page: 666 year: 2018 end-page: 675 article-title: Real‐time correction of motion and imager instability artifacts during 3D γ‐aminobutyric acid‐edited MR spectroscopic imaging publication-title: Radiology – volume: 79 start-page: 2874 year: 2018 end-page: 2885 article-title: Density‐weighted concentric circle trajectories for high resolution brain magnetic resonance spectroscopic imaging at 7T publication-title: Magn Reson Med – volume: 69 start-page: 1501 year: 2013 end-page: 1511 article-title: Lipid suppression in CSI with spatial priors and highly undersampled peripheral k‐space publication-title: Magn Reson Med – volume: 8 start-page: 7792 year: 2018 article-title: Metabolite‐cycled density‐weighted concentric rings k‐space trajectory (DW‐CRT) enables high‐resolution 1H magnetic resonance spectroscopic imaging at 3‐Tesla publication-title: Sci Rep – volume: 67 start-page: 1515 year: 2012 end-page: 1522 article-title: Spectroscopic imaging using concentrically circular echo‐planar trajectories in vivo publication-title: Magn Reson Med – volume: 66 start-page: 314 year: 2011 end-page: 323 article-title: Real‐time motion and B0 corrected single voxel spectroscopy using volumetric navigators publication-title: Magn Reson Med – volume: 88 start-page: 22 year: 2014 end-page: 31 article-title: Real‐time motion‐ and B0‐correction for LASER‐localized spiral‐accelerated 3D‐MRSI of the brain at 3T publication-title: NeuroImage – volume: 19 start-page: 3297 year: 2019 article-title: implementation, and evaluation of a head and neck MRI RF array integrated with a 511 keV transmission source for attenuation correction in PET/MR publication-title: Sensors (Basel) – volume: 73 start-page: 921 year: 2015 end-page: 928 article-title: Reproducibility and reliability of short‐TE whole‐brain MR spectroscopic imaging of human brain at 3T publication-title: Magn Reson Med – volume: 10 start-page: 473 year: 1991 end-page: 478 article-title: Selection of a convolution function for Fourier inversion using gridding (computerised tomography application) publication-title: IEEE Trans Med Imaging – volume: 39 start-page: 224 year: 2014 end-page: 234 article-title: Impact of reduced k‐space acquisition on pathologic detectability for volumetric MR spectroscopic imaging publication-title: J Magn Reson Imaging – volume: 22 start-page: 683 year: 2009 end-page: 696 article-title: Slice‐selective FID acquisition, localized by outer volume suppression (FIDLOVS) for 1H‐MRSI of the human brain at 7 T with minimal signal loss publication-title: NMR Biomed – volume: 67 start-page: 1506 year: 2012 end-page: 1514 article-title: Spectroscopic imaging with prospective motion correction and retrospective phase correction publication-title: Magn Reson Med – volume: 9 year: 2014 article-title: Comparison of inter subject variability and reproducibility of whole brain proton spectroscopy publication-title: PLoS ONE – volume: 81 start-page: 2841 year: 2019 end-page: 2857 article-title: Fast high‐resolution brain metabolite mapping on a clinical 3T MRI by accelerated 1H‐FID‐MRSI and low‐rank constrained reconstruction publication-title: Magn Reson Med – volume: 270 start-page: 658 year: 2014 end-page: 679 article-title: Clinical proton MR spectroscopy in central nervous system disorders publication-title: Radiology – volume: 127 start-page: 11 year: 2016 end-page: 22 article-title: Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion publication-title: NeuroImage – volume: 103 start-page: 290 year: 2014 end-page: 302 article-title: 3D GABA imaging with real‐time motion correction, shim update and reacquisition of adiabatic spiral MRSI publication-title: NeuroImage – volume: 25 start-page: 347 year: 2012 end-page: 358 article-title: Real‐time motion and B0 correction for localized adiabatic selective refocusing (LASER) MRSI using echo planar imaging volumetric navigators publication-title: NMR Biomed – volume: 41 start-page: 179 year: 1999 end-page: 186 article-title: Sampling density compensation in MRI: rationale and an iterative numerical solution publication-title: Magn Reson Med – volume: 82 start-page: 633 year: 2019 end-page: 646 article-title: A comparison of static and dynamic ΔB0 mapping methods for correction of CEST MRI in the presence of temporal B0 field variations publication-title: Magn Reson Med – ident: e_1_2_7_27_1 doi: 10.1002/(SICI)1522-2594(199901)41:1<179::AID-MRM25>3.0.CO;2-V – ident: e_1_2_7_10_1 doi: 10.1097/RLI.0000000000000379 – ident: e_1_2_7_46_1 doi: 10.1002/mrm.26718 – ident: e_1_2_7_29_1 doi: 10.1109/42.97598 – ident: e_1_2_7_45_1 doi: 10.1002/mrm.25208 – ident: e_1_2_7_41_1 doi: 10.1002/mrm.27597 – ident: e_1_2_7_5_1 doi: 10.1002/nbm.1366 – ident: e_1_2_7_43_1 doi: 10.3389/fpsyt.2018.00076 – ident: e_1_2_7_40_1 doi: 10.1016/j.neuroimage.2015.11.022 – ident: e_1_2_7_22_1 doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R – ident: e_1_2_7_49_1 doi: 10.1002/mrm.25670 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.24399 – ident: e_1_2_7_35_1 doi: 10.1002/jmri.24130 – ident: e_1_2_7_7_1 doi: 10.1002/mrm.26987 – ident: e_1_2_7_44_1 doi: 10.1002/nbm.1445 – ident: e_1_2_7_38_1 doi: 10.1002/mrm.27922 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.27623 – ident: e_1_2_7_33_1 doi: 10.3390/s19153297 – ident: e_1_2_7_4_1 doi: 10.1002/nbm.1805 – ident: e_1_2_7_17_1 doi: 10.1002/mrm.22805 – ident: e_1_2_7_2_1 doi: 10.1148/radiol.13130531 – ident: e_1_2_7_32_1 doi: 10.1002/nbm.698 – ident: e_1_2_7_37_1 doi: 10.1101/628594 – ident: e_1_2_7_47_1 doi: 10.1002/mrm.27049 – ident: e_1_2_7_39_1 doi: 10.1016/j.neuroimage.2015.11.054 – ident: e_1_2_7_25_1 doi: 10.1002/mrm.26963 – ident: e_1_2_7_28_1 doi: 10.1002/mrm.21025 – ident: e_1_2_7_18_1 doi: 10.1002/nbm.1756 – ident: e_1_2_7_14_1 doi: 10.1148/radiol.2017170744 – ident: e_1_2_7_24_1 doi: 10.1002/mrm.27750 – ident: e_1_2_7_16_1 doi: 10.1002/jmri.22471 – ident: e_1_2_7_19_1 doi: 10.1002/mrm.23228 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.23184 – ident: e_1_2_7_31_1 doi: 10.1002/mrm.27822 – ident: e_1_2_7_48_1 doi: 10.1371/journal.pone.0115304 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuroimage.2013.09.034 – ident: e_1_2_7_34_1 doi: 10.1016/j.neuroimage.2016.10.043 – ident: e_1_2_7_3_1 doi: 10.1007/s00062-018-00757-x – ident: e_1_2_7_9_1 doi: 10.1038/s41598-018-26096-y – ident: e_1_2_7_13_1 doi: 10.1002/nbm.891 – ident: e_1_2_7_26_1 – ident: e_1_2_7_12_1 – ident: e_1_2_7_15_1 doi: 10.1002/mrm.23136 – ident: e_1_2_7_23_1 doi: 10.1016/j.neuroimage.2016.07.009 – ident: e_1_2_7_6_1 doi: 10.1016/j.neuroimage.2016.12.065 – ident: e_1_2_7_21_1 doi: 10.1016/j.neuroimage.2014.09.032 – ident: e_1_2_7_36_1 doi: 10.1002/nbm.3898 – ident: e_1_2_7_42_1 doi: 10.1016/j.neuroimage.2018.09.039 |
| SSID | ssj0009974 |
| Score | 2.4566195 |
| Snippet | Purpose
In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI... In this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric-ring trajectories (CRTs) at 3T. FID-MRSI has many... PurposeIn this study, we demonstrate the first combination of 3D FID proton MRSI and spatial encoding via concentric‐ring trajectories (CRTs) at 3T. FID‐MRSI... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1920 |
| SubjectTerms | Brain - diagnostic imaging Coefficient of variation concentric rings Cortex (motor) dynamic functional magnetic resonance spectroscopic imaging Frequency drift Glutamine Head Head movement Humans intra‐subject reproducibility Metabolites Navigators Neuroimaging Note—Spectroscopic Methodology Phantoms, Imaging real time motion correction reliability Reproducibility Reproducibility of Results Stability analysis Stability augmentation Temporal lobe Three dimensional motion Tracking Variability |
| Title | Intra‐session and inter‐subject variability of 3D‐FID‐MRSI using single‐echo volumetric EPI navigators at 3T |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28076 https://www.ncbi.nlm.nih.gov/pubmed/31721294 https://www.proquest.com/docview/2364915337 https://www.proquest.com/docview/2314256903 https://pubmed.ncbi.nlm.nih.gov/PMC7065144 |
| Volume | 83 |
| WOSCitedRecordID | wos000495998200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-NDSZe-DMYBMZkEA-8hCWO49jiCbFVVKJVVTbRtyixHZi0pShpK_HGR-Az8km4S9KMaiAh8eIk9kVxnLvz3dn5HcBL1HjaWCV9mxjpi5w7H60Q7RtrIu5wQgysapJNJOOxms30ZAverP-FafEh-oAbSUajr0nAs7w-ugINvawuXxOUi7wBO2EYKcrbwMXkCnFXtxDMiSBFo8UaVijgR_2tm5PRNQvz-kbJ3w3YZgYa3P2vvt-DO53hyd62nHIftly5B7ujbml9D241e0FN_QBWQ-rGz-8_6hazg2WlZQQrUVHdMqfIDVuhj91CfH9j84JFx9g2GFI5mn4cMtpO_5lRceGwzqGSZa0ipIwA7GQyZGW2IniPeVWzbMGi04dwNjg5fffe79Iz-EaISPqF5rkoQqtN4HSR21hmOnKBDazmMnc2xkMcG1QIQlo0O6wNk0LJOBMqQ69GRfuwXc5L9xiYcBH6yjIQBh0kp1TGjbCxkdw4W6CL58Gr9XdKTYddTik0LtIWdZmnOKJpM6IevOhJv7aAHX8iOlh_7LST2TolKH1N5m_iwfO-GaWNllCy0s2XRBOikpM6iDx41PJG_5SIvGmuhQfJBtf0BITkvdlSnn9pEL1prRk9W3zNhmv-3vF0NB01J0_-nfQp3OYUJGhCRwewvaiW7hncNKvFeV0dNkKDZTJTh7BzPB2cfcCrT8PxLwKuIo4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V8rzwKK9AAYM49BKadRwnlrgg6KoRzaoqi-gtSmwHKrVZlOyuxI2fwG_klzDjZFNWBQmJixPZE8WxZ8YzY-cbgJeo8ZQ2ifRNrKUvSm59tEKUr40OucUFMTCJSzYRTybJ8bE63IDXq39hOnyIIeBGkuH0NQk4BaR3z1FDz5qzV4TlIi_BZYGGBiVu-JROziF3VYfBHAvSNEqscIUCvjs8ur4aXTAxL56U_N2CdUvQ-Nb_df423OxNT_am45U7sGHrLbiW9ZvrW3DVnQbV7V1YptSPn99_tB1qBytqwwhYoqG6RUmxG7ZEL7sD-f7GZhUL32HbOKUyO_qQMjpQ_5lRcWqxzqKaZZ0qpJwAbO8wZXWxJICPWdOyYs7C6T34ON6bvt33-wQNvhYilH6leCmqkVE6sKoqTSQLFdrABEZxWVoT4SWKNKoEIQ0aHsaM4iqRUSGSAv2aJLwPm_Wstg-BCRuitywDodFFsklScC1MpCXX1lTo5Hmws5qoXPfo5ZRE4zTvcJd5jiOauxH14MVA-rWD7PgT0fZqtvNeatucwPQVGcCxB8-HZpQ32kQpajtbEM0I1ZxUQejBg445hreE5E9zJTyI19hmICAs7_WW-uSLw_Sm3Wb0bfEzHdv8veN5dpS5m0f_TvoMru9Ps4P8IJ28fww3OIUMXCBpGzbnzcI-gSt6OT9pm6dOgn4BJuQjTw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLVRc-Cl_gQIGceCSNus4TixxQWwjIrqr1dJKvUWJ7UClNlsluytx4xF4Rp6EmSSbsipISFycyJ4ojj0znhk73wC8QY2ntImka0ItXZFz66IVolxttM8tLoieiZpkE-FkEp2equkWvFv_C9PiQ_QBN5KMRl-TgNtLUxxcoYZeVBf7hOUib8C2oCQyA9gezeKToyvQXdWiMIeCdI0Sa2Qhjx_0D2-uR9eMzOtnJX-3YZtFKL77f92_B3c645O9b7nlPmzZchd2xt32-i7cas6D6voBrBLqx8_vP-oWt4NlpWEELVFR3TKn6A1boZ_dwnx_Y_OC-SNsixMqx7PPCaMj9V8YFecW6ywqWtYqQ8oKwA6nCSuzFUF8zKuaZQvmHz-Ek_jw-MNHt0vR4GohfOkWiueiGBqlPauK3AQyU771jGcUl7k1AV6CQKNSENKg6WHMMCwiGWQiytCzifxHMCjnpX0CTFgf_WXpCY1Oko2ijGthAi25tqZAN8-Bt-uJSnWHX05pNM7TFnmZpziiaTOiDrzuSS9b0I4_Ee2tZzvt5LZOCU5fkQkcOvCqb0aJo22UrLTzJdEMUdFJ5fkOPG6Zo3-LTx41V8KBcINtegJC895sKc--NqjetN-M3i1-ZsM2f-94Op6Nm5un_076Enamozg9SiafnsFtTjGDJpK0B4NFtbTP4aZeLc7q6kUnQr8ADtwj-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intra%E2%80%90session+and+inter%E2%80%90subject+variability+of+3D%E2%80%90FID%E2%80%90MRSI+using+single%E2%80%90echo+volumetric+EPI+navigators+at+3T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Moser%2C+Philipp&rft.au=Eckstein%2C+Korbinian&rft.au=Hingerl%2C+Lukas&rft.au=Weber%2C+Michael&rft.date=2020-06-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=83&rft.issue=6&rft.spage=1920&rft.epage=1929&rft_id=info:doi/10.1002%2Fmrm.28076&rft_id=info%3Apmid%2F31721294&rft.externalDocID=PMC7065144 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |