Research on stress curve clustering algorithm of Fiber Bragg grating sensor

The global stress distribution and state parameter analysis of the building's main structure is an urgent problem to be solved in the online state assessment technology of building structure health. In this paper, a stress curve clustering algorithm of fiber Bragg grating stress sensor based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 13; H. 1; S. 11815 - 12
Hauptverfasser: Lin, Yisen, Wang, Ye, Qu, Huichen, Xiong, Yiwen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 21.07.2023
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The global stress distribution and state parameter analysis of the building's main structure is an urgent problem to be solved in the online state assessment technology of building structure health. In this paper, a stress curve clustering algorithm of fiber Bragg grating stress sensor based on density clustering algorithm is proposed. To solve the problem of large dimension and sparse sample space of sensor stress curve, the distance between samples is measured based on improved cosine similarity. Aiming at the problem of low efficiency and poor effect of traditional clustering algorithm, density clustering algorithm based on mutual nearest neighbor is used to cluster. Finally, the classification of the daily stress load characteristics of the sensor is realized, which provides a basis for constructing the mathematical analysis model of building health. The experimental results show that the stress curve clustering method proposed in this paper is better than the latest clustering algorithms such as HDBSCAN, CBKM, K-mean++,FINCH and NPIR, and is suitable for the feature classification of stress curves of fiber Bragg grating sensors.
AbstractList The global stress distribution and state parameter analysis of the building's main structure is an urgent problem to be solved in the online state assessment technology of building structure health. In this paper, a stress curve clustering algorithm of fiber Bragg grating stress sensor based on density clustering algorithm is proposed. To solve the problem of large dimension and sparse sample space of sensor stress curve, the distance between samples is measured based on improved cosine similarity. Aiming at the problem of low efficiency and poor effect of traditional clustering algorithm, density clustering algorithm based on mutual nearest neighbor is used to cluster. Finally, the classification of the daily stress load characteristics of the sensor is realized, which provides a basis for constructing the mathematical analysis model of building health. The experimental results show that the stress curve clustering method proposed in this paper is better than the latest clustering algorithms such as HDBSCAN, CBKM, K-mean++,FINCH and NPIR, and is suitable for the feature classification of stress curves of fiber Bragg grating sensors.The global stress distribution and state parameter analysis of the building's main structure is an urgent problem to be solved in the online state assessment technology of building structure health. In this paper, a stress curve clustering algorithm of fiber Bragg grating stress sensor based on density clustering algorithm is proposed. To solve the problem of large dimension and sparse sample space of sensor stress curve, the distance between samples is measured based on improved cosine similarity. Aiming at the problem of low efficiency and poor effect of traditional clustering algorithm, density clustering algorithm based on mutual nearest neighbor is used to cluster. Finally, the classification of the daily stress load characteristics of the sensor is realized, which provides a basis for constructing the mathematical analysis model of building health. The experimental results show that the stress curve clustering method proposed in this paper is better than the latest clustering algorithms such as HDBSCAN, CBKM, K-mean++,FINCH and NPIR, and is suitable for the feature classification of stress curves of fiber Bragg grating sensors.
Abstract The global stress distribution and state parameter analysis of the building's main structure is an urgent problem to be solved in the online state assessment technology of building structure health. In this paper, a stress curve clustering algorithm of fiber Bragg grating stress sensor based on density clustering algorithm is proposed. To solve the problem of large dimension and sparse sample space of sensor stress curve, the distance between samples is measured based on improved cosine similarity. Aiming at the problem of low efficiency and poor effect of traditional clustering algorithm, density clustering algorithm based on mutual nearest neighbor is used to cluster. Finally, the classification of the daily stress load characteristics of the sensor is realized, which provides a basis for constructing the mathematical analysis model of building health. The experimental results show that the stress curve clustering method proposed in this paper is better than the latest clustering algorithms such as HDBSCAN, CBKM, K-mean++,FINCH and NPIR, and is suitable for the feature classification of stress curves of fiber Bragg grating sensors.
The global stress distribution and state parameter analysis of the building's main structure is an urgent problem to be solved in the online state assessment technology of building structure health. In this paper, a stress curve clustering algorithm of fiber Bragg grating stress sensor based on density clustering algorithm is proposed. To solve the problem of large dimension and sparse sample space of sensor stress curve, the distance between samples is measured based on improved cosine similarity. Aiming at the problem of low efficiency and poor effect of traditional clustering algorithm, density clustering algorithm based on mutual nearest neighbor is used to cluster. Finally, the classification of the daily stress load characteristics of the sensor is realized, which provides a basis for constructing the mathematical analysis model of building health. The experimental results show that the stress curve clustering method proposed in this paper is better than the latest clustering algorithms such as HDBSCAN, CBKM, K-mean++,FINCH and NPIR, and is suitable for the feature classification of stress curves of fiber Bragg grating sensors.
ArticleNumber 11815
Author Qu, Huichen
Lin, Yisen
Wang, Ye
Xiong, Yiwen
Author_xml – sequence: 1
  givenname: Yisen
  surname: Lin
  fullname: Lin, Yisen
  organization: School of Computer Science and Engineering, Guilin University of Aerospace Technology
– sequence: 2
  givenname: Ye
  surname: Wang
  fullname: Wang, Ye
  email: wangye@guat.edu.cn
  organization: School of Computer Science and Engineering, Guilin University of Aerospace Technology
– sequence: 3
  givenname: Huichen
  surname: Qu
  fullname: Qu, Huichen
  organization: School of Computer Science and Engineering, Guilin University of Aerospace Technology
– sequence: 4
  givenname: Yiwen
  surname: Xiong
  fullname: Xiong, Yiwen
  organization: School of Computer Science and Engineering, Guilin University of Aerospace Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37479882$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URMvQP8ACRWLDJuBXEnuFaEWhaqVKCNaW41xnMsrYw3XSin-Ppyl9sKg3tuzvHh_f49fkIMQAhLxl9COjQn1KklValZSLUmhaqfLmBTniVFYlF5wfPFofkuOUNjSPimvJ9CtyKBrZaKX4Ebn4AQksunURQ5EmhJQKN-M1FG6c0wQ4hL6wYx9xmNbbIvribGgBixO0fV_0aKc9kCCkiG_IS2_HBMd384r8Ovv68_R7eXn17fz0y2XppBR1aeva1bRhbS1cw73saqASNKs7JxrnKXinbQWQ32e9VNQrCrqpZUWdUkJqsSLni24X7cbscNha_GOiHcztRsTeWJwGN4JxnEnHHPOiVbJVTau4bbpsQFilwKus9XnR2s3tFjoHYUI7PhF9ehKGtenjtckh1Jzm9q_IhzsFjL9nSJPZDsnBONoAcU6GK8lotiGajL7_D93EGUPu1Z6iksscUKbePbZ07-VfaBngC-AwpoTg7xFG976UWT6Hye7M7ecwN7lILEVpt88U8OHuZ6r-AvjHu9M
Cites_doi 10.1016/j.patcog.2019.04.014
10.1088/1361-665X/aa9797
10.1007/978-3-030-81716-9_16
10.1016/j.neucom.2015.10.020
10.1016/j.patcog.2020.107589
10.1109/TNN.2005.845141
10.5121/ijdms.2013.5108
10.1016/j.measurement.2013.07.029
10.3788/YJYXS20203502.0173
10.3390/s20010110
10.1016/j.engstruct.2015.04.024
10.1049/el.2016.2810
10.1109/ACCESS.2022.3229582
10.1016/j.patrec.2019.10.019
10.1145/2733381
10.1016/j.neucom.2015.05.109
10.1016/j.patcog.2016.03.008
10.1016/j.optcom.2014.12.079
10.1126/science.1242072
10.1016/j.optcom.2021.127286
10.21105/joss.00205
10.1007/s13042-019-01027-z
10.1016/j.is.2012.09.001
10.1137/1.9781611973440.47
10.1109/CVPR.2019.00914
10.1145/2723372.2737792
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2023
2023. The Author(s).
The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023. corrected publication 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-39058-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_c214c1c1f3b84b87b82a7d66c3a88ef8
PMC10362002
37479882
10_1038_s41598_023_39058_w
Genre Journal Article
GrantInformation_xml – fundername: Basic Scientific Research Ability Improvement Project for Young and Middle-aged Teachers of Universities in GuangXi (Research on logistics distribution route optimization based on electric vehicle)
  grantid: 2022KY0789; 2022KY0789; 2022KY0789; 2022KY0789
– fundername: Basic Scientific Research Ability Improvement Project for Young and Middle-aged Teachers of Universities in GuangXi (Development and application of visual remote analysis system based on data acquisition of optical fiber sensor)
  grantid: 2021KY0794; 2021KY0794; 2021KY0794
– fundername: School-level Scientific Research Project in Guilin University of Aerospace Technology
  grantid: XJ20KT19; XJ20KT19
– fundername: Basic Scientific Research Ability Improvement Project for Young and Middle-aged Teachers of Universities in GuangXi (Research on federated learning methods for non-independent homogeneous distribution scenarios)
  grantid: 2023KY0814; 2023KY0814; 2023KY0814
– fundername: Basic Scientific Research Ability Improvement Project for Young and Middle-aged Teachers of Universities in GuangXi (Research on Alzheimer's disease classification algorithm based on deep learning)
  grantid: 2021KY0797; 2021KY0797
– fundername: Basic Scientific Research Ability Improvement Project for Young and Middle-aged Teachers of Universities in GuangXi (Development and application of visual remote analysis system based on data acquisition of optical fiber sensor)
  grantid: 2021KY0794
– fundername: Basic Scientific Research Ability Improvement Project for Young and Middle-aged Teachers of Universities in GuangXi (Research on logistics distribution route optimization based on electric vehicle)
  grantid: 2022KY0789
– fundername: School-level Scientific Research Project in Guilin University of Aerospace Technology
  grantid: XJ20KT19
– fundername: Basic Scientific Research Ability Improvement Project for Young and Middle-aged Teachers of Universities in GuangXi (Research on Alzheimer's disease classification algorithm based on deep learning)
  grantid: 2021KY0797
– fundername: Basic Scientific Research Ability Improvement Project for Young and Middle-aged Teachers of Universities in GuangXi (Research on federated learning methods for non-independent homogeneous distribution scenarios)
  grantid: 2023KY0814
– fundername: ;
  grantid: 2023KY0814; 2023KY0814; 2023KY0814
– fundername: ;
  grantid: 2021KY0797; 2021KY0797
– fundername: ;
  grantid: 2021KY0794; 2021KY0794; 2021KY0794
– fundername: ;
  grantid: 2022KY0789; 2022KY0789; 2022KY0789; 2022KY0789
– fundername: ;
  grantid: XJ20KT19; XJ20KT19
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4436-a66c6071b63c72f4d6e04e916dc37cf0efc9a5ee159af480f80e976450c883493
IEDL.DBID M2P
ISSN 2045-2322
IngestDate Mon Nov 10 04:32:04 EST 2025
Tue Nov 04 02:06:33 EST 2025
Fri Sep 05 12:24:31 EDT 2025
Tue Oct 07 09:12:45 EDT 2025
Mon Jul 21 05:53:44 EDT 2025
Sat Nov 29 06:34:26 EST 2025
Fri Feb 21 02:37:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4436-a66c6071b63c72f4d6e04e916dc37cf0efc9a5ee159af480f80e976450c883493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2840424294?pq-origsite=%requestingapplication%
PMID 37479882
PQID 2840424294
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_c214c1c1f3b84b87b82a7d66c3a88ef8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10362002
proquest_miscellaneous_2841021437
proquest_journals_2840424294
pubmed_primary_37479882
crossref_primary_10_1038_s41598_023_39058_w
springer_journals_10_1038_s41598_023_39058_w
PublicationCentury 2000
PublicationDate 20230721
PublicationDateYYYYMMDD 2023-07-21
PublicationDate_xml – month: 7
  year: 2023
  text: 20230721
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Fränti, Sieranoja (CR17) 2019; 93
Lv, Ma, Tang, Cao, Tian, Al-Dhelaan, Al-Rodhaan (CR11) 2016; 171
CR19
McInnes, Healy, Astels (CR23) 2017; 2
CR14
Alex, Alessandro (CR26) 2014; 344
Hayle, Manie, Dehnaw (CR6) 2021; 499
Gao, Hu (CR15) 2020; 35
Qaddoura, Faris, Aljarah (CR27) 2020; 11
Ester, Kriegel, Sander (CR18) 1996
Tan, Hu, Lin (CR2) 2007; 29
Zhang, Wang, Liang (CR5) 2015; 343
Campello, Moulavi, Zimek, Sander (CR12) 2015; 10
Cassisi, Ferro, Giugno, Pigola, Pulvirenti (CR21) 2013; 38
Song, Liu, Cheng, Wei, Yu, Huang, Liang (CR4) 2018; 38
Liu, Sun, Chen, Liu, Zhong (CR13) 2016; 175
Sierra-Pérez, Torres-Arredondo, Alvarez-Montoya (CR9) 2017
Otair (CR29) 2013; 5
Luckey, Fritz, Legatiuk (CR10) 2021
Kumar, Reddy (CR20) 2016; 58
Wang, Chen, Yu (CR30) 2017; 53
CR24
Kahandawa, Epaarachchi, Wang (CR3) 2013; 46
CR22
Lin, Zhang, Liu, Qu (CR31) 2022; 10
Zhang, Guo, Wu (CR8) 2015; 99
Cheng, Wu, Liu (CR1) 2018; 40
Rui, Wunsch (CR16) 2005; 16
Abbas, El-Zoghabi, Shoukry (CR28) 2021; 109
Jiang, Qiao, Li, Luo, Shen, Wu, Zhang (CR7) 2019; 20
Sieranoja, Fränti (CR25) 2019; 128
R Qaddoura (39058_CR27) 2020; 11
39058_CR19
X Gao (39058_CR15) 2020; 35
R Alex (39058_CR26) 2014; 344
M Abbas (39058_CR28) 2021; 109
X Wang (39058_CR30) 2017; 53
C Cassisi (39058_CR21) 2013; 38
KM Kumar (39058_CR20) 2016; 58
M Otair (39058_CR29) 2013; 5
X Rui (39058_CR16) 2005; 16
39058_CR14
D Luckey (39058_CR10) 2021
Y Lin (39058_CR31) 2022; 10
XL Zhang (39058_CR5) 2015; 343
ST Hayle (39058_CR6) 2021; 499
YH Lv (39058_CR11) 2016; 171
S Sieranoja (39058_CR25) 2019; 128
QG Tan (39058_CR2) 2007; 29
SF Jiang (39058_CR7) 2019; 20
L Liu (39058_CR13) 2016; 175
RJGB Campello (39058_CR12) 2015; 10
XG Song (39058_CR4) 2018; 38
J Sierra-Pérez (39058_CR9) 2017
Y Cheng (39058_CR1) 2018; 40
P Fränti (39058_CR17) 2019; 93
39058_CR24
GC Kahandawa (39058_CR3) 2013; 46
39058_CR22
L McInnes (39058_CR23) 2017; 2
M Ester (39058_CR18) 1996
J Zhang (39058_CR8) 2015; 99
References_xml – volume: 93
  start-page: 95
  year: 2019
  end-page: 112
  ident: CR17
  article-title: How much can k-means be improved by using better initialization and repeats?
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.04.014
– ident: CR22
– year: 2017
  ident: CR9
  article-title: Damage detection methodology under variable load conditions based on strain field pattern recognition using FBGs, nonlinear principal component analysis, and clustering techniques
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa9797
– year: 2021
  ident: CR10
  article-title: Explainable artificial intelligence to advance structural health monitoring
  publication-title: Struct. Health Monitor. Based Data Sci. Techn.
  doi: 10.1007/978-3-030-81716-9_16
– volume: 175
  start-page: 65
  year: 2016
  end-page: 80
  ident: CR13
  article-title: K-PRSCAN: A clustering method based on PageRank
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.020
– volume: 109
  year: 2021
  ident: CR28
  article-title: DenMune: Density peak based clustering using mutual nearest neighbors
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2020.107589
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: CR16
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– ident: CR14
– volume: 5
  start-page: 97
  issue: 1
  year: 2013
  end-page: 108
  ident: CR29
  article-title: Approximate K-nearest neighbour based spatial clustering using K- D tree
  publication-title: Int. J. Database Manag. Syst.
  doi: 10.5121/ijdms.2013.5108
– volume: 38
  start-page: 165
  year: 2018
  end-page: 172
  ident: CR4
  article-title: An algorithm of dynamic load identification based on FBG sensor and Kalman filter
  publication-title: Acta Optic. Sin.
– volume: 46
  start-page: 4045
  issue: 10
  year: 2013
  end-page: 4051
  ident: CR3
  article-title: Extraction and processing of real time strain of embedded FBG sensors using a fixed filter FBG circuit and an artificial neural network
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2013.07.029
– volume: 35
  start-page: 173
  year: 2020
  end-page: 179
  ident: CR15
  article-title: Digital image clustering based on improved k-means algorithm
  publication-title: Chin. J. Liq. Cryst. Disp.
  doi: 10.3788/YJYXS20203502.0173
– year: 1996
  ident: CR18
  publication-title: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
– volume: 20
  start-page: 110
  issue: 1
  year: 2019
  ident: CR7
  article-title: Structural health monitoring system based on FBG sensing technique for Chinese ancient timber buildings
  publication-title: Sensors
  doi: 10.3390/s20010110
– volume: 99
  start-page: 173
  year: 2015
  end-page: 183
  ident: CR8
  article-title: Structural identification and damage detection through long-gauge strain measurements
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.04.024
– volume: 53
  start-page: 156
  issue: 3
  year: 2017
  end-page: 158
  ident: CR30
  article-title: Optimised quantisation method for approximate nearest neighbour search
  publication-title: Electron. Lett.
  doi: 10.1049/el.2016.2810
– volume: 10
  start-page: 132031
  year: 2022
  end-page: 132039
  ident: CR31
  article-title: DEDIC: Density estimation clustering method using directly interconnected cores
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3229582
– volume: 128
  start-page: 551
  year: 2019
  end-page: 558
  ident: CR25
  article-title: Fast and general density peaks clustering
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.10.019
– volume: 29
  start-page: 696
  year: 2007
  end-page: 698
  ident: CR2
  article-title: A novel kind of multi-access interference cancellation scheme based on fiber Bragg gratings
  publication-title: J. Electron. Inf. Technol.
– volume: 10
  start-page: 1
  year: 2015
  end-page: 51
  ident: CR12
  article-title: Hierarchical density estimates for data clustering, visualization, and outlier detection
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2733381
– ident: CR19
– volume: 171
  start-page: 9
  year: 2016
  end-page: 22
  ident: CR11
  article-title: An efficient and scalable density-based clustering algorithm for datasets with complex structures
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.109
– volume: 40
  start-page: 386
  year: 2018
  end-page: 393
  ident: CR1
  article-title: A repaired algorithm based on improved compressed sensing to repair damaged fiber bragg grating sensing signal
  publication-title: J. Electron. Inf. Technol.
– volume: 58
  start-page: 39
  year: 2016
  end-page: 48
  ident: CR20
  article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method
  publication-title: Pattern Recogn. J. Pattern Recogn. Soc.
  doi: 10.1016/j.patcog.2016.03.008
– volume: 343
  start-page: 38
  year: 2015
  end-page: 46
  ident: CR5
  article-title: A soft self-repairing for FBG sensor network in SHM system based on PSO-SVR model reconstruction
  publication-title: Optic. Commun.
  doi: 10.1016/j.optcom.2014.12.079
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: CR26
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 499
  issue: 1
  year: 2021
  ident: CR6
  article-title: Reliable self-healing FBG sensor network for improvement of multipoint strain sensing
  publication-title: Optic. Commun.
  doi: 10.1016/j.optcom.2021.127286
– volume: 2
  start-page: 205
  issue: 11
  year: 2017
  ident: CR23
  article-title: Hdbscan: Hierarchical density based clustering
  publication-title: J. Open Sour. Softw.
  doi: 10.21105/joss.00205
– volume: 11
  start-page: 675
  issue: 3
  year: 2020
  end-page: 714
  ident: CR27
  article-title: An efficient clustering algorithm based on the k-nearest neighbors with an indexing ratio
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-01027-z
– volume: 38
  start-page: 317
  year: 2013
  end-page: 330
  ident: CR21
  article-title: Enhancing density-based clustering: Parameter reduction and outlier detection
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2012.09.001
– ident: CR24
– volume: 35
  start-page: 173
  year: 2020
  ident: 39058_CR15
  publication-title: Chin. J. Liq. Cryst. Disp.
  doi: 10.3788/YJYXS20203502.0173
– volume: 58
  start-page: 39
  year: 2016
  ident: 39058_CR20
  publication-title: Pattern Recogn. J. Pattern Recogn. Soc.
  doi: 10.1016/j.patcog.2016.03.008
– volume: 40
  start-page: 386
  year: 2018
  ident: 39058_CR1
  publication-title: J. Electron. Inf. Technol.
– year: 2021
  ident: 39058_CR10
  publication-title: Struct. Health Monitor. Based Data Sci. Techn.
  doi: 10.1007/978-3-030-81716-9_16
– volume: 46
  start-page: 4045
  issue: 10
  year: 2013
  ident: 39058_CR3
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2013.07.029
– volume: 344
  start-page: 1492
  year: 2014
  ident: 39058_CR26
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 109
  year: 2021
  ident: 39058_CR28
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2020.107589
– volume: 343
  start-page: 38
  year: 2015
  ident: 39058_CR5
  publication-title: Optic. Commun.
  doi: 10.1016/j.optcom.2014.12.079
– volume: 10
  start-page: 132031
  year: 2022
  ident: 39058_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3229582
– volume: 38
  start-page: 317
  year: 2013
  ident: 39058_CR21
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2012.09.001
– ident: 39058_CR22
  doi: 10.1137/1.9781611973440.47
– year: 2017
  ident: 39058_CR9
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa9797
– ident: 39058_CR14
– volume: 38
  start-page: 165
  year: 2018
  ident: 39058_CR4
  publication-title: Acta Optic. Sin.
– volume: 99
  start-page: 173
  year: 2015
  ident: 39058_CR8
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.04.024
– volume: 175
  start-page: 65
  year: 2016
  ident: 39058_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.020
– ident: 39058_CR24
  doi: 10.1109/CVPR.2019.00914
– volume: 11
  start-page: 675
  issue: 3
  year: 2020
  ident: 39058_CR27
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-01027-z
– volume: 5
  start-page: 97
  issue: 1
  year: 2013
  ident: 39058_CR29
  publication-title: Int. J. Database Manag. Syst.
  doi: 10.5121/ijdms.2013.5108
– volume: 499
  issue: 1
  year: 2021
  ident: 39058_CR6
  publication-title: Optic. Commun.
  doi: 10.1016/j.optcom.2021.127286
– volume: 29
  start-page: 696
  year: 2007
  ident: 39058_CR2
  publication-title: J. Electron. Inf. Technol.
– volume: 10
  start-page: 1
  year: 2015
  ident: 39058_CR12
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2733381
– volume: 93
  start-page: 95
  year: 2019
  ident: 39058_CR17
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.04.014
– volume-title: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
  year: 1996
  ident: 39058_CR18
– volume: 16
  start-page: 645
  year: 2005
  ident: 39058_CR16
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 171
  start-page: 9
  year: 2016
  ident: 39058_CR11
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.109
– volume: 128
  start-page: 551
  year: 2019
  ident: 39058_CR25
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.10.019
– ident: 39058_CR19
  doi: 10.1145/2723372.2737792
– volume: 2
  start-page: 205
  issue: 11
  year: 2017
  ident: 39058_CR23
  publication-title: J. Open Sour. Softw.
  doi: 10.21105/joss.00205
– volume: 20
  start-page: 110
  issue: 1
  year: 2019
  ident: 39058_CR7
  publication-title: Sensors
  doi: 10.3390/s20010110
– volume: 53
  start-page: 156
  issue: 3
  year: 2017
  ident: 39058_CR30
  publication-title: Electron. Lett.
  doi: 10.1049/el.2016.2810
SSID ssj0000529419
Score 2.3944082
Snippet The global stress distribution and state parameter analysis of the building's main structure is an urgent problem to be solved in the online state assessment...
Abstract The global stress distribution and state parameter analysis of the building's main structure is an urgent problem to be solved in the online state...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 11815
SubjectTerms 639/166/987
639/705/117
Algorithms
Classification
Clustering
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Sensors
Stress
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kKPgiWr-itazgm4ZmP5LsPlrxEFqKDwp9Wzb7cT2oScndtfjfO7ubO3t-4Iuv2SEMv8kyM5mZ3wC8wZChdZ0KpQyVK4VlvlRM2tKpmhnHuWt8osw_bc_O5Pm5-nxr1VfsCcv0wBm4I8uosNTSwDspOtl2kpnWNY3lRkof0phv1apbyVRm9WZKUDVNyVRcHi3RU8VpMsZLTPNrWd7seKJE2P-nKPP3ZslfKqbJEc0ewoMpgiTvs-aP4I7v9-Fe3in5_TGcbHrpyNCTPAlC7Hq89sReriMrAr6UmMv5MC5WF9_IEMgsNo2Q49HM5yQyR0SBJWa3w_gEvs4-fvnwqZw2JpRWCN6UBnGJhHFdw23LgkCkK-ExAnSWtzZUPlhlau8RChOErIKsPMYjoq6slFwo_hT2-qH3z4FINGF07yjDhaeuo52oaSwzUuWdCwW83aCnrzIxhk4FbS51xloj1jphrW8KOI4AbyUjqXV6gKbWk6n1v0xdwMHGPHq6aUuN7jVWb9HcBbzeHuMdiYUP0_thnWTSBnPeFvAsW3OrCcd8SmGaUYDcsfOOqrsn_eIi8XDT6P3RoxTwbvNJ_NTr71i8-B9YvIT7cfF9_MvM6AHsrca1fwV37fVqsRwP02X4ASjrDVI
  priority: 102
  providerName: Directory of Open Access Journals
Title Research on stress curve clustering algorithm of Fiber Bragg grating sensor
URI https://link.springer.com/article/10.1038/s41598-023-39058-w
https://www.ncbi.nlm.nih.gov/pubmed/37479882
https://www.proquest.com/docview/2840424294
https://www.proquest.com/docview/2841021437
https://pubmed.ncbi.nlm.nih.gov/PMC10362002
https://doaj.org/article/c214c1c1f3b84b87b82a7d66c3a88ef8
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dj9MwzOJuIPHC90fhmILEG0TXfKxJnxBDN4HgpgmBNJ6qNh-7k4726LY78e9x0m6n8fXCSx4aq3JiO3ZsxwZ4gSaDslXuqfappdJwR3OuDbX5iJdWCJu5WDL_o5pO9Xyez3qH27JPq9ycifGgto0JPvJDPEZDlI7n8vX5dxq6RoXoat9CYw8GaNmwkNJ1zGdbH0uIYkmW929lUqEPl6ivwpsyLihe9keaXu7oo1i2_0-25u8pk7_ETaM6mtz-34XcgVu9IUredJxzF665-h7c6FpT_rgPHzYpeaSpSfeghJh1e-GIOVuH4gqIFSnPFvjn1ck30ngyCbknZNyWiwUJBSgCwBIvyU37AL5Mjj6_fUf7xgvUSCkyWmaZCXXnqkwYxb1EgqXSoSFpjVDGp86bvBw5h3tZeqlTr1OHZo0cpUZrIXPxEPbrpnaPgWjkhGAlIIyQjtmKVXLEQrSS5c5an8DLzfYX5119jSLGxYUuOmIVSKwiEqu4TGAcKLSFDLWx44emXRS9qBWGM2mYYV5UWlZaVZqXyuKSRKm18zqBgw1hil5gl8UVVRJ4vp1GUQvxk7J2zTrCxEboQiXwqGOHLSYCr2U53lYS0DuMsoPq7kx9ehLLebNgRKBiSuDVhqeu8Pr7Xjz59zKewk0e2DxVlLMD2F-1a_cMrpuL1emyHcKemqs46iEMxkfT2adhdEcMowSFUeE4mL0_nn39CRqEIdU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQQX3o9AASPBCawmtrNxDghRYNVql1UPRerNJH5sK5WkJLtd9U_xG_E4m62W160HrvEcPM7nmbFn_A3ASx8yZKbMHZUuNlRoZmnOpKYmT1lhODcDGyjzx9lkIg8P8_0N-NG_hcGyyt4mBkNtao135NvejGKWjuXi3el3il2jMLvat9DoYDGy5wt_ZGvf7n30__cVY8NPBx926bKrANVC8AEtBgONpGrlgOuMOeFnEwvroySjeaZdbJ3Oi9Ra7-cLJ2TsZGy9zxZprKXkAsmXvMm_IpBZDEsF2f7qTgezZiLJl29zYi63W-8f8Q0b45TncSrpYs3_hTYBf4ptfy_R_CVPG9zf8Nb_tnC34eYy0Cbvu51xBzZsdReuda03z-_BqC85JHVFugczRM-bM0v0yRzJI_wqkOJk6jWZHX0jtSNDrK0hO00xnRIk2ECB1lZt3dyHL5eiyQPYrOrKPgIiPdIxCvIyXNjElEkp0gSzsUlujXERvO5_tzrt-ENUyPtzqTpwKA8OFcChFhHsICJWksj9HT7UzVQtTYnSLBE60YnjpRSlzErJisx4lXghpXUygq0eCGppkFp1gYIIXqyGvSnB_FBR2XoeZEKjd55F8LCD32om3B87c38ai0CuAXNtqusj1fFRoCtPMEjyjjeCNz2GL-b197V4_G81nsP13YPPYzXem4yewA2GWyzOKEu2YHPWzO1TuKrPZsdt8yzsUQJfLxvbPwFxyXZr
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH6qUkBc2BdDgUGCE4xiz0zi8QEhSomIUqIcQCqnqT1LWqnYxU4a9a_x63jjJVXYbj1w9czhvfH3lpm3AbxAlyE2WeKodKGhQjNLEyY1NcmApYZzM7R1y_z9eDqVBwfJbAt-dLUwPq2y04m1ojaF9m_kfVSjPkrHEtF3bVrEbG_09vQ79ROkfKS1G6fRQGRiz1d4favejPfwX79kbPTh8_uPtJ0wQLUQfEjT4VD7BmvZkOuYOYGUhcKix2Q0j7ULrdNJOrAWbX7qhAydDC3abzEItZRc-EZMqP630SUXrAfbs_Gn2df1C4-PoYkoaSt1Qi77FVpLX9HGOOVJOJB0tWEN66EBf_J0f0_Y_CVqWxvD0c3_-RhvwY3WBSfvGpm5DVs2vwNXm6Gc53dh0iUjkiInTSkN0cvyzBJ9svRtJfBESHoyR04WR99I4cjIZ92Q3TKdz4lvveE3VDavivIefLkUTu5DLy9y-xCIRBnw_hHu4cJGJosyMYh8nDZKrDEugFfdr1enTWcRVWcEcKkaoCgEiqqBolYB7Hp0rHf6ruD1h6Kcq1bJKM0ioSMdOZ5Jkck4kyyNDbLEUymtkwHsdKBQraqq1AUiAni-XkYl4yNHaW6LZb2nHgHP4wAeNFBcU8IR_Qne0wKQGyDdIHVzJT8-qhuZR959QpMcwOsOzxd0_f0sHv2bjWdwDSGt9sfTyWO4zry0hTFl0Q70FuXSPoEr-mxxXJVPW4ElcHjZ4P4JKLeAtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+stress+curve+clustering+algorithm+of+Fiber+Bragg+grating+sensor&rft.jtitle=Scientific+reports&rft.au=Lin%2C+Yisen&rft.au=Wang%2C+Ye&rft.au=Qu%2C+Huichen&rft.au=Xiong%2C+Yiwen&rft.date=2023-07-21&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=11815&rft_id=info:doi/10.1038%2Fs41598-023-39058-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon