Heating of hip joint implants in MRI: The combined effect of RF and switched‐gradient fields

Purpose To investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during an MRI session. Methods In silico analysis was performed with an anatomically realistic human model with CoCrMo hip implant in 12 imaging posi...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 85; no. 6; pp. 3447 - 3462
Main Authors: Arduino, Alessandro, Zanovello, Umberto, Hand, Jeff, Zilberti, Luca, Brühl, Rüdiger, Chiampi, Mario, Bottauscio, Oriano
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.06.2021
John Wiley and Sons Inc
Subjects:
ISSN:0740-3194, 1522-2594, 1522-2594
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose To investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during an MRI session. Methods In silico analysis was performed with an anatomically realistic human model with CoCrMo hip implant in 12 imaging positions. The analysis was performed at 1.5 T and 3 T, considering four clinical sequences: turbo spin‐echo, EPI, gradient‐echo, and true fast imaging sequence with steady precession. The exposure to gradient and RF fields was evaluated separately and superposed, by adopting an ad hoc computational algorithm. Temperature increase within the body, rather than specific absorption rate, was used as a safety metric. Results With the exception of gradient‐echo, all investigated sequences produced temperature increases higher than 1 K after 360 seconds, at least for one body position. In general, RF‐induced heating dominates the turbo spin‐echo sequence, whereas gradient‐induced heating prevails with EPI; the situation with fast imaging sequence with steady precession is more diversified. The RF effects are enhanced when the implant is within the RF coil, whereas the effects of gradient fields are maximized if the prosthesis is outside the imaging region. Cases for which temperature‐increase thresholds were exceeded were identified, together with the corresponding amount of tissue mass involved and the exposure time needed to reach these limits. Conclusion The analysis confirms that risky situations may occur when a patient carrying a hip implant undergoes an MRI exam and that, in some cases, the gradient field heating may be significant. In general, exclusion criteria only based on whole‐body specific absorption rate may not be sufficient to ensure patients’ safety.
AbstractList Purpose To investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during an MRI session. Methods In silico analysis was performed with an anatomically realistic human model with CoCrMo hip implant in 12 imaging positions. The analysis was performed at 1.5 T and 3 T, considering four clinical sequences: turbo spin‐echo, EPI, gradient‐echo, and true fast imaging sequence with steady precession. The exposure to gradient and RF fields was evaluated separately and superposed, by adopting an ad hoc computational algorithm. Temperature increase within the body, rather than specific absorption rate, was used as a safety metric. Results With the exception of gradient‐echo, all investigated sequences produced temperature increases higher than 1 K after 360 seconds, at least for one body position. In general, RF‐induced heating dominates the turbo spin‐echo sequence, whereas gradient‐induced heating prevails with EPI; the situation with fast imaging sequence with steady precession is more diversified. The RF effects are enhanced when the implant is within the RF coil, whereas the effects of gradient fields are maximized if the prosthesis is outside the imaging region. Cases for which temperature‐increase thresholds were exceeded were identified, together with the corresponding amount of tissue mass involved and the exposure time needed to reach these limits. Conclusion The analysis confirms that risky situations may occur when a patient carrying a hip implant undergoes an MRI exam and that, in some cases, the gradient field heating may be significant. In general, exclusion criteria only based on whole‐body specific absorption rate may not be sufficient to ensure patients’ safety.
To investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during an MRI session. In silico analysis was performed with an anatomically realistic human model with CoCrMo hip implant in 12 imaging positions. The analysis was performed at 1.5 T and 3 T, considering four clinical sequences: turbo spin-echo, EPI, gradient-echo, and true fast imaging sequence with steady precession. The exposure to gradient and RF fields was evaluated separately and superposed, by adopting an ad hoc computational algorithm. Temperature increase within the body, rather than specific absorption rate, was used as a safety metric. With the exception of gradient-echo, all investigated sequences produced temperature increases higher than 1 K after 360 seconds, at least for one body position. In general, RF-induced heating dominates the turbo spin-echo sequence, whereas gradient-induced heating prevails with EPI; the situation with fast imaging sequence with steady precession is more diversified. The RF effects are enhanced when the implant is within the RF coil, whereas the effects of gradient fields are maximized if the prosthesis is outside the imaging region. Cases for which temperature-increase thresholds were exceeded were identified, together with the corresponding amount of tissue mass involved and the exposure time needed to reach these limits. The analysis confirms that risky situations may occur when a patient carrying a hip implant undergoes an MRI exam and that, in some cases, the gradient field heating may be significant. In general, exclusion criteria only based on whole-body specific absorption rate may not be sufficient to ensure patients' safety.
PurposeTo investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during an MRI session.MethodsIn silico analysis was performed with an anatomically realistic human model with CoCrMo hip implant in 12 imaging positions. The analysis was performed at 1.5 T and 3 T, considering four clinical sequences: turbo spin‐echo, EPI, gradient‐echo, and true fast imaging sequence with steady precession. The exposure to gradient and RF fields was evaluated separately and superposed, by adopting an ad hoc computational algorithm. Temperature increase within the body, rather than specific absorption rate, was used as a safety metric.ResultsWith the exception of gradient‐echo, all investigated sequences produced temperature increases higher than 1 K after 360 seconds, at least for one body position. In general, RF‐induced heating dominates the turbo spin‐echo sequence, whereas gradient‐induced heating prevails with EPI; the situation with fast imaging sequence with steady precession is more diversified. The RF effects are enhanced when the implant is within the RF coil, whereas the effects of gradient fields are maximized if the prosthesis is outside the imaging region. Cases for which temperature‐increase thresholds were exceeded were identified, together with the corresponding amount of tissue mass involved and the exposure time needed to reach these limits.ConclusionThe analysis confirms that risky situations may occur when a patient carrying a hip implant undergoes an MRI exam and that, in some cases, the gradient field heating may be significant. In general, exclusion criteria only based on whole‐body specific absorption rate may not be sufficient to ensure patients’ safety.
To investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during an MRI session.PURPOSETo investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during an MRI session.In silico analysis was performed with an anatomically realistic human model with CoCrMo hip implant in 12 imaging positions. The analysis was performed at 1.5 T and 3 T, considering four clinical sequences: turbo spin-echo, EPI, gradient-echo, and true fast imaging sequence with steady precession. The exposure to gradient and RF fields was evaluated separately and superposed, by adopting an ad hoc computational algorithm. Temperature increase within the body, rather than specific absorption rate, was used as a safety metric.METHODSIn silico analysis was performed with an anatomically realistic human model with CoCrMo hip implant in 12 imaging positions. The analysis was performed at 1.5 T and 3 T, considering four clinical sequences: turbo spin-echo, EPI, gradient-echo, and true fast imaging sequence with steady precession. The exposure to gradient and RF fields was evaluated separately and superposed, by adopting an ad hoc computational algorithm. Temperature increase within the body, rather than specific absorption rate, was used as a safety metric.With the exception of gradient-echo, all investigated sequences produced temperature increases higher than 1 K after 360 seconds, at least for one body position. In general, RF-induced heating dominates the turbo spin-echo sequence, whereas gradient-induced heating prevails with EPI; the situation with fast imaging sequence with steady precession is more diversified. The RF effects are enhanced when the implant is within the RF coil, whereas the effects of gradient fields are maximized if the prosthesis is outside the imaging region. Cases for which temperature-increase thresholds were exceeded were identified, together with the corresponding amount of tissue mass involved and the exposure time needed to reach these limits.RESULTSWith the exception of gradient-echo, all investigated sequences produced temperature increases higher than 1 K after 360 seconds, at least for one body position. In general, RF-induced heating dominates the turbo spin-echo sequence, whereas gradient-induced heating prevails with EPI; the situation with fast imaging sequence with steady precession is more diversified. The RF effects are enhanced when the implant is within the RF coil, whereas the effects of gradient fields are maximized if the prosthesis is outside the imaging region. Cases for which temperature-increase thresholds were exceeded were identified, together with the corresponding amount of tissue mass involved and the exposure time needed to reach these limits.The analysis confirms that risky situations may occur when a patient carrying a hip implant undergoes an MRI exam and that, in some cases, the gradient field heating may be significant. In general, exclusion criteria only based on whole-body specific absorption rate may not be sufficient to ensure patients' safety.CONCLUSIONThe analysis confirms that risky situations may occur when a patient carrying a hip implant undergoes an MRI exam and that, in some cases, the gradient field heating may be significant. In general, exclusion criteria only based on whole-body specific absorption rate may not be sufficient to ensure patients' safety.
Author Zanovello, Umberto
Chiampi, Mario
Zilberti, Luca
Brühl, Rüdiger
Bottauscio, Oriano
Arduino, Alessandro
Hand, Jeff
AuthorAffiliation 2 School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
1 Istituto Nazionale di Ricerca Metrologica (INRIM) Torino Italy
3 Physikalisch‐Technische Bundesanstalt Braunschweig and Berlin Germany
AuthorAffiliation_xml – name: 3 Physikalisch‐Technische Bundesanstalt Braunschweig and Berlin Germany
– name: 1 Istituto Nazionale di Ricerca Metrologica (INRIM) Torino Italy
– name: 2 School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
Author_xml – sequence: 1
  givenname: Alessandro
  orcidid: 0000-0002-4829-5130
  surname: Arduino
  fullname: Arduino, Alessandro
  organization: Istituto Nazionale di Ricerca Metrologica (INRIM)
– sequence: 2
  givenname: Umberto
  orcidid: 0000-0001-6415-9967
  surname: Zanovello
  fullname: Zanovello, Umberto
  organization: Istituto Nazionale di Ricerca Metrologica (INRIM)
– sequence: 3
  givenname: Jeff
  surname: Hand
  fullname: Hand, Jeff
  organization: King’s College London
– sequence: 4
  givenname: Luca
  orcidid: 0000-0002-2382-4710
  surname: Zilberti
  fullname: Zilberti, Luca
  organization: Istituto Nazionale di Ricerca Metrologica (INRIM)
– sequence: 5
  givenname: Rüdiger
  surname: Brühl
  fullname: Brühl, Rüdiger
  organization: Physikalisch‐Technische Bundesanstalt
– sequence: 6
  givenname: Mario
  orcidid: 0000-0003-0049-3792
  surname: Chiampi
  fullname: Chiampi, Mario
  organization: Istituto Nazionale di Ricerca Metrologica (INRIM)
– sequence: 7
  givenname: Oriano
  orcidid: 0000-0002-5437-4396
  surname: Bottauscio
  fullname: Bottauscio, Oriano
  email: o.bottauscio@inrim.it
  organization: Istituto Nazionale di Ricerca Metrologica (INRIM)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33483979$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1uEzEUhS1URNOWBS-ALLGhi2ntsT0es0BCFf2RGiFF7RbLM75OHM3YYTyh6o5H6DPyJDhNiqCClaXr7xyde88B2gsxAEJvKDmhhJSn_dCflHVVVS_QhIqyLEqh-B6aEMlJwaji--ggpSUhRCnJX6F9xnjNlFQT9PUSzOjDHEeHF36Fl9GHEft-1ZkwJuwDns6uPuCbBeA29o0PYDE4B-24UczOsQkWpzs_tguwP388zAdjPWQL56Gz6Qi9dKZL8Hr3HqLb8883Z5fF9ZeLq7NP10XLOasKaUVVO66MlMpR5YSweR3JDJOiFo0gVAoD0DhKQTGb55XglilDBaiyKdkh-rj1Xa2bHmybEwym06vB92a419F4_fdP8As9j9-1VHVVc5oN3u8MhvhtDWnUvU8tdPkMENdJl7wmXDHJNui7Z-gyroeQ18uUKnNUoepMvf0z0e8oT6fPwOkWaIeY0gBOt37MXcRNQN9pSvSmXJ3L1Y_lZsXxM8WT6b_Ynfud7-D-_6CezqZbxS9yJbNw
CitedBy_id crossref_primary_10_1109_TIM_2024_3485457
crossref_primary_10_1155_2024_7418643
crossref_primary_10_1002_mrm_30491
crossref_primary_10_1515_teme_2023_0167
crossref_primary_10_1002_mrm_29861
crossref_primary_10_1002_mrm_29235
crossref_primary_10_1007_s11517_021_02435_6
crossref_primary_10_7554_eLife_90440_3
crossref_primary_10_1002_mrm_30539
crossref_primary_10_1016_j_cmpb_2025_109009
crossref_primary_10_1002_mrm_29007
crossref_primary_10_7554_eLife_90440
crossref_primary_10_1002_mrm_70059
crossref_primary_10_1002_jmri_28321
crossref_primary_10_1002_mrm_29787
crossref_primary_10_1088_1361_6560_aca5e6
crossref_primary_10_1016_j_bioactmat_2023_01_017
crossref_primary_10_1007_s10334_025_01238_2
crossref_primary_10_3390_diagnostics12081873
Cites_doi 10.1109/TDMR.2005.859033
10.1002/mrm.25687
10.1002/mrm.26652
10.1038/s41598-017-00215-7
10.6009/jjrt.66.725
10.1002/mrm.26544
10.1088/0031-9155/56/23/008
10.1109/TBME.2003.808809
10.1002/mrm.27688
10.1002/jmri.23984
10.1002/jmri.23764
10.1002/mrm.23304
10.1163/156939309788019796
10.1152/jappl.1948.1.2.93
10.1002/mrm.27346
10.1117/12.2512903
10.1097/HP.0000000000001210
10.1002/jmri.24163
10.3109/15368378.2013.802244
10.1055/s-2006-934220
10.1002/mrm.25540
10.1088/0031-9155/58/12/4367
10.1109/TMAG.2014.2363140
10.1097/00004032-200408000-00008
10.1002/jmri.24729
10.1088/1361-6560/ab5428
10.1002/jmri.23523
10.1002/mrm.27379
10.1002/cmr.b.20167
10.1002/jmri.27194
10.1109/TMAG.2017.2658021
10.1109/TBME.2003.813538
10.1002/jmri.22313
10.1186/s41747-018-0040-y
10.1007/s40134-015-0128-6
10.1002/mrm.28512
10.1002/jmri.20103
10.1007/978-3-540-68764-1_8
10.5435/JAAOS-20-12-775
10.1002/jmri.21157
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.28666
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
Biochemistry Abstracts 1
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate ARDUINO et al
EISSN 1522-2594
EndPage 3462
ExternalDocumentID PMC7986841
33483979
10_1002_mrm_28666
MRM28666
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: 17IND01 MIMAS Project of the EMPIR Program, co‐financed by the participating states and from the European Union’s Horizon 2020 Research and Innovation Program
– fundername: ;
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4436-7d568f49a779f19f55d86673a37585b50175aeebf11e93d3a3654d39a15e92b23
IEDL.DBID 24P
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000609908800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Nov 04 01:59:55 EST 2025
Sun Nov 09 13:07:54 EST 2025
Sat Nov 29 14:34:13 EST 2025
Thu Apr 03 07:04:45 EDT 2025
Tue Nov 18 21:48:25 EST 2025
Sat Nov 29 06:34:31 EST 2025
Wed Jan 22 16:29:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords hip prosthesis
radiofrequency heating
MRI safety
gradient coil heating
numerical simulation
Language English
License Attribution
2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4436-7d568f49a779f19f55d86673a37585b50175aeebf11e93d3a3654d39a15e92b23
Notes Funding information
17IND01 MIMAS Project and the EMPIR Program, co‐financed by the participating states and from the European Union’s Horizon 2020 Research and Innovation Program
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2382-4710
0000-0003-0049-3792
0000-0002-4829-5130
0000-0002-5437-4396
0000-0001-6415-9967
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28666
PMID 33483979
PQID 2492175598
PQPubID 1016391
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7986841
proquest_miscellaneous_2480493731
proquest_journals_2492175598
pubmed_primary_33483979
crossref_citationtrail_10_1002_mrm_28666
crossref_primary_10_1002_mrm_28666
wiley_primary_10_1002_mrm_28666_MRM28666
PublicationCentury 2000
PublicationDate June 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2009; 23
2004; 87
2010; 32
2017; 7
2004; 20
2015; 3
2006; 10
2015; 51
2015; 74
2018; 80
2011; 56
2012; 35
2003; 50
2007; 114
2010; 66
2017; 53
2010; 37B
2013; 37
2019; 81
2013; 58
2018; 2
2013; 38
2019; 64
2020
2017; 77
1948; 1
2015; 41
2005; 5
2019
2009; 122
2018
2020; 118
2015
2014
2013
2012; 68
2021; 85
2012; 20
2014; 33
2007; 26
ASTM (e_1_2_8_8_1) 2013
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_27_1
e_1_2_8_48_1
International Organization for Standardization (ISO) (e_1_2_8_11_1) 2018
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
Bottauscio O (e_1_2_8_37_1) 2015; 51
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_18_1
Sim4Life (e_1_2_8_33_1)
e_1_2_8_39_1
e_1_2_8_19_1
Yang C‐W (e_1_2_8_22_1) 2009; 122
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
Arduino A (e_1_2_8_40_1) 2017; 53
Hasgall PA (e_1_2_8_34_1) 2018
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_12_1
International Electrotechnical Commission (IEC). (e_1_2_8_9_1) 2015
(e_1_2_8_10_1) 2019
e_1_2_8_30_1
References_xml – volume: 81
  start-page: 3826
  year: 2019
  end-page: 3839
  article-title: A numerical and experimental study of RF shimming in the presence of hip prostheses using adaptive SAR at 3 T
  publication-title: Magn Reson Med
– volume: 33
  start-page: 223
  year: 2014
  end-page: 227
  article-title: Effect of insulating layer material on RF‐induced heating for external fixation system in 1.5 T MRI system
  publication-title: Electromagn Biol Med
– volume: 80
  start-page: 2726
  year: 2018
  end-page: 2730
  article-title: Retrospective analysis of RF heating measurements of passive medical implants
  publication-title: Magn Reson Med
– volume: 58
  start-page: 4367
  year: 2013
  end-page: 4379
  article-title: Application and experimental validation of an integral method for simulation of gradient‐induced eddy currents on conducting surfaces during magnetic resonance imaging
  publication-title: Phys Med Biol
– volume: 38
  start-page: 2
  year: 2013
  end-page: 11
  article-title: Fundamentals of balanced steady state free precession MRI
  publication-title: J Magn Reson Imaging
– volume: 51
  start-page: 1
  year: 2015
  end-page: 4
  article-title: A GPU computational code for eddy‐current problems in voxel‐based anatomy
  publication-title: IEEE Trans Magn
– volume: 5
  start-page: 467
  year: 2005
  end-page: 480
  article-title: MRI and implanted medical devices: basic interactions with an emphasis on heating
  publication-title: IEEE Trans Device Mater Rel
– volume: 20
  start-page: 775
  year: 2012
  end-page: 787
  article-title: MRI techniques: a review and update for the orthopaedic surgeon
  publication-title: J Am Acad Orthop Surg
– volume: 7
  start-page: 326
  year: 2017
  article-title: An ideal dielectric coat to avoid prosthesis RF‐artefacts in magnetic resonance imaging
  publication-title: Sci Rep
– volume: 10
  start-page: 98
  year: 2006
  end-page: 106
  article-title: Magnetic resonance imaging of joint replacements
  publication-title: Semin Musculoskelet Radiol
– volume: 26
  start-page: 1328
  year: 2007
  end-page: 1333
  article-title: Heating of metallic implants and instruments induced by gradient switching in a 1.5‐Tesla whole‐body unit
  publication-title: J Magn Reson Imaging
– year: 2018
– volume: 50
  start-page: 804
  year: 2003
  end-page: 815
  article-title: On the induced electric field gradients in the human body for magnetic stimulation by gradient coils in MRI
  publication-title: IEEE Trans Biomed Eng
– year: 2014
– volume: 37
  start-page: 491
  year: 2013
  end-page: 497
  article-title: Computational and experimental studies of an orthopedic implant: MRI‐related heating at 1.5‐T/64‐MHz and 3‐T/128‐MHz
  publication-title: J Magn Reson Imaging
– volume: 81
  start-page: 615
  year: 2019
  end-page: 617
  article-title: Adaptive SAR mass‐averaging framework to improve predictions of local RF heating near a hip implant for parallel transmit at 7 T
  publication-title: Magn Reson Med
– volume: 77
  start-page: 1739
  year: 2017
  end-page: 1740
  article-title: Gradient heating of bulk metallic implants can be a safety concern in MRI
  publication-title: Magn Reson Med
– volume: 77
  start-page: 13
  year: 2017
  end-page: 15
  article-title: The underestimated role of gradient coils in MRI safety
  publication-title: Magn Reson Med
– volume: 56
  start-page: 7449
  year: 2011
  end-page: 7471
  article-title: Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure
  publication-title: Phys Med Biol
– volume: 37B
  start-page: 180
  year: 2010
  end-page: 192
  article-title: Optimization of duty cycles for MRI scanners
  publication-title: Concepts Magn Reson Part B Magn Reson Eng
– volume: 3
  start-page: 1
  year: 2015
  end-page: 9
  article-title: Heating and safety concerns of the radio‐frequency field in MRI
  publication-title: Curr Radiol Rep
– volume: 50
  start-page: 295
  year: 2003
  end-page: 330
  article-title: Specific absorption rate and temperature elevation in a subject exposed in the far‐field of radio‐frequency sources operating in the 10–900 MHz range
  publication-title: IEEE Trans Biomed Eng
– volume: 35
  start-page: 1013
  year: 2012
  end-page: 1025
  article-title: Magnetic resonance imaging of the postoperative hip
  publication-title: J Magn Reson Imaging
– volume: 122
  start-page: 911
  year: 2009
  end-page: 916
  article-title: Magnetic resonance imaging of artificial lumbar disks: safety and metal artifacts
  publication-title: Chin Med J
– volume: 87
  start-page: 197
  year: 2004
  end-page: 216
  article-title: ICNIRP statement medical magnetic resonance (MR) procedures: protection of patients
  publication-title: Health Phys
– volume: 1
  start-page: 93
  year: 1948
  end-page: 122
  article-title: Analysis of tissue and arterial blood temperatures in the resting human forearm
  publication-title: J Appl Physiol
– volume: 2
  start-page: 7
  year: 2018
  article-title: 3‐T MRI implant safety: heat induction with new dual‐channel radiofrequency transmission technology
  publication-title: Eur Radiol Exp
– volume: 20
  start-page: 315
  year: 2004
  end-page: 320
  article-title: Evaluation of specific absorption rate as a dosimeter of MRI‐related implant heating
  publication-title: J Magn Reson Imaging
– volume: 53
  start-page: 1
  year: 2017
  end-page: 4
  article-title: Douglas‐Gunn method applied to dosimetric assessment in magnetic resonance imaging
  publication-title: IEEE Trans Magn
– volume: 74
  start-page: 272
  year: 2015
  end-page: 279
  article-title: Numerical prediction of temperature elevation induced around metallic hip prostheses by traditional, split, and uniplanar gradient coils
  publication-title: Magn Reson Med
– volume: 85
  start-page: 583
  year: 2021
  end-page: 586
  article-title: RF‐induced heating of metallic implants simulated as PEC: is there something missing?
  publication-title: Magn Reson Med
– volume: 32
  start-page: 773
  year: 2010
  end-page: 787
  article-title: Magnetic resonance imaging near metal implants
  publication-title: J Magn Reson Imaging
– volume: 66
  start-page: 725
  year: 2010
  end-page: 733
  article-title: Evaluation of RF heating on hip joint implant in phantom during MRI examinations
  publication-title: Jpn J Radiol Technol
– volume: 74
  start-page: 1564
  year: 2015
  end-page: 1573
  article-title: Characterizing the limits of MRI near metallic prostheses
  publication-title: Magn Reson Med
– volume: 38
  start-page: 411
  year: 2013
  end-page: 441
  article-title: Heating of metallic rods induced by time‐varying gradient fields in MRI
  publication-title: J Magn Reson Imaging
– volume: 118
  start-page: 483
  year: 2020
  end-page: 524
  article-title: Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)
  publication-title: Health Phys
– volume: 64
  start-page: 245006
  year: 2019
  article-title: In silico evaluation of the thermal stress induced by MRI switched gradient fields in patients with metallic hip implant
  publication-title: Phys Med Biol
– year: 2019
– volume: 68
  start-page: 960
  year: 2012
  end-page: 968
  article-title: Numerical simulation of SAR induced around Co‐Cr‐Mo hip prostheses in situ exposed to RF fields associated with 1.5 and 3 T MRI body coils
  publication-title: Magn Reson Med
– year: 2015
– volume: 41
  start-page: 1570
  year: 2015
  end-page: 1580
  article-title: Knee implant imaging at 3 Tesla using high‐bandwidth radiofrequency pulses
  publication-title: J Magn Reson Imaging
– volume: 23
  start-page: 799
  year: 2009
  end-page: 808
  article-title: (2009) MRI induced heating of artificial bone implants
  publication-title: J Electromagn Waves Appl
– year: 2013
– volume: 114
  start-page: 53
  year: 2007
  end-page: 58
  article-title: A numerical investigation of RF heating effect on implants during MRI compared to experimental measurements
  publication-title: Adv Med Eng
– year: 2020
  article-title: MRI‐related heating of implants and devices: a review
  publication-title: J Magn Reson Imaging
– ident: e_1_2_8_12_1
  doi: 10.1109/TDMR.2005.859033
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.25687
– ident: e_1_2_8_29_1
  doi: 10.1002/mrm.26652
– ident: e_1_2_8_48_1
  doi: 10.1038/s41598-017-00215-7
– ident: e_1_2_8_20_1
  doi: 10.6009/jjrt.66.725
– ident: e_1_2_8_27_1
  doi: 10.1002/mrm.26544
– volume-title: IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues
  year: 2018
  ident: e_1_2_8_34_1
– ident: e_1_2_8_41_1
  doi: 10.1088/0031-9155/56/23/008
– ident: e_1_2_8_42_1
  doi: 10.1109/TBME.2003.808809
– volume: 122
  start-page: 911
  year: 2009
  ident: e_1_2_8_22_1
  article-title: Magnetic resonance imaging of artificial lumbar disks: safety and metal artifacts
  publication-title: Chin Med J
– ident: e_1_2_8_47_1
  doi: 10.1002/mrm.27688
– ident: e_1_2_8_25_1
  doi: 10.1002/jmri.23984
– ident: e_1_2_8_14_1
  doi: 10.1002/jmri.23764
– ident: e_1_2_8_15_1
  doi: 10.1002/mrm.23304
– ident: e_1_2_8_19_1
  doi: 10.1163/156939309788019796
– volume-title: Computable Human Phantoms
  ident: e_1_2_8_33_1
– ident: e_1_2_8_39_1
  doi: 10.1152/jappl.1948.1.2.93
– ident: e_1_2_8_21_1
  doi: 10.1002/mrm.27346
– ident: e_1_2_8_28_1
  doi: 10.1117/12.2512903
– volume-title: F2503–13: Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment
  year: 2013
  ident: e_1_2_8_8_1
– ident: e_1_2_8_43_1
  doi: 10.1097/HP.0000000000001210
– ident: e_1_2_8_35_1
  doi: 10.1002/jmri.24163
– ident: e_1_2_8_45_1
  doi: 10.3109/15368378.2013.802244
– ident: e_1_2_8_2_1
  doi: 10.1055/s-2006-934220
– volume-title: F2182‐19: Standard Test Method for Measurement of Radio Frequency Induced Heating on or Near Passive Implants During Magnetic Resonance Imaging
  year: 2019
  ident: e_1_2_8_10_1
– ident: e_1_2_8_36_1
– ident: e_1_2_8_7_1
  doi: 10.1002/mrm.25540
– ident: e_1_2_8_24_1
  doi: 10.1088/0031-9155/58/12/4367
– volume: 51
  start-page: 1
  year: 2015
  ident: e_1_2_8_37_1
  article-title: A GPU computational code for eddy‐current problems in voxel‐based anatomy
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2014.2363140
– ident: e_1_2_8_44_1
  doi: 10.1097/00004032-200408000-00008
– ident: e_1_2_8_5_1
  doi: 10.1002/jmri.24729
– ident: e_1_2_8_30_1
  doi: 10.1088/1361-6560/ab5428
– ident: e_1_2_8_4_1
  doi: 10.1002/jmri.23523
– ident: e_1_2_8_17_1
  doi: 10.1002/mrm.27379
– ident: e_1_2_8_49_1
  doi: 10.1002/cmr.b.20167
– ident: e_1_2_8_32_1
  doi: 10.1002/jmri.27194
– volume: 53
  start-page: 1
  year: 2017
  ident: e_1_2_8_40_1
  article-title: Douglas‐Gunn method applied to dosimetric assessment in magnetic resonance imaging
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2017.2658021
– ident: e_1_2_8_31_1
  doi: 10.1109/TBME.2003.813538
– volume-title: IEC 60601‐2‐33:2010 +AMD1:2013+AMD2:2015: Medical Electrical Equipment—Particular Requirements for the Basic Safety and Essential Performance of Magnetic Resonance Equipment for Medical Diagnosis
  year: 2015
  ident: e_1_2_8_9_1
– ident: e_1_2_8_6_1
  doi: 10.1002/jmri.22313
– ident: e_1_2_8_46_1
  doi: 10.1186/s41747-018-0040-y
– ident: e_1_2_8_13_1
  doi: 10.1007/s40134-015-0128-6
– ident: e_1_2_8_38_1
  doi: 10.1002/mrm.28512
– volume-title: Assessment of the Safety of Magnetic Resonance Imaging for Patients with an Active Implantable Medical Device
  year: 2018
  ident: e_1_2_8_11_1
– ident: e_1_2_8_16_1
  doi: 10.1002/jmri.20103
– ident: e_1_2_8_18_1
  doi: 10.1007/978-3-540-68764-1_8
– ident: e_1_2_8_3_1
  doi: 10.5435/JAAOS-20-12-775
– ident: e_1_2_8_23_1
  doi: 10.1002/jmri.21157
SSID ssj0009974
Score 2.4662955
Snippet Purpose To investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during...
To investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during an MRI...
PurposeTo investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during an...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3447
SubjectTerms Absorption
Algorithms
Body temperature
Computer applications
Exposure
Full Papers—Computer Processing and Modeling
gradient coil heating
Heating
Hip
hip prosthesis
Magnetic resonance imaging
Medical imaging
MRI safety
numerical simulation
Precession
Prostheses
radiofrequency heating
Safety
Surgical implants
Transplants & implants
Title Heating of hip joint implants in MRI: The combined effect of RF and switched‐gradient fields
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28666
https://www.ncbi.nlm.nih.gov/pubmed/33483979
https://www.proquest.com/docview/2492175598
https://www.proquest.com/docview/2480493731
https://pubmed.ncbi.nlm.nih.gov/PMC7986841
Volume 85
WOSCitedRecordID wos000609908800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VFlAv_BRoA6UyiEMvaRvHjm04IWDVSuyqWlGxJyIndtqgbna12ZYrj9Bn7JPgcbIpq4KExCVK4kls2TP2Z3v8DcAbLdwYQI0NNctZyCwtwizKRJhQax16MFYfGB9sQgwGcjRSxyvwbnEWpuGH6Bbc0DJ8f40GrrN6_4Y0dDwb71Hp0PcdWIuiWGLcBsqObxh3VUPBLBh2NIotaIUO6H736fJgdAth3naU_B3A-hGo9_C_yv4IHrTAk7xvNOUxrNhqA-732631DbjnfUHz-gl8O0QcWZ2SSUHOyin5PimrOSnH03P0mSFlRfrDo7fEKRhx-bqZtTWkcQvBL4Y9oitD6h8l6oO5_nl1OvNuZXPiveXqp3DS-_Tlw2HYhmEIc8biJBSGJ7JgSguhikgVnBuJwUJ1jHONjDub5trarIgiq2Lj3iecmVjpiFtFMxo_g9VqUtktPCBeaKcJxoGqhHFOdRJTXJdmPNK5ECKA3UV7pHnLUY6hMs7Thl2Zpq7mUl9zAbzuRKcNMcefhLYXjZq2tlmnyJHoisyVDOBVl-ysCrdKdGUnFygj3dQpFnEUwGajA10ueHYZd0MDEEva0QkgY_dySlWeeeZuoWQimfvnrteOvxc87Q_7_ub5v4u-gHWKDjd-iWgbVuezC_sS7uaX87Ke7XjjcFcxkjuw9nHYO_nsnr4eDX4BJB8VZw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V8rzwKK9AAYM49BLaOHYcIy4IsdoVzQqtiuipkRM7bVDXu9ps4cpP4DfyS_A42ZRVQULiFsXjxLJn7M_j8TcAL5VwawDVJlSsZCEztAqLqBBhQo1x6EEbtad9sgkxHqeHh_LjBrxZ3YVp-SF6hxtahp-v0cDRIb17zho6XUxf0dTB70twmTmggYkbPo_G55S7suVgFgxnGslWvEJ7dLevur4aXYCYFyMlf0ewfgka3Pq_xt-Gmx30JG9bXbkDG8ZuwbWsO1zfgqs-GrRs7sLREJGkPSazipzUc_JlVtslqafzU4yaIbUl2WT0mjgVI-7Hbm9tNGkDQ7DGZECU1aT5VqNG6J_ffxwvfGDZkvh4ueYefBq8P3g3DLtEDGHJWJyEQvMkrZhUQsgqkhXnOsV0oSrG3UbBnVVzZUxRRZGRsXbvE850LFXEjaQFje_Dpp1Z8xCviFfK6YJ2sCphnFOVxBQ904xHqhRCBLCzGpC87FjKMVnGad7yK9Pc9Vzuey6AF73ovKXm-JPQ9mpU8846mxxZEl2TuUwDeN4XO7vCwxJlzewMZVK3eYpFHAXwoFWC_i94exnPQwMQa-rRCyBn93qJrU88d7eQaZIy980drx5_b3ieTTL_8OjfRZ_B9eFBtp_vj8YfHsMNiuE33mG0DZvLxZl5AlfKr8u6WTz1lvILlbkWKA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VLVRc-Cl_gQIGcegltHHsOEZcECVqRXdVrajUE5ETO21Q17vabOHKI_CMPAkeJ5uyKkhI3CJ7HFv2N_bYHn8D8EoJtwZQbULFShYyQ6uwiAoRJtQYZz1oo3a1DzYhRqP05EQercHb5VuYlh-iP3BDzfDzNSq4melq55I1dDKfvKapM7-vwTrDIDIDWN8bZ8eHl6S7smVhFgznGsmWzEK7dKcvvLoeXTEyr_pK_m7D-kUou_1_zb8Dtzrjk7xr0XIX1ozdhI1hd72-CTe8P2jZ3IPP-2hL2lMyrchZPSNfprVdkHoyO0e_GVJbMhwfvCEOZMRV7HbXRpPWNQRLjDOirCbNtxoxoX9-_3E6965lC-I95pr7cJx9-PR-P-xCMYQlY3ESCs2TtGJSCSGrSFac6xQDhqoY9xsFd3rNlTFFFUVGxtqlJ5zpWKqIG0kLGj-AgZ1a8wgfiVfKoUE7wyphnFOVxBTPphmPVCmECGB7OSB52fGUY7iM87xlWKa567nc91wAL3vRWUvO8SehreWo5p1-NjnyJLomc5kG8KLPdpqF1yXKmukFyqRu-xSLOArgYQuCvhZ8v4w3ogGIFXj0AsjavZpj6zPP3i1kmqTM_XPbw-PvDc-H46H_ePzvos9h42gvyw8PRh-fwE2K_jf-xGgLBov5hXkK18uvi7qZP-tU5Rdm8xbR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heating+of+hip+joint+implants+in+MRI%3A+The+combined+effect+of+RF+and+switched%E2%80%90gradient+fields&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Arduino%2C+Alessandro&rft.au=Zanovello%2C+Umberto&rft.au=Hand%2C+Jeff&rft.au=Zilberti%2C+Luca&rft.date=2021-06-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=6&rft.spage=3447&rft.epage=3462&rft_id=info:doi/10.1002%2Fmrm.28666&rft.externalDBID=10.1002%252Fmrm.28666&rft.externalDocID=MRM28666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon